
Interactive Autonoluy for Space Applications

Amedeo Cesta
IP-CNR, Roma

cesta@ip.rm.cnr.lt

Enrico Giunchiglia
DIST - Univ. di Genova

enrico@dist.unige.it

Paolo Traverso
ITC-IRST, Trento
leaf@irst.itc.it

Abstract

In this paper we describe JERRY, a system which
supports the interactive design, plamring, con
trol and supervision of the operations of au
tonomous systems in a space environment. The
requirement of Interactive-Autonomy in JERRY
is achieved by a set of tightly integrated special
ized sub-systems, which have been designed to
perform effectively and efficiently their specific
tasks, and, at the same time, to be open to the
interaction among each other. Tills results in
a system with a potential high level degree of
autonomy, but which can still be controlled and
guided through user interaction.

A System Supporting Interactive
Autonomy

The increasing complexity of the services re
quested to robotic devices in space applications
results in a need for more and more sophisticated
and autonomous systems. A compelling require
ment for space alltonomy has led to the develop
ment of systems that perform automatically com
plex, time consuming and critical tasks ~lVithout
the need of human intervention (Muscettola et at.
1998).

The recent development of space autonomy for
critical tasks results however in a set of novel prob
lems, including the possibility of humans to con
trol autonomous robotic devices (see for exam
ple (Dorais et al. 1998; Jerico 1998)) still guar
anteeing a high level of safety of the operations
that are perfomed interactively. This is due to
quite a number offadors, such as the possibility of
completely unexpected (and possibly dangerous)
events that may require humans intervention. Vve
call Interadive-Autonom.y the ability of a system
to provide a high level of autonomy still ret.ain
ing the possibility for the user to monitor, control
and override potentially autonomous operations
in a safe way.

In this paper we describe JERRY, a syst.em
which supports the interactive design, planning,
control and supervision of the operations of au
tonomous systems in a space environment. The

requirement of Interactive-Autonomy in JERRY is
achieved by a set of tightly integrated specia.!ized
sub-systems, which have been designed to per
form safely, effectively and efficiently their specific
tasks, and, at the same time, to be open to the
int.eraction among each other. The user can di
rectly operate each module st.ep-by-step, and ver
ify (at different levels of det.ail) t.he results of cri t
ical steps against safet.y requirements.

JERRY has been developed as part. of an ongo
ing and more ambitious project funded by ASI,
t.he Italian Space Agency. In this application,
JERRY provides its functionality to different kinds
of users which have to design, cont.rol and mon
itor a SPIDER Robot Arm performing quite com
plex t.asks, e.g., the set. up of severa'! kinds of ex
periments in a space workcell. Even though t.he
project is st.ill running, a first. prototype is already
working and available for experimentation. In this
scenario, e.g., the SPIDER arm is supposed to ex
tract a tray from a shelf, fix it. to one out of t.wo ta
bles and t.hen automatically perform experim~ents
moving objects contained in t.he tray.

In this paper, we first provide a global overview
of JERRY by describing its high level architect.ure.
vVe then describe the main features of each sub
system: the user interaction module, the planning
module, and the execution module. Some conchl
sions end the paper.

JERRY's Architecture
The design of JERRY is based on three main com
ponents:

• User-System Interaction Module. It pro
vides the user with the ability to inspect and
direct every step of a system operation, via user
requests of different services to specialized sub
systems designed as "open systems" .

• Planning Module. It provides a set of dif
ferent planning services, including the gener
ation of different kinds of plans of actions to
achieve different kinds of high-level specifica
tions of tasks to be performed (called goals), the
validation of plans against requirements, their

2nd NASA International Workshop on Planning and Scheduling for Space 223

step-by-step simulation.

• Execution Module. It provides a set of dif
ferent execution services. It can compile a high
level plan (provided by the planning module)
into a program that is directly executable by
a robotic device, execute it according to dif
ferent modalities (e.g., either interactive or au
tomatic), and monit.or the execution. FlIrther
services include the step-by-step generation of
actions, the verification that the executable pro
gram satisfies certain requirements and its step
by-step simulation.

The architecture of JERRY has been designed ac
cording to a main design choice: t.he User-System
Interaction Module is central and can request
different services from the other modules, in a
"client-server style". The user can control the flow
of JERRY'S operations and choose both the degree
of automation and the level of interaction.

