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Abstract 

Much of the effort of the planning community is cur­
rently focused on improving the performance of dis­
junctive planners (DPs). We are interested in solving 
real-world planning problems and, to that end, argue 
for the use of domain knowledge in planning. Hierar­
chical task network (HTN) planners use more knowl­
edge than DPs and have advantages such as scalabil­
ity, expressiveness, continuous plan modification dur­
ing execution, and the ability to interact with humans. 
We argue, however, that the field must develop meth­
ods capable of using even richer knowledge models 
than those used in HTNs (and therefore DPs) in order 
to make planning tools useful for complex problems. 
While we applaud the development of faster DP sys­
tems and their use for planning subproblems, it may 
not be best for the field to focus so many resources on 
techniques that solve only a narrow subset of the prob­
lems that are faced in real-world domains. 

Introduction 
Much of the effort of the planning community is cur­
rently focused on improving the performance of disjunctive 
planners (DPs). Kambhampati (1997) defines disjunctive 
planners as planners that retain the current planset with­
out splitting its components into different search branches. 
This family of planners includes Graphplan (Blum & Furst 
1995), SATPLAN (Kautz & Selman 1996), and their 
derivatives, all of which use STRIPS-style planning knowl­
edge to derive and solve propositional representations of 
planning problems. 

Most planners described in AAAI-99 and IJCAI-99 are 
DPs that could solve only simple, small toy problems from 
the standard corpus used for testing disjunctive planners. 
(By contrast, the planning applications in IAAI-99 used 
more expressive representations and methods.) The 1998 
AlPS planning competition also focused considerable effort 
on simple STRIPS-encoded toy problems that were solv­
able (or nearly so) by DPs. Unfortunately, the difficulties 
of defining a common notation for more complex problems 
and knowledge led to the demise of a proposed HTN track. 
A recent survey of advances in AI planning (Weld 1999) 
focused entirely on DP methods, reflecting the current em­
phasis on this style of planning. 

We are interested in solving real-world planning prob­
lems, and believe that doing so will require techniques that 
are more expressive and provide a wider range of capa­
bilities than DPs. In particular, we argue for the use of 
knowledge-based planning (KEP)-that is, methods that 
use available domain knowledge to solve the planning prob­
lem, including interacting with humans when necessary to 
make use of their expertise. A planner may be more or less 
knowledge-based, depending on the range of knowledge it 
uses, and how effectively it uses it. We argue that KEP 
can solve problems that DPs in their current form cannot, 
because of the greater expressivity and more natural repre­
sentations of KBP.' 

We present some characteristics of real-world palnning 
problems that are not solvable by current DP approaches, 
and we argue that DPs are unlikely to extend to these prob­
lems. We summarize the features of an HTN planner to 
show the types of knowledge and capabilities that are ex­
ploited in an existing KEP system. However, current HTN 
planners are only a small step in the direction of the level of 
KEP that we envision. We next argue that achieving plan­
fu1 behavior in a complex, dynamic world will require the 
use of much more knowledge and richer knowledge mod­
els than those used in HTN planners. We discuss forms of 
knowledge that HTN planners do not use, and give some 
examples of problems that today's HTN planners are not 
able to solve. Finally, we draw some lessons from the his­
tory of the machine learning research community that are 
analogous to the current trends in the planning community. 

Characteristics of 
Real-World Planning Problems 

Real-world problems have been found by many researchers 
to require more expressive representations and capabilities 
than those provided by current AI planning systems. Chien 
et al. (1996) conclude from their experience with multiple 
NASA applications that "current plan representations are 

lOur comments apply not only to DPs, but to any planner that 
cannot address hard, embedded problems, whether for computa­
tional reasons or a lack of expressiveness. We address our remarks 
to DPs as they are currently the most studied systems with that 
property. 
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impoverished." They discuss the requirements of an opera­
tional context in which users must interact with the system, 
and must be able to understand and modify the plans pro­
duced by the planner. Our experience with military plan­
ning applications supports these conclusions. In this sec­
tion, we describe some of the specific capabilities that are 
needed to solve real-world problems: numerical reason­
ing, parallelism, context-dependent effects, interaction with 
users, execution monitoring, replanning, and scalability. 

