
Representation Of Scheduling Problems

In Practice Of Mission Planning

Christoph Lenzen, Robert Rehm

DLR-Oberpfaffenhofen 82234 Wessling
christoph.lenzen@dlr.de

Abstract. When working on the theory of constraint
satisfaction problems, one usually restricts to a finite set of
equal variables, which can take values from a finite domain
(see chapter 1, 1.1 in [1]). For many scheduling problems,
this is not appropriate. For example: a schedule for the
camera on a satellite shall be created. The visibilities of the
targets usually won’t appear as a multiple of a considerable
large time unit. Besides the tasks will often not be equal but
some of the tasks can build groups, which shall be
scheduled as a unit (e.g. the uplink, which sends the
command to the satellite, the datatake, i.e. the taking of the
picture and the downlink, which sends the picture to the
ground station belong together). The aim of this article is, to
introduce an object language, which allows to model all
sorts of constraints in an efficient way and which also
enables the user, to define a structure, which can help the
algorithm to be more efficient.

1 Structure of a scheduling problem

1.1 Tasks
A task is an activity, which can be assigned to any rational
value at the timeline with any rational duration, so a task
corresponds to a variable, whose domain is the square of
the rational numbers. Therefore – regardless of complexity
– an exhaustive search will never lead to a result. One
either has to derive a granularity and an interval from the
given data or one has to use algorithms, which don’t need a
finite domain.

1.2 Groups
A group is a collection of tasks and/or groups. No cycles
are allowed (i.e. no group may contain itself, neither
directly nor indirectly). Each group can be given its own
scheduling algorithm. When starting the scheduler, it will
consider only the tasks and groups, which don’t belong to
any group. When a group is chosen, the planning-algorithm
of that group will be applied to schedule the elements of
that group.
For example, our satellite, which has the camera to make a
datatake, contains another experiment, called exp2. Then
one can schedule all simultaneously, where both, the uplink
– datatake – downlink groups and the exp2 groups are
scheduled with their appropriate algorithm.

2 Constraint representation

There are three different possibilities to express constraints
and a mechanism to combine them. A violation of these
constraints is called a conflict.
The constraint types are:

2.1 Demand
This constraint type can cause a conflict when one task is
scheduled and another one is not. There are two different
types:

1. a task needs one or more other tasks to be
scheduled, otherwise its occurrence on the
timeline causes a conflict

2. n out of a given group of tasks have to be
scheduled, otherwise any occurrence of any
task of that group on the timeline causes a
conflict

2.2 Time-Dependency
This constraint type can cause a conflict, when both
included tasks are scheduled.

1. Start/end of task1 must be scheduled before
start/end of task2

2. Scheduling times of task1 and task2 must
overlap

etc.

2.3 Resource-Dependency

Resource
A resource is a function in time. For example, it can
represent the battery-power of our satellite or it can model
the times when some ground segment is visible for the
camera of the satellite. There are different types of
resources:

1. resources with upper-bound (another function
in time), which cause a conflict, when the
function raises above the upper-bound (e.g.
memory, which is filled up by data from the
camera – only a limited amount of memory is
available, a conflict may occur)

2. resources with upper-bound, which force the
function to stay below the upper-bound (e.g.
battery power, which is refilled by solar
panels – surplus energy is lost, but no conflict
occurs)

3. resources without upper-bound (e.g. intensity
of sunlight)

and the same for the lower-bound.
Resource-Dependency
A resource-dependency is a dependency of a certain task
on a certain resource. There are different types of resource-
dependencies:

1. allocating-resource-dependency
Modifies the function of a resource during the
scheduling time of the task.

2. comparing-resource-dependency
A comparing-resource-dependency may have
an upper-bound and a lower-bound. This
dependency causes a conflict, if the task is
scheduled and if the resource function is out
of these bounds during the scheduling times
of the task. It does not modify the function of
the resource.

Etc.
Resource-dependencies serve as a possibility to express
constraints of tasks themselves (e.g. a datatake can only be
scheduled when the target is visible) and to express
constraints of many tasks among each other (e.g. only one
downlink may be scheduled at the same time, since there
exists only one antenna).
The resource-dependency is separated from the resource ‘to
allow one task to create an opportunity’:
If the target of a datatake is not visible (represented by a
comparing-resource-dependency, which is always
violated), but it can be made visible by turning the satellite,
a task ‘turn-satellite’ may modify the function of the
resource, which describes the target visibility via an
allocating-resource-dependency and so the target becomes
also visible in the modelling.

2.4 Pools and Combos
A combo is a set of constraints. It is called ‘satisfied’, if all
of its constraints are satisfied, i.e. if no constraint has a
conflict and if all resource-dependencies, which modify a
resource, are considered. Each combo must be part of
exactly one pool.
A pool is a set of combos together with a number ‘n’. All
constraints, which belong to a combo, are ignored, instead
the corresponding pool has to be considered. A pool is
considered, if and only if exactly n of its combos are
considered. It has a constraint, if one of the considered
combos has a constraint.

3 Summary

The previously described object language is created to
satisfy the demands of mission planning in practice. It
allows to model structures of the planning-problem and it
allows to model constraints in a natral and efficient way.
The main difference between this modelling and the
common constraint satisfaction modelling is, that there is a
continuous timeline. Besides the grouping mechanism
facilitates the mixing of algorithms. Both work well with
simple heuristics like ‘choose tasks/groups with high
priority first’, ‘choose first possible time’ and ‘move
conflicting tasks’. What has to be done next is, to adjust
more elaborated algorithms, such that they can handle this
modelling and to find ways to combine them properly.

References
[1] Edward Tsang, Foundations of Constraint Satisfaction.
Academic Press, Harcourt Brace & Company, 1993