• Degree of automation. The user can de
cide to run the system within a wide range of
options with different degrees of automation,
from fully automatic to step-by-step interactive
modes. The possibility is given to the user to
decide to run the syst.em in a fully automat.ic
way: a goal is provided t.o the planning module
that generates a plan to be executed by the exe
cution module. failure). On the other hand, the
user can decide t.o control interaction modality,
the user may ask the Planning .Module for a
plan; the plan is inspected, validated and/or
simulated; the first planning step is extracted
from the plan and passed to the Execution Mod
ule that compiles it into an executable program;
the program is inspected, possibly verified and
simulat.ed, and, finally, it is executed and mon
itored.

• Level of interaction. The user can access
data and control t.he behavior of highly auto
matic systems by providing either high level
specifications of what has to be achieved or de
tailed constraint.s on how the task should be
performed. For instance, the user can request
the planning module to generat.e automatically
a high-level plan which achieves a high-level
specified goal, or can direct the planner by im
posing constraints on how to generate t.he plan.
Analogously, t.he user can request the execution
module to generat.e automat.ically the low level
program corresponding to a plan, or can direct.
the execution module by imposing const.raints
on how the low-level robotic plan has t.o be gen
erated.

The structure of the system is represented in Fig
ure 1. In this figure, the planning and execut.ion
modules are visible in the top part, while the in
teraction module (with the sub-modules acting as
interfaces wit.h one of the other modules) is t.he

Figure 1: Structure of the System

"big box" at t.he bottom. The "Domain Defini
tion" box represents a module that allows the user
to specify the domain considered, and is currently
part of the simulator. The "Robotic System" box
represents the real robotic device. The solid ar
rows represent a flow of information, while t.he
dotted arrows represent a still missing connection.
For example, the dashed arrow bet.ween "Domain
Definition" box and the interface, means that cur
rently the user can specify a domain not through
the interface, but only interacting directly with
this module.

JERRY can work at two levels of interactions
that are target.ed to two typical users of space
robotic devices: the "program.mer-level" contains
function ali ties offered to the robotic system op
erator; the "user-level" deals with activities per
formed by on-ground scientists or payload opera
tors. At. the programmer-level, the user can pro
gram the behavior of the device using its t.ypi
cally low-level interface language, e.g. the lan
guage (called PDL2) currently used t.o cont.rol
the SPIDER ann. A typical PDL2 instruction
is "MOVE LINEAR TO point-in-space", where
point-in-space is a triple of real values. This
level of interaction is adequat.e for an experi
enced user. Nevertheless, programming complex
tasks at this level may be very difficult. for a user
which has no experience with the programming
language, e.g. PDL2. Moreover, low-level pro
grams can be hard t.o maintain and re-use. For
this reason, interaction at the user-level provides
also non experts (e.g. scientists) wit.h t.he ability
to specify robotic tasks. Such users do not need
any knowledge of the underlying physical struc
t.ure of the robotic device (e.g. of the degrees of
freedom of the arm) or of the physical scenario
(e.g. of t.he exact position in space of the objects).
A t.ypical high-level instruction is "GET OBJECT
object-name" .

Operationally, t.he two interaction levels reflect
t.wo working modalities:

224 2nd NASA International Workshop on Planning and Scheduling for Space

Figure 2: JERRY's Current Architecture

user-drives-syst81u-supervises: in this modal
ity an expert, knowledgeable of the underlying
robotic device and mission interacts with the
system by describing the mission in the robotic
device interface language. The mission is en
coded as a low level plan which is directly exe
cutable by the execution module.

system-drives-user-slipervises: in this modal
ity the user (even a non expert, e.g. a scientist)
fixes the goal in a high level specification lan
guage. The high level specification cannot be
executed directly. The system can generate au
tomaticallyexecutable low level programs. This
is achieved in two steps. First, the planning
module generates a set of high level actions
which have to be executed in different situa
tions and which are guaranteed to achieve the
goal. Then the execution module, for each high
level action, generates a corresponding sequence
of low-level actions in the robotic device inter
face language (e.g. PDL2). Independently from
how the low-level plan is generated, the exe
cution module is responsible for its execution,
and for the monit.oring of the behavior of the
robotic system. At each step of the execution
process, the user can be prompted for validat
ing the high-level action to be executed, or, if
required, the current low-level program.

