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Abstract 

In this paper we describe JERRY, a system which 
supports the interactive design, plamring, con
trol and supervision of the operations of au
tonomous systems in a space environment. The 
requirement of Interactive-Autonomy in JERRY 
is achieved by a set of tightly integrated special
ized sub-systems, which have been designed to 
perform effectively and efficiently their specific 
tasks, and, at the same time, to be open to the 
interaction among each other. Tills results in 
a system with a potential high level degree of 
autonomy, but which can still be controlled and 
guided through user interaction. 

A System Supporting Interactive 
Autonomy 

The increasing complexity of the services re
quested to robotic devices in space applications 
results in a need for more and more sophisticated 
and autonomous systems. A compelling require
ment for space alltonomy has led to the develop
ment of systems that perform automatically com
plex, time consuming and critical tasks ~lVithout 
the need of human intervention (Muscettola et at. 
1998). 

The recent development of space autonomy for 
critical tasks results however in a set of novel prob
lems, including the possibility of humans to con
trol autonomous robotic devices (see for exam
ple (Dorais et al. 1998; Jerico 1998)) still guar
anteeing a high level of safety of the operations 
that are perfomed interactively. This is due to 
quite a number offadors, such as the possibility of 
completely unexpected (and possibly dangerous) 
events that may require humans intervention. Vve 
call Interadive-Autonom.y the ability of a system 
to provide a high level of autonomy still ret.ain
ing the possibility for the user to monitor, control 
and override potentially autonomous operations 
in a safe way. 

In this paper we describe JERRY, a syst.em 
which supports the interactive design, planning, 
control and supervision of the operations of au
tonomous systems in a space environment. The 

requirement of Interactive-Autonomy in JERRY is 
achieved by a set of tightly integrated specia.!ized 
sub-systems, which have been designed to per
form safely, effectively and efficiently their specific 
tasks, and, at the same time, to be open to the 
int.eraction among each other. The user can di
rectly operate each module st.ep-by-step, and ver
ify (at different levels of det.ail) t.he results of cri t
ical steps against safet.y requirements. 

JERRY has been developed as part. of an ongo
ing and more ambitious project funded by ASI, 
t.he Italian Space Agency. In this application, 
JERRY provides its functionality to different kinds 
of users which have to design, cont.rol and mon
itor a SPIDER Robot Arm performing quite com
plex t.asks, e.g., the set. up of severa'! kinds of ex
periments in a space workcell. Even though t.he 
project is st.ill running, a first. prototype is already 
working and available for experimentation. In this 
scenario, e.g., the SPIDER arm is supposed to ex
tract a tray from a shelf, fix it. to one out of t.wo ta
bles and t.hen automatically perform experim~ents 
moving objects contained in t.he tray. 

In this paper, we first provide a global overview 
of JERRY by describing its high level architect.ure. 
vVe then describe the main features of each sub
system: the user interaction module, the planning 
module, and the execution module. Some conchl
sions end the paper. 

JERRY's Architecture 
The design of JERRY is based on three main com
ponents: 

• User-System Interaction Module. It pro
vides the user with the ability to inspect and 
direct every step of a system operation, via user 
requests of different services to specialized sub
systems designed as "open systems" . 

• Planning Module. It provides a set of dif
ferent planning services, including the gener
ation of different kinds of plans of actions to 
achieve different kinds of high-level specifica
tions of tasks to be performed (called goals), the 
validation of plans against requirements, their 
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step-by-step simulation. 

• Execution Module. It provides a set of dif
ferent execution services. It can compile a high 
level plan (provided by the planning module) 
into a program that is directly executable by 
a robotic device, execute it according to dif
ferent modalities (e.g., either interactive or au
tomatic), and monit.or the execution. FlIrther 
services include the step-by-step generation of 
actions, the verification that the executable pro
gram satisfies certain requirements and its step
by-step simulation. 

The architecture of JERRY has been designed ac
cording to a main design choice: t.he User-System 
Interaction Module is central and can request 
different services from the other modules, in a 
"client-server style". The user can control the flow 
of JERRY'S operations and choose both the degree 
of automation and the level of interaction. 