Reasoning with numbers is essential in every realistic do­
main that we have studied. Common needs for numbers 
are time, sharable resources having a specific capacity, con­
tinuous resources available in limited quantities, and goals 
of accumulation. In practice, DPs have difficulty handling 
problems involving reasoning about numbers.2 In most ex­
isting non-HTN AI planners, the need for numerical rea­
soning is reduced by assuming that sharable resources have 
infinite capacity, and that continuous resources are unlim­
ited (Srivastava & Kambhampati 1999). 

Realistic domains may have dozens of (perhaps neces­
sarily) parallel activities, as activities of various agents are 
coordinated. Parallelism can cause computational problems 
for DPs, and many systems produce only sequential plans. 

Realistic domains often have numerous context­
dependent effects, which can cause an exponential 
explosion in the number of STRIPS operators needed. This 
problem is being addressed to some extent in DPs. Ex­
tensions to the Graphplan algorithm to handle conditional 
effects are given in (Kambhampati, Parker, & Lambrecht 
1997) and (Guere & Alami 1999), but neither paper 
discusses the time or space complexity of the algorithms. 
Other approaches have also been tried, perhaps the most 
promising being factored expansion, in which an action 
with conditional effects is split into new actions called 
"components," one for each conditional effect. The cost 
is added complexity in the planning algorithms involving 
"tricky" extensions (Anderson, Smith, & Weld 1998). 

Interacting with people is a critical aspect of real-world 
planning. Realistic problems are embedded in the world, 
and generally do not have precisely defined boundaries or 
evaluation functions. Thus, most interesting planning prob­
lems will be difficult or impossible to model fully. For ex­
ample, criteria for plan evaluation often cannot be quanti­
fied, such as when the political consequences of a military 
or media action are crucial. In such cases, a human user 
must be able to guide the planner and evaluate the plans 
produced, allowing the planning system to take advantage 
of the user's expertise 

In the real world, the goal of planning is not simply to 
build the plan, but to use it to control actions in the world. 
Therefore, realistic planning systems must support execu­
tion monitoring and continuous plan modification during 

2While simple, finite arithmetic could be added to DPs, the 
combinatorics would generally explode. Another approach is 
given by Wolfman and Weld (1999), who describe a system that 
combines SATPLAN with an incremental Simplex algorithm for 
solving linear inequalities. A useful extension, but combinatorics 
allow solution of only toy problems. 

execution. Because there is no dependency structure in DP 
plans, monitoring them is difficult. In addition, the DP ap­
proach is very brittle in the face of changing problem re­
quirements, and any change in the environment may result 
in the planning system having to start from scratch. 

Finally, realistic problems involve enormous search 
spaces, so scalability is essential. Vast strides have been 
made in the size offroblems solved by DPs, such as solving 
instances with 101 to 1019 configurations. However, these 
large DP problems are still representations of toy problems, 
such as a logistics problem with 9 packages, 5 trucks, 2 air­
planes, and 15 locations (Kautz & Selman 1998). Simply 
increasing the number of locations to a realistic number will 
make even these toy problems unsolvable. In contrast, HTN 
planners can generate plans in domains with thousands of 
objects and hundreds or thousands of actions. 

Using Knowledge in HTN Planners 
Hierarchical task network (HTN) planning is one exam­
ple of a KBP approach that is more knowledge-based than 
DPs. It has been known for some time that HTN formalisms 
are more expressive than the STRIPS formalism favored by 
many DPs, roughly analogous to the additional expressivity 
of context-free grammars over right-linear (regular) gram­
mars (Erol, Hendler, & Nau 1994). 

HTNs naturally model the world in the same way that hu­
man users do in many domains, using the same abstractions. 
This modeling approach enables users to control and under­
stand the planning process and the resulting plans. (Note, 
however, that current HTN planners still leave much to be 
desired in terms of interactive planning.) In contrast, the 
DP approach models the planning problem as millions of 
conjunctive normal form expressions, making it difficult for 
users even to understand the planner's reasoning process, 
much less intervene to modify or guide it. 