The resulting architecture is highly modular and
configurable: the system can be configured to
work at different levels of automation (e.g. de
pending on the activity performed by the planning
module) and the user has the possibility to flexi
bly access data manipulated at different levels of
detail (e.g. data at the execution or at the plan
ning level). The interface can be set to be used
by users with different experience (programmers
or scientists) and can also be adapted to differ
ent input devices (e.g., driven entirely from mouse
or touchpad, entirely from keyboard, or, possibly,
from custom input devices).

A first version of the demonstrator has been
fully implemented, is available for inspection, and
is currently under development to improve its gen
eral performance and to enrich the services of
fered to the user. This demonstrator (whose ar
chitecture is represented in Figure 2) is based
on a client/server architecture in which a client
interface service is able to continuously interact
with the planning, execution and simulator mod
ules. This has involved the development of spe
cialized protocols that allow each interaction mod
ule to safely exchange data with the three servers
through point-to-point communication. Current
protocols are delibera.tively designed to be very
simple to minimize the overhead of communica
tion between modules and to quickly arrive to a
first integration.

Interaction Module
The role of software systems like JERRY is to allow
different users to employ complex robotic devices
while preserving the levels of responsibility that
users have in their working contexts. Both the
user-level and the programmer-level preserve the
usual working activity, but. offer a number of addi
tional functionalities that allow the users to focus
on strategic and decisional tasks and to delegate
repetitive or very difficult tasks to the interactive
planning software.

Jetii}'

'. Hlllp ~!.t~~:m

~#1·

Figure 3: JERRY Interactive Module

The JERRY Interaction lVlodule consists of a
Graphical User Interface endowed with the foHm,,
ing functionali ties:

• Task oriented help.

• Problem specification targeted to the planner
domain representation language.

• Inspection of high-level plans: a rather simple
representation of the plan returned by the plan
ner is shown and the possibly of inspecting the
representation of single plan states is given.

2nd NASA International Workshop on Planning and Scheduling for Space 225

• Inspection of plan compilation: the low-level
code produced by the plan compilation and ex
ecution module is shown to the user.

• Robotic device simulator visualization.

The current look of the Interactive "Module is
shown in Figure 3. In the Figure we can see
(i) the Help window (top-left.) that is designed as
a separate entity; (ii) the planning problem spec
ification window (main window below the Help
window); (iii) the plan current in execution (top
right); (iv) the PDL2 code corresponding to the
action being executed (middle-right); and (v) the
execution of the plan coming from the simulator
(bottom-right). The size of the 4 windows corre
sponding to point from (ii) to (v) are intercon
nected and vary according to the user current fo
cus of attention that is always contained in the
main window.

According to the subdivision made between
the "progranl111er-level" and the ""user-level", the
tasks allowed to each level have been defined. In
the current implementation of the "user-level in
teraction" the users can: (i) get acquainted with
an operating environment; (ii) define specific pa
rameters of the scenario (e.g., decide the number
of trays in an experiment); (iii) specify the goal he
want to achieve and the constraints to satisfy in
achieving it; (iv) ask the planning module to de
termine the set of actions (the plan) that achieves
the goal; (v) display and comment the resulting
plan; (vi) activate plan execution. Special atten
tion has been dedicated to automatically check
ing the consistency of commands selected by the
user and in offering explanation facilities for non
expert users. The "programmer-level interaction"
offers: (i) the possibility of creating robot pro
grams directly using the robot language, (ii) the
choice of having the planning and execution mech
anisms that "work as background help of the pro
grammer; (iii) the possibility of experimenting
different operational situations offering a choice
among alternative input modalities. The possi
bility of customizing the interaction modality is
relevant for experimenting on-flight. use of the pro
gramming ability. In is worth observing that be
ing the Interaction :Module configured as a client
it is possible to serve multiple users at the same
time each of them interacting with personalized
functionalities.

This module is implemented in Java (compati
ble with JDK 1.2) and represent right now a quite
effective platform for studying multiple interac
tions styles that refer to different ways of sharing
task responsibility among users and the system.