• Degree of automation. The user can de
cide to run the system within a wide range of 
options with different degrees of automation, 
from fully automatic to step-by-step interactive 
modes. The possibility is given to the user to 
decide to run the syst.em in a fully automat.ic 
way: a goal is provided t.o the planning module 
that generates a plan to be executed by the exe
cution module. failure). On the other hand, the 
user can decide t.o control interaction modality, 
the user may ask the Planning .Module for a 
plan; the plan is inspected, validated and/or 
simulated; the first planning step is extracted 
from the plan and passed to the Execution Mod
ule that compiles it into an executable program; 
the program is inspected, possibly verified and 
simulat.ed, and, finally, it is executed and mon
itored. 

• Level of interaction. The user can access 
data and control t.he behavior of highly auto
matic systems by providing either high level 
specifications of what has to be achieved or de
tailed constraint.s on how the task should be 
performed. For instance, the user can request 
the planning module to generat.e automatically 
a high-level plan which achieves a high-level 
specified goal, or can direct the planner by im
posing constraints on how to generate t.he plan. 
Analogously, t.he user can request the execution 
module to generat.e automat.ically the low level 
program corresponding to a plan, or can direct. 
the execution module by imposing const.raints 
on how the low-level robotic plan has t.o be gen
erated. 

The structure of the system is represented in Fig
ure 1. In this figure, the planning and execut.ion 
modules are visible in the top part, while the in
teraction module (with the sub-modules acting as 
interfaces wit.h one of the other modules) is t.he 

Figure 1: Structure of the System 

"big box" at t.he bottom. The "Domain Defini
tion" box represents a module that allows the user 
to specify the domain considered, and is currently 
part of the simulator. The "Robotic System" box 
represents the real robotic device. The solid ar
rows represent a flow of information, while t.he 
dotted arrows represent a still missing connection. 
For example, the dashed arrow bet.ween "Domain 
Definition" box and the interface, means that cur
rently the user can specify a domain not through 
the interface, but only interacting directly with 
this module. 

JERRY can work at two levels of interactions 
that are target.ed to two typical users of space 
robotic devices: the "program.mer-level" contains 
function ali ties offered to the robotic system op
erator; the "user-level" deals with activities per
formed by on-ground scientists or payload opera
tors. At. the programmer-level, the user can pro
gram the behavior of the device using its t.ypi
cally low-level interface language, e.g. the lan
guage (called PDL2) currently used t.o cont.rol 
the SPIDER ann. A typical PDL2 instruction 
is "MOVE LINEAR TO point-in-space", where 
point-in-space is a triple of real values. This 
level of interaction is adequat.e for an experi
enced user. Nevertheless, programming complex 
tasks at this level may be very difficult. for a user 
which has no experience with the programming 
language, e.g. PDL2. Moreover, low-level pro
grams can be hard t.o maintain and re-use. For 
this reason, interaction at the user-level provides 
also non experts (e.g. scientists) wit.h t.he ability 
to specify robotic tasks. Such users do not need 
any knowledge of the underlying physical struc
t.ure of the robotic device (e.g. of the degrees of 
freedom of the arm) or of the physical scenario 
(e.g. of t.he exact position in space of the objects). 
A t.ypical high-level instruction is "GET OBJECT 
object-name" . 

Operationally, t.he two interaction levels reflect 
t.wo working modalities: 
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Figure 2: JERRY's Current Architecture 

user-drives-syst81u-supervises: in this modal
ity an expert, knowledgeable of the underlying 
robotic device and mission interacts with the 
system by describing the mission in the robotic 
device interface language. The mission is en
coded as a low level plan which is directly exe
cutable by the execution module. 

system-drives-user-slipervises: in this modal
ity the user (even a non expert, e.g. a scientist) 
fixes the goal in a high level specification lan
guage. The high level specification cannot be 
executed directly. The system can generate au
tomaticallyexecutable low level programs. This 
is achieved in two steps. First, the planning 
module generates a set of high level actions 
which have to be executed in different situa
tions and which are guaranteed to achieve the 
goal. Then the execution module, for each high 
level action, generates a corresponding sequence 
of low-level actions in the robotic device inter
face language (e.g. PDL2). Independently from 
how the low-level plan is generated, the exe
cution module is responsible for its execution, 
and for the monit.oring of the behavior of the 
robotic system. At each step of the execution 
process, the user can be prompted for validat
ing the high-level action to be executed, or, if 
required, the current low-level program. 

The resulting architecture is highly modular and 
configurable: the system can be configured to 
work at different levels of automation (e.g. de
pending on the activity performed by the planning 
module) and the user has the possibility to flexi
bly access data manipulated at different levels of 
detail (e.g. data at the execution or at the plan
ning level). The interface can be set to be used 
by users with different experience (programmers 
or scientists) and can also be adapted to differ
ent input devices (e.g., driven entirely from mouse 
or touchpad, entirely from keyboard, or, possibly, 
from custom input devices). 