In this section, we describe some of the uses made of 
domain knowledge in a particular HTN planner, SIPE-2. 
These features may be candidates for extending non-HTN 
planners. Kautz and Selman (1998) identify three kinds of 
planning knowledge: knowledge about the domain, knowl­
edge about good plans, and explicit search-control knowl­
edge. In addition, HTN planners are also concerned with 
other types of knowledge, such as knowledge about inter­
acting with the user, knowledge about a user's preferences, 
and knowledge about plan repair during execution. SIPE-2 
has formalisms that allow encoding of these types of know l­
edge, in either HTN operators (also known as methods or 
schemas), advice, or other declarations. 

It is sometimes argued that the knowledge used by HTN 
planners is "simply search-control knowledge," rather than 
part of the problem statement. However, if the goal is 
to solve realistic planning problems, then intelligent, prin­
cipled search control that takes advantage of knowledge 
about the domain is precisely what is needed. This knowl­
edge can often be naturally and efficiently captured in HTN 
operators, where much of the context is implicit and there­
fore need not be expressed or checked during each at­
tempted application. 
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HTN Capabilities: SIPE-2 
SIPE-2 (Wilkins 1990) is a domain-independent HTN 
planner that uses more knowledge and has richer capa­
bilities (such as numerical constraints and resource mod­
els) than the current DPs. Example applications include 
containing oil spills (Agosta & Wilkins 1996), planning 
air campaigns for the Air Force (Wilkins & Myers 1998; 
Lee & Wilkins 1996), and joint military operations plan­
ning (Wilkins & Desimone 1994). In the latter applica­
tions, the domain knowledge includes 100 to 200 opera­
tors, around 500 objects with 15 to 20 properties per object, 
and a few thousand initial predicate instances. Plans can 
include up to several hundred actions-several thousand if 
all abstraction levels are counted-usually having numer­
ous parallel activities. 

Expressiveness SIPE-2 provides a powerful approach to 
representing and reasoning about planning problems that 
makes it suitable for complex domains. 

SIPE-2's HTN operators are encoded at multiple ab­
straction levels. The higher levels can model various solu­
tion methods. SIPE-2 operators can dynamically generate 
a set of goals at planning time, a capability that has been 
extensively used. For example, a defend goal can be gener­
ated for every currently known threat. Situation-dependent 
effects of actions are deduced by a causal theory. Such ef­
fects have proven their use in practice - without them, the 
number of operators can grow exponentially in complex do­
mains. 

SIPE-2 can reason about numbers, a capability crucial 
in nearly all of our applications. For example, a planning 
variable may be constrained to be a runway with a length 
greater than some number, sharable resources have a spe­
cific capacity, and continuous resources are available in lim­
ited quantities. In many application domains, it is neces­
sary to accumulate a certain quantity of some resource, or 
achieve a certain level of effect, such as obtaining a suffi­
cient length of boom to surround an oil spill. Such goals 
are not accomplished by a single action; rather, several ac­
tions contribute to the accumulation. Thus, SIPE-2 deter­
mines when a set of actions (that individually produce some 
amount of the resource in question) together achieve an ac­
cumulation goal. 

Temporal reasoning is important in many domains. 
SIPE-2 has two different modes for reasoning about time. 
The most general allows specification of any of the thirteen 
Allen relations between any two nodes. The temporal con­
straints are solved separately from the other constraints by 
passing them to Tachyon (Arthur & Stillman 1992). 

Finally, calls can be made to arbitrary domain-specific 
LISP code, for knowledge that cannot easily be modeled in 
the HTN formalism, and for sophisticated numerical calcu­
lations. Functions on planning variables may compute an 
instantiation (e.g., the duration of a flight) and procedural 
attachment on predicates may compute whether a condition 
is true. 