Planning Module
The Planning :Module provides the user with the
ability of requesting services by means of high
level specifications entered through the Interac-

tion "Module. It has been designed to be highly
independent of the programming language that
is directly executable by robotic devices (e.g.
PDL2). The Planning :Module works on data
structures that encode a high level description of
the possible situations in a given domain (called
states), of the operations that a robotic device can
execute (called actions), and of the requirements
for tasks to be performed (called goals).

A state of the domain is represented sym
bolically, e.g. by expressions like Y is on
experiment tray z. Operations of the robot are
represented as high-level actions, e.g. Get object
Y, put Y on experiment tray Z. Plans are pos
sibly conditional and iterative programs that spec
ify the actions to be executed. An example of plan
is the following.

Plan experiment-i is:
Get object Y;
if this action succeeds,
then put Y on experiment tray ·z,
otherwise get object Yi;

At this level of abstraction, the Planning "Mod
ule provides three main functions: Validation,
Simulation and Plan Generation.

The validation junction allows the user to check
properties of the scenario or of putative plans.
For instance, the user can ask whether Y is on
experiment tray Z in the current scenario, or
whether Y is on experiment tray Z after exe
cuting plan experiment-1. This functions pro
vides the user with a higher confidence that a task
can be performed correctly in a given way. It can
also be used to inspect and debug possible plans.

The simulation junction allows the user to sim
ulate the execution of a given plan. It shows the
evolution of the states of the domain. For in
stance, the user can request a simulation of the
plan experiment-i. The simulation is performed
at the level of abstraction of the Planning IVlod
ule, i.e., by showing high level actions and how
they affect the state of the domain. Again this
functionality can be used to gain a better under
standing of how a plan can perform a given task
and to debug plans.

The plan generation junction is the core of the
Planning IVlodule. The user, through the Inter
action Module, provides a goal to be achieved,
i.e., a high level specification of the task to be
performed. The goal is a high level description
of what has to be achieved. It does not de
tail how the task should be performed. For in
stance, a simple goal can be one of Y, Yi on
experiment tray Z. The Planning :Module gen
erates automatically plans of actions (e.g. the
plan experiment-i) whose aim is to achieve the
task specified by the goal. The plan of actions
is the output 'which can be passed, through the
Interaction :Module and possibly under control of

226 2nd NASA International Workshop on Planning and Scheduling for Space

~ PutYontrayZ

UJ~(})~G)Yonz
Release Object Unload Y from Z

Figure 4: An example of FSIvl

the user, to the Execution :Module.
This set of services has been designed to meet

the requirement of Interactive-Autonom.y. Indeed,
a main characteristic of the planning module is
that it is an open system, i.e. each of its oper
ations (e.g. plan search) can be inspected, con
trolled and guided by the user. This fact opens
up the possibility to provide a planning function
ality which supports a "user-centered operation
mode" for JERRY, in which the planner interacts
flexibly with the user interface module. The user,
beyond asking for a goal to be satisfied, can ask
the planner for different services, e.g. show all
the plans which satisfy a goal, select one of them,
query the planner about the possible effects of the
execution of plans, re-use existing plans, ask the
planner to validate a user defined plan, inhibit
some plans, query the planner about the current
state of the execution in terms of high-level ac
tions. This "user-centered" modality requires a
design of the planning module which is different
in philosophy wrt current state of the art planners.
The planner is no longer the automatic generator
of solutions, it becomes a system which exploits
its automatic generation capabilities to support
the user to find the right solution and is flexible
enough to adjust its plan generation activity to
different user requirements.

It is worth remarking that the functionalities
of JERRY allow to implement an interesting set
of mixed-initiative problem solving strategies that
are somehow disjunct from other approaches de
voted to inserting the user in the loop (Smith &
Lassila 1994; Tate 1997). In our current frame
work the user is left free of choosing to either solve'
the problem himself or request the intervention of
specific JERRY functionalities.