A first version of the demonstrator has been 
fully implemented, is available for inspection, and 
is currently under development to improve its gen
eral performance and to enrich the services of
fered to the user. This demonstrator (whose ar
chitecture is represented in Figure 2) is based 
on a client/server architecture in which a client 
interface service is able to continuously interact 
with the planning, execution and simulator mod
ules. This has involved the development of spe
cialized protocols that allow each interaction mod
ule to safely exchange data with the three servers 
through point-to-point communication. Current 
protocols are delibera.tively designed to be very 
simple to minimize the overhead of communica
tion between modules and to quickly arrive to a 
first integration. 

Interaction Module 
The role of software systems like JERRY is to allow 
different users to employ complex robotic devices 
while preserving the levels of responsibility that 
users have in their working contexts. Both the 
user-level and the programmer-level preserve the 
usual working activity, but. offer a number of addi
tional functionalities that allow the users to focus 
on strategic and decisional tasks and to delegate 
repetitive or very difficult tasks to the interactive 
planning software. 

Jetii}' 

'. Hlllp ~!.t~~:m 

~#1· 

Figure 3: JERRY Interactive Module 

The JERRY Interaction lVlodule consists of a 
Graphical User Interface endowed with the foHm,,
ing functionali ties: 

• Task oriented help. 

• Problem specification targeted to the planner 
domain representation language. 

• Inspection of high-level plans: a rather simple 
representation of the plan returned by the plan
ner is shown and the possibly of inspecting the 
representation of single plan states is given. 
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• Inspection of plan compilation: the low-level 
code produced by the plan compilation and ex
ecution module is shown to the user. 

• Robotic device simulator visualization. 

The current look of the Interactive "Module is 
shown in Figure 3. In the Figure we can see 
(i) the Help window (top-left.) that is designed as 
a separate entity; (ii) the planning problem spec
ification window (main window below the Help 
window); (iii) the plan current in execution (top
right); (iv) the PDL2 code corresponding to the 
action being executed (middle-right); and (v) the 
execution of the plan coming from the simulator 
(bottom-right). The size of the 4 windows corre
sponding to point from (ii) to (v) are intercon
nected and vary according to the user current fo
cus of attention that is always contained in the 
main window. 

According to the subdivision made between 
the "progranl111er-level" and the ""user-level", the 
tasks allowed to each level have been defined. In 
the current implementation of the "user-level in
teraction" the users can: (i) get acquainted with 
an operating environment; (ii) define specific pa
rameters of the scenario (e.g., decide the number 
of trays in an experiment); (iii) specify the goal he 
want to achieve and the constraints to satisfy in 
achieving it; (iv) ask the planning module to de
termine the set of actions (the plan) that achieves 
the goal; (v) display and comment the resulting 
plan; (vi) activate plan execution. Special atten
tion has been dedicated to automatically check
ing the consistency of commands selected by the 
user and in offering explanation facilities for non
expert users. The "programmer-level interaction" 
offers: (i) the possibility of creating robot pro
grams directly using the robot language, (ii) the 
choice of having the planning and execution mech
anisms that "work as background help of the pro
grammer; (iii) the possibility of experimenting 
different operational situations offering a choice 
among alternative input modalities. The possi
bility of customizing the interaction modality is 
relevant for experimenting on-flight. use of the pro
gramming ability. In is worth observing that be
ing the Interaction :Module configured as a client 
it is possible to serve multiple users at the same 
time each of them interacting with personalized 
functionalities. 

This module is implemented in Java (compati
ble with JDK 1.2) and represent right now a quite 
effective platform for studying multiple interac
tions styles that refer to different ways of sharing 
task responsibility among users and the system. 

Planning Module 
The Planning :Module provides the user with the 
ability of requesting services by means of high 
level specifications entered through the Interac-

tion "Module. It has been designed to be highly 
independent of the programming language that 
is directly executable by robotic devices (e.g. 
PDL2). The Planning :Module works on data 
structures that encode a high level description of 
the possible situations in a given domain (called 
states), of the operations that a robotic device can 
execute (called actions), and of the requirements 
for tasks to be performed (called goals). 