User Interaction Because HTN plans and domain 
knowledge can be complex, a powerful graphical user in-

terface (OUI) is essential. Without natural pictorial repre­
sentations of the knowledge and plans, it would be nearly 
impossible for a human to understand them. SIPE-2 pro­
vides a OUI and a web server to aid in generating plans, 
viewing complex plans as graphs, and following and con­
trolling the planning process. 

SIPE-2 provides a flexible and powerful interactive plan­
ner. In our applications, this feature is critical because ex­
perienced human planners can guide the search effectively, 
and are reluctant to give control to an automated system. 
The user may interact with the planning process at many 
different levels of detail, and may direct the planner to solve 
certain parts of the problem automatically. Under interac­
tive control, the user can control (among other things) when 
and how resources are allocated, which operators to select, 
which goal to expand next, how to instantiate planning vari­
ables, and how to resolve conflicts. 

The user can also control or influence the plan develop­
ment process using the Advisable Planner (Myers 1996). 
Users can direct the planning process by providing high­
level guidance that influences the nature of the solutions 
generated. Advice consists of task-specific properties of 
both the desired solution and the problem-solving process 
to be used for a particular problem. 

Constraints and Efficiency A sort hierarchy represents 
invariant object properties, describes the classes to which 
an object belongs, and allows for inheritance of proper­
ties. The sort hierarchy encodes large amounts of knowl­
edge in our applications, and the planner can reason more 
efficiently about this knowledge because it knows the rela­
tionships cannot change as actions are performed. 

SIPE-2 uses the least-commitment approach to variable 
binding. Constraints are placed on variables by domain 
knowledge in the operators (e.g., a particular truck must 
have a capacity greater than 100). Instantiations are not 
chosen until sufficient constraints accumulate to identify 
a unique acceptable value. Because uninstantiated vari­
ables increase computational complexity, domain-specific 
knowledge can be used to specify when early instantiation 
of variables can be done without adversely affecting solu­
tion quality (Myers & Wilkins 1998). 

Predicates can be declared as functional in certain argu­
ments, allowing a dramatic speedup, which has been doc­
umented experimentally (Myers & Wilkins 1998). Func­
tional predicates are of particular importance to reasoning 
about locations in planning systems, and have proven valu­
able in nearly every application of SIPE-2. 

The system relies on plan critics that check for and cor­
rect conflicts in plans, reducing computational costs during 
plan expansion. Examples of plan critics include the tem­
poral reasoner and checking constraints on planning vari­
ables. These critics are applied by default after each plan­
ning level, i.e., an expansion of the whole plan to a greater 
level of detail, but the frequency can be increased or de­
creased as appropriate for the problem domain (Wilkins 
1990). 
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Knowledge Beyond HTN 
Despite the power of HTN planning systems, and their 
demonstrated ability to address real-world planning prob­
lems, they have limitations that make them inadequate for 
many problems of interest. In particular, HTN planners: 

• require complete (except for anticipated incompleteness) 
and certain knowledge about the world 

• model the effects of actions as deterministic, fully under­
stood outcomes 

• assume that the planner controls all agents that cause 
changes in the world state 

• require significant effort in domain modeling and knowl­
edge acquisition for complex problems 

• cannot perform or incorporate complex or decision­
theoretic evaluations of plan quality 

• ignore the qualification problem 

• use simplistic frame problem solutions that prevent draw­
ing the most appropriate conclusions when contradictory 
(perceptual) information arrives (Pollock 1998) 

• do not consider risks and utilities 

• do not use knowledge and probabilities to handle uncer­
tainty 

• are brittle (may not work if the problem changes 
slightly). 

These limitations are shared by the other major fami­
lies of planners (DPs and causal-link planners), although 
some of them, such as handling uncertainty, are the sub­
ject of ongoing research (Boutilier, Dean, & Hanks 1999; 
Majercik & Littman 1998; Smith & Weld 1998; Weld, An­
derson, & Smith 1999; Kushmerik, Hanks, & Weld 1994). 