The Planning ·Module is developed on top of
the MBP system (Model Based Planner) (Cimatti
et al. 1997; Cimatti, Roveri, & Traverso 1998).
IvIBP is an extension of the NuS:MV IVlodel
Checker (Cimatti et al. 1999). It implements the
"Planning as :Model Checking" paradigm. The
implementation relies heavily on existing work in
the context of finite-state program verification and
in particular on the work described in (Clarke,
Grumberg, & Long 1994; Burch et al. 19~)2;
.McMillan 1993). The underlying idea is that
domains are modeled as Finite State :Machines
(F1VlSs) and plans are generated by searching the
states of FS1Vls. For instance, a FSM for a simple
domain is depicted in Figure 4. We have three

possible states (labeled as 1,2,3). Each state is
labeled with the facts that hold in that state,
e.g. Hold Y states that in state 2 the robot
has at hand the 0 bj ect Y, Y on Z states that in
state 3 the object Y is on the experiment tray
Z. The actions Get Object Y, Put Y on tray Z,
Release Object, Unload Y from Z are repre
sented as transitions (arcs) between states.

Plan Compilation/Execution
The Plan Compilation/Execution module is re
sponsible for transforming a high-level, user
oriented abstract plan into a sequence oflow-level,
machine-oriented execution plan. In more detail,
the Plan Compilation/Execution module receives
in input from the interface an arbitrarily long se
quence of actions to be performed, and generates a
sequence of actions (a "program") that the robot
can directly execute. For example, in the case of
a robotic arm, the program corresponding to a
move(0, I) ("move object 0 to location l") looks
like the following sequence of instructions

move..near <pOLO> by <distance>;
open.l1.and;
move~inear <pos_o>;
close.l1.and;
move..near <pos~> by <distance>;
move~inear <pos~>;

open.lland;

where <pos_o> and <pos~> are six tuples of real
numbers specifying the positions of the object and
of the location respectively, while <distance> is a
real number specifying how far (along the vector
specifying how to approach the position) the arm
should be from the final position. Notice, the fun
damental distinction between a "user-level" and
a "programmer-level" plan: while the former is a
sequence of symbolic actions, the latter necessar
ily involves some reasoning about the geometry of
the scenario. As for the planning module, the exe
cution module provides the possibility to validate,
simulate and/or generate a PDL2 program.

Given that the positioning module has to deal
with variables with infinite domains (typically in
tervals over the reals), the set of possi hIe low-level
plans cannot be directly encoded into FSIvIs. Be
cause of this, we adopted a different mechanism
in which the "validation function" rely on a user
defined LALR(l) grammar (see (Aho, Sethi, &
Ullman 1986)) defining the whole set of admissible
PDL2 plans. This grammar, though dependent on
the particular scenario under consideration, can
be inspected and/or modified by the user before
each session. The grammar is then directly com
piled into an executable code corresponding to a
program accepting a plan only if it is admissible.

A "generation function" allows to associate to
any high-level sequence of actions a corresponding
sequence of low-level sequence of PDL2 instruc-

2nd NASA International Workshop on Planning and Scheduling for Space 227

tions. In any case, the sequence of actions given
to the execution module does not need to corre
spond to a complete plan. Instead, the user can
(i) break a plan as given by the planning module
into blocks of planning actions, (ii) require t.he
compilation of all or some of the blocks, or (Hi)
ask for an execution program differing from the
proposed one.

Finally the "simulation function" allows for the
validation of either the generated or user-provided
PDL2 program by a suitable call t.o the simulator.
As obvious result, the movement. of the SPIDER is
displayed on a screen for validation by the user.

As for the planning module, the execution mod
ule is an open system in which the parameters
affecting its behavior (e.g. the availability of
a given low-level action) can be inspected, con
trolled and eventually modified by the user. For
example, the user can inhibit the execution mod
ule from using a certain low-level action because
it involves some dangerous or unavailable move
for some joint. This will affect bot.h the valida
tion and the generation routines: no plan with the
undesired instruction will be accepted and gener
ated. As above, t.his fact opens up t.he possibility
to provide a "user-centered operation mode" for
JERRY, in which the execution module interacts
flexibly vvith the user interface module.

A Java (compatible with JDK 1.2) implemen
tation of the execution module has been realized,
and is currently tested for improvements. The
compilation from the grammar to the executable
code has been realized via CUP (see (Hudson et
al. 1998)).

Conclusions
This paper describes JERRY, a system for the
automatic generation and execution of plans for
robotic devices, and briefly reports about the case
st.udy of the SPIDER arm. The main feature of the
system is the high-level of interaction that. the user
can decide to have with the system. This level of
interaction is critical in t.he context of spatial mis
sions, where (i) unforeseen emergencies can hap
pen, and (H) still the mission has to proceed, pos
sibly under the humans' supervision.