A state of the domain is represented sym
bolically, e.g. by expressions like Y is on 
experiment tray z. Operations of the robot are 
represented as high-level actions, e.g. Get object 
Y, put Y on experiment tray Z. Plans are pos
sibly conditional and iterative programs that spec
ify the actions to be executed. An example of plan 
is the following. 

Plan experiment-i is: 
Get object Y; 
if this action succeeds, 
then put Y on experiment tray ·z, 
otherwise get object Yi; 

At this level of abstraction, the Planning "Mod
ule provides three main functions: Validation, 
Simulation and Plan Generation. 

The validation junction allows the user to check 
properties of the scenario or of putative plans. 
For instance, the user can ask whether Y is on 
experiment tray Z in the current scenario, or 
whether Y is on experiment tray Z after exe
cuting plan experiment-1. This functions pro
vides the user with a higher confidence that a task 
can be performed correctly in a given way. It can 
also be used to inspect and debug possible plans. 

The simulation junction allows the user to sim
ulate the execution of a given plan. It shows the 
evolution of the states of the domain. For in
stance, the user can request a simulation of the 
plan experiment-i. The simulation is performed 
at the level of abstraction of the Planning IVlod
ule, i.e., by showing high level actions and how 
they affect the state of the domain. Again this 
functionality can be used to gain a better under
standing of how a plan can perform a given task 
and to debug plans. 

The plan generation junction is the core of the 
Planning IVlodule. The user, through the Inter
action Module, provides a goal to be achieved, 
i.e., a high level specification of the task to be 
performed. The goal is a high level description 
of what has to be achieved. It does not de
tail how the task should be performed. For in
stance, a simple goal can be one of Y, Yi on 
experiment tray Z. The Planning :Module gen
erates automatically plans of actions (e.g. the 
plan experiment-i) whose aim is to achieve the 
task specified by the goal. The plan of actions 
is the output 'which can be passed, through the 
Interaction :Module and possibly under control of 
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UJ~(})~G)Yonz 
Release Object Unload Y from Z 

Figure 4: An example of FSIvl 

the user, to the Execution :Module. 
This set of services has been designed to meet 

the requirement of Interactive-Autonom.y. Indeed, 
a main characteristic of the planning module is 
that it is an open system, i.e. each of its oper
ations (e.g. plan search) can be inspected, con
trolled and guided by the user. This fact opens 
up the possibility to provide a planning function
ality which supports a "user-centered operation 
mode" for JERRY, in which the planner interacts 
flexibly with the user interface module. The user, 
beyond asking for a goal to be satisfied, can ask 
the planner for different services, e.g. show all 
the plans which satisfy a goal, select one of them, 
query the planner about the possible effects of the 
execution of plans, re-use existing plans, ask the 
planner to validate a user defined plan, inhibit 
some plans, query the planner about the current 
state of the execution in terms of high-level ac
tions. This "user-centered" modality requires a 
design of the planning module which is different 
in philosophy wrt current state of the art planners. 
The planner is no longer the automatic generator 
of solutions, it becomes a system which exploits 
its automatic generation capabilities to support 
the user to find the right solution and is flexible 
enough to adjust its plan generation activity to 
different user requirements. 

It is worth remarking that the functionalities 
of JERRY allow to implement an interesting set 
of mixed-initiative problem solving strategies that 
are somehow disjunct from other approaches de
voted to inserting the user in the loop (Smith & 
Lassila 1994; Tate 1997). In our current frame
work the user is left free of choosing to either solve' 
the problem himself or request the intervention of 
specific JERRY functionalities. 

The Planning ·Module is developed on top of 
the MBP system (Model Based Planner) (Cimatti 
et al. 1997; Cimatti, Roveri, & Traverso 1998). 
IvIBP is an extension of the NuS:MV IVlodel 
Checker (Cimatti et al. 1999). It implements the 
"Planning as :Model Checking" paradigm. The 
implementation relies heavily on existing work in 
the context of finite-state program verification and 
in particular on the work described in (Clarke, 
Grumberg, & Long 1994; Burch et al. 19~)2; 
.McMillan 1993). The underlying idea is that 
domains are modeled as Finite State :Machines 
(F1VlSs) and plans are generated by searching the 
states of FS1Vls. For instance, a FSM for a simple 
domain is depicted in Figure 4. We have three 

possible states (labeled as 1,2,3). Each state is 
labeled with the facts that hold in that state, 
e.g. Hold Y states that in state 2 the robot 
has at hand the 0 bj ect Y, Y on Z states that in 
state 3 the object Y is on the experiment tray 
Z. The actions Get Object Y, Put Y on tray Z, 
Release Object, Unload Y from Z are repre
sented as transitions (arcs) between states. 