In addition to these limitations, planning systems that 
could solve interesting problems in a complex, dynamic 
world will need capabilities that represent a fundamental 
shift in how we think about planning problems. An ideal 
system would be able to behave like humans do in these 
sort of environments; in particular, it would have to: 

• exhibit creativity, devising new actions that can solve a 
problem or shorten a plan 

• use analogy to transfer solutions from other problems 

• effectively interact with humans to use their knowledge 
in decisions 

• behave intelligently in the face of conflicting or incom-
plete information. 

We believe that these capabilities will require more knowl­
edge, including background knowledge of other domains 
and of how the world works. Evaluation criteria other than 
correctness and plan length will have to be factored in ex­
plicitly. Also, interacting effectively with humans will be 
essential because we will never model every possible issue 
that might affect a planning decision. 

Of course, not all interesting problems have these char­
acteristics, and in any given case, it may be possible to 

formulate the problem in such a way as to remove the 
need for these capabilities. For example, in develop­
ing the Burton planner (not a DP planner), Williams and 
Nayak (1996) used a purely propositional representation. 
However, it seems unlikely that all interesting problems will 
be amenable to such an approach, and other NASA appli­
cations have required richer representations (Chien et al. 
1996). 

Knowledge in DP vs KBP 
To impact realistic problems, we predict that DPs will have 
to incorporate the types of knowledge used by HTN plan­
ners, as well as knowledge to overcome the limitations of 
HTN approaches that we have discussed. It is encourag­
ing that this is already starting to occur. For example, there 
is initial work on adding knowledge about temporal extent 
of actions to SATPLAN encodings (Smith & Weld 1999), 
and on encoding HTN method knowledge for satisfiability 
solvers (Mali & Kambhampati 1998). 

However, while HTN planners can generally make effec­
tive use of additional knowledge, the same is not necessar­
ily true of DPs. Additional knowledge encoded as axioms 
may increase the size of the problem with redundant ax­
ioms, and make the problem harder to solve. Initial experi­
ments indicate that whether added knowledge helps or hurts 
may depend on the particular combination of knowledge, 
problem, and algorithm (Kautz & Selman 1998). For ex­
ample, the "point of diminishing returns from the addition 
of axioms would be sooner reached for stochastic search 
than for systematic search" (Kautz & Selman 1998). Thus, 
the knowledge added to a DP may have to be carefully cho­
sen for the problem being solved and the algorithm being 
used. 

KBP approaches are rightly criticized for the expense 
of modeling a new domain. However, we conjecture that 
building computationally efficient encodings for DPs of 
complex planning domains is no easier than building HTN 
models. Many encoding issues are still under study, even 
for toy domains (Kautz & Selman 1999; Brafman 1999; 
Mali & Kambhampati 1998). 

Lessons from Machine Learning 
In every research community, there is an ongoing tension 
between well defined and more ambitious problems. On the 
one hand, if a field focuses on small, well understood prob­
lems, with well defined algorithmic properties and evalu­
ation metrics, then a set of benchmark problems can be 
formulated to facilitate formal and empirical analysis and 
comparison of competing methods. On the other hand, 
many of the interesting challenges posed by realistic ap­
plications have broader implications and less well under­
stood properties, and the problems are more difficult to de­
fine crisply and to evaluate. 

Several years back, the machine learning community es­
tablished a repository of benchmark problems to evaluate 
machine learning systems. Naturally, these problems all 
had commonalities: most used an attribute-vector represen­
tation; most consisted of "sets of instances" with no back-
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ground knowledge. In practice, they could be used only to 
evaluate predictive accuracy on propositional, supervised 
learning algorithms. Despite these limitations, however, it 
became the de facto standard that papers submitted to the 
International Conference on Machine Learning (ICML) had 
to include an evaluation on these benchmark problems. 