JERRY has been designed t.o be a flexible, open
architecture. Care has been taken in order to dis
tinguish the domain-dependent. from the domain
independent tasks in order t.o minimize the cus
tomization effort.s. JERRY's architecture and un
derlying ideas have been tested and made oper
ational for monitoring and controlling a SPIDER
robot.ic arm operat.ing in an indoor environment
very close to t.he payload tutor experiment de
scribed in (Di Pippo et al. 1998).

Acknowledgments
liVe would like to thank lVlarco Daniele, :Maria Grazia
Maccione and Paola Riccucci for their work in JERRY.
Thanks to Marco Schaerf for making the robot simula-

tor available. This research is supported by ASI (Ital
ian Space Agency) as part of the project. "Un Sistema
Intelligente per la Supervisione di Robot Autonomi
nello Spazio". Special thanks to the other partici
pants in the project for the many fruitful discussions
and the technical help.

References
Aho, A. v.; Sethi, R.; and Ullman, J. D. 1986. Com
pilers: Principles, Techniques, and Tools. Reading,
MA, USA: Addison-vVesley.
Burch, J. R.; Clarke, E. :M.; NIc:Millan, K. L.; Dill,
D. 1.; and Hwang, L. J. 1992. Symbolic Model
Checking: 1020 States and Beyond. Information and
Computation 98(2):142-170.

Cimatti, A.; Gitmchiglia, E.; Giunchiglia, F.; and
Traverso, P. 1997. Planning via Model Checking: .
A Decision Procedure for AR. In Lecture Notes in
Computer Science, volume 1348.

Cimatti, A.; Clarke, E.; Giunchiglia, F.; and Roveri,
M. 1999. NuSrvIV: A new symbolic model verifier.
Lecture Notes in Computer Science 1633.

Cimatti, A.; Roveri, M.; and Traverso, P. 1998. Au
tomatic OBDD-based Generation of Universal Plans
in Non-Deterministic Domains. In Proceeding of
the Fifteenth National Conference on Artificial In
telligence (AAAI-98). Madison, Wisconsin: AAAI
Press. Also IRST-Technical Report 9801-10, Trento,
Italy.
Clarke, E.; Grumberg, 0.; and Long, D. 1994. :tvlodel
Checking. In Proceedings of the International Sum
mer School on Deductive Program Design.

Di Pippo, S.; Colombina, G.; Boumans, R.; and
Putz, P. 1998. Future Potential Applications
of Robotics for the International Space Station,
Robotics and Autonomous Systems. Robotics and
Autonomolls Systems 23:37-43.

Dorais, G.; Bonasso, P.; Kortenkamp, D.; Pell, B.;
and Scln'eckenghost, D. 1998. Adjustable Autonomy
for Human-Centered Autonomous Systems on Mars.
In Proc. 11{ars Society Conference.

Hudson, S. E.; Flannery, F.; Ananian, C. S.; \'\Tang,
D.; and Appel, A. W. 1998. CUP parser generator
for Java.
1998. JERICO Project Description. ASI (Italian
Space Agency) Internal Documentation.
Mdvlillan, K. 1993. Symbolic Model Checking.
Kluwer Academic Pub!.
Muscettola, N.; Nayak, P.; Pell, B.; and Williams,
B. 1998. Remote Agent: To Boldly Go Where No
AI System Has Gone Before. Artificial Intelligence
103:5-48.

Smith, S. F., and Lassila, O. 1994. Toward the Devel
opment of Mixed-Initiative Scheduling Systems. In
Burstein, lVI. H., eel., Proceedings ARPA-Rome Lab
oratory Planning Initiative H1orkshop, Tucson (AZ),
145-154. rvlorgan Kaufmmlli.
Tate, A. 1997. Nlixed-Initiative Interact.ion in 0-
Plan. In Papers from 1997 AAAI Spring Symposium
on Computational Models of Mi:l:ed-Initiative Inter
action, Stanford (CA), 163-168.

228 2nd NASA International Workshop on Planning and Scheduling for Space

	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part243
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part244
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part245
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part246
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part247
	2nd NASA Intl Workshop on Planning and Scheduling for Space_Part248