Plan Compilation/Execution 
The Plan Compilation/Execution module is re
sponsible for transforming a high-level, user
oriented abstract plan into a sequence oflow-level, 
machine-oriented execution plan. In more detail, 
the Plan Compilation/Execution module receives 
in input from the interface an arbitrarily long se
quence of actions to be performed, and generates a 
sequence of actions (a "program") that the robot 
can directly execute. For example, in the case of 
a robotic arm, the program corresponding to a 
move( 0, I) ("move object 0 to location l") looks 
like the following sequence of instructions 

move..near <pOLO> by <distance>; 
open.l1.and; 
move~inear <pos_o>; 
close.l1.and; 
move..near <pos~> by <distance>; 
move~inear <pos~>; 

open.lland; 

where <pos_o> and <pos~> are six tuples of real 
numbers specifying the positions of the object and 
of the location respectively, while <distance> is a 
real number specifying how far (along the vector 
specifying how to approach the position) the arm 
should be from the final position. Notice, the fun
damental distinction between a "user-level" and 
a "programmer-level" plan: while the former is a 
sequence of symbolic actions, the latter necessar
ily involves some reasoning about the geometry of 
the scenario. As for the planning module, the exe
cution module provides the possibility to validate, 
simulate and/or generate a PDL2 program. 

Given that the positioning module has to deal 
with variables with infinite domains (typically in
tervals over the reals), the set of possi hIe low-level 
plans cannot be directly encoded into FSIvIs. Be
cause of this, we adopted a different mechanism 
in which the "validation function" rely on a user
defined LALR(l) grammar (see (Aho, Sethi, & 
Ullman 1986)) defining the whole set of admissible 
PDL2 plans. This grammar, though dependent on 
the particular scenario under consideration, can 
be inspected and/or modified by the user before 
each session. The grammar is then directly com
piled into an executable code corresponding to a 
program accepting a plan only if it is admissible. 

A "generation function" allows to associate to 
any high-level sequence of actions a corresponding 
sequence of low-level sequence of PDL2 instruc-
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tions. In any case, the sequence of actions given 
to the execution module does not need to corre
spond to a complete plan. Instead, the user can 
(i) break a plan as given by the planning module 
into blocks of planning actions, (ii) require t.he 
compilation of all or some of the blocks, or (Hi) 
ask for an execution program differing from the 
proposed one. 

Finally the "simulation function" allows for the 
validation of either the generated or user-provided 
PDL2 program by a suitable call t.o the simulator. 
As obvious result, the movement. of the SPIDER is 
displayed on a screen for validation by the user. 

As for the planning module, the execution mod
ule is an open system in which the parameters 
affecting its behavior (e.g. the availability of 
a given low-level action) can be inspected, con
trolled and eventually modified by the user. For 
example, the user can inhibit the execution mod
ule from using a certain low-level action because 
it involves some dangerous or unavailable move 
for some joint. This will affect bot.h the valida
tion and the generation routines: no plan with the 
undesired instruction will be accepted and gener
ated. As above, t.his fact opens up t.he possibility 
to provide a "user-centered operation mode" for 
JERRY, in which the execution module interacts 
flexibly vvith the user interface module. 

A Java (compatible with JDK 1.2) implemen
tation of the execution module has been realized, 
and is currently tested for improvements. The 
compilation from the grammar to the executable 
code has been realized via CUP (see (Hudson et 
al. 1998)). 

Conclusions 
This paper describes JERRY, a system for the 
automatic generation and execution of plans for 
robotic devices, and briefly reports about the case 
st.udy of the SPIDER arm. The main feature of the 
system is the high-level of interaction that. the user 
can decide to have with the system. This level of 
interaction is critical in t.he context of spatial mis
sions, where (i) unforeseen emergencies can hap
pen, and (H) still the mission has to proceed, pos
sibly under the humans' supervision. 

JERRY has been designed t.o be a flexible, open 
architecture. Care has been taken in order to dis
tinguish the domain-dependent. from the domain
independent tasks in order t.o minimize the cus
tomization effort.s. JERRY's architecture and un
derlying ideas have been tested and made oper
ational for monitoring and controlling a SPIDER 
robot.ic arm operat.ing in an indoor environment 
very close to t.he payload tutor experiment de
scribed in (Di Pippo et al. 1998). 
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