In some ways, this set of benchmarks, and the emphasis 
on evaluation, were good for the community: they forced 
researchers to think about metrics and about comparing 
their systems to other systems, and they provided a base­
line of performance that researchers could test new ideas 
against. On the other hand, they tended to stifle research 
that didn't fit neatly into the problem space defined by the 
benchmark problems. Applications-oriented researchers re­
ported that it was difficult or impossible to get their papers 
accepted to the leading ML conferences (Provost & Kohavi 
1998). Meanwhile, more and more papers appeared show­
ing minor tweaks and incremental improvements to exist­
ing algorithms (but they showed "statistically significant" 
improvements on the benchmark algorithms!) 

As a result, there are now many well understood and ef­
fective methods for propositional supervised learning-and 
there has been much less progress in other areas of ma­
chine learning, such as incorporating background knowl­
edge, feature engineering, relational learning, interactive 
learning techniques, visualization of learned knowledge, 
and complex evaluation criteria. 

Most recently, there has been an explosion of interest 
in learning Bayes nets. Bayes net learning and inference 
techniques have appealing computational properties that are 
analogous to those of DP approaches: they efficiently cap­
ture certain types of problem structure, and significantly 
speed up certain types of inference over previous meth­
ods. However, like DP approaches, they use a propositional 
representation, and do not address many of the other chal­
lenges posed by realistic learning problems. As with DP 
approaches, the rush of enthusiasm over Bayes net tech­
niques has threatened to overshadow the fact that despite 
their computationally attractive properties, they still solve 
only a small subproblem within the overall field of machine 
learning. 

Similarly, in the planning community, there is a danger 
that by focusing too much attention and effort on DP meth­
ods and the problems they solve, we risk losing the ability 
to recognize other kinds of contributions and advances. In 
particular, if the benchmark of performance becomes solely 
how many blocks our planners can stack, and how fast they 
can do it, then it will become increasingly difficult to rec­
ognize and learn from research that performs well along 
other dimensions-or that addresses problems that DP sys­
tems overlook completely. As we discussed earlier, DP 
researchers within the planning community are starting to 
look towards extending their systems to incorporate richer 
forms of knowledge. This is a trend that we applaud, and 
that we hope will continue, but it is not enough to simply 
broaden the uses of DP systems: we need to be open to 
completely different approaches and paradigms as well. 

While improving the speed of solving problems we know 

how to formulate precisely is a valuable research activity, 
so is continuing to investigate problems that we don't yet 
have a good handle on formulating or solving. Results may 
be more difficult to achieve or quantify for these the "hard 
problems," but that doesn't mean we shouldn't be working 
on them. 

Conclusion 
Ginsberg (1996) has pointed out that the SATPLAN ap­
proach is successful because it solves the "puzzle" part of 
a problem, and overlooks any commonsense reasoning as­
pects of the true problem. In Ginsberg's view, common­
sense reasoning is the heuristic process by which we re­
duce extremely complex problems to NP-hard or simpler 
problems for which search is feasible. Which aspects of a 
problem to pay attention to, frame and context assumptions, 
and default strategies for organizing complex activities are 
all aspects of commonsense reasoning. As Ginsberg puts 
it, "It is Kautz'and Selman who are solving the common­
sense aspects of the problem; their 'planner' is solving the 
puzzle-mode kernel of the problem instead of the problem 
itself." Indeed, the problems solved by DP approaches are 
almost exclusively puzzle-style problems (or "real-world" 
problems that have been reformulated as puzzles). 

We favor using DP to solve puzzle-style subproblems 
that can be represented as satisfiability problems and solved 
in acceptable time. DP may well be the appropriate method 
for those aspects of the overall problem. However, AI plan­
ners also need to provide support for the commonsense rea­
soning aspects of the problem so that plans can be used 
to guide planful behavior while embedded in a complex, 
dynamic environment. We have argued that incorporating 
knowledge into the planning process is the most promising 
way to provide these abilities. 

Although DP methods are clearly useful approaches for 
solving certain subproblems, it is important for the field as 
a whole to continue to look at a wider range of problems. 
There is a danger of allowing the current popularity of DP 
approaches, and the associated evaluation techniques and 
"puzzle-style" problem suite, to overly influence the field, 
making it more difficult for advanced KBP methods to find 
an audience. 
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