Dynamic Task Scheduling For Advanced Ground Facility

Jean-Clair Poncet, Pierre Guestault
AXLOG Ingénierie
19-21, rue du 8 mai 1945, 94110 Arcueil — France
Jean-Clair.Poncet@axlog.fr, Pierre.Guestault@axlog.fr

Alain Verheyden, Jacques Marée
Spacebel S.A.
5-7 1. Vandammestraat, B-1560 Hoeilaart — Belgium
Alain.Verheyden@spacebel.be, Jacques.Maree@spacebel.be

Giancarlo Pittella
ESA-ESRIN EOP — ED
Via Galileo Galilei, Frascati — Italy
Giancarlo.Pittella@esa.int

Abstract. The development of small satellites is an
increasing trend. It enables reducing development and
exploitation costs at the platform and payload levels.
However, the ground stations required to satellite
exploitation could also be modernized using some new work
automation approaches. This paper presents the architecture
of an Advanced Ground Facility to manage small satellite
missions. It emphasizes the automated planning and
scheduling aspects of the work, where station activity is
managed automatically. The task schedule is built using a
dedicated approach that enables dynamic management of
the tasks performed. The work is illustrated by preliminary
results.

1 Introduction

Future missions, and mostly Earth Observation (EO)
missions are likely to be based on smaller satellites (<
500Kg), flying alone or clustered, carrying less payload but
more specialized instruments designed for thematic
applications. The development of small satellites is cheaper
and faster (< 2 years) and benefits from more recent
technology than conventional satellite. On the other hand,
their lifetime should also be reduced (2 or 3 years in
average). The small satellite concept is attractive in a
general context of budget cuts and hence makes space
more accessible for new entrant actors (commercial or
not), operating possibly at national or regional scale.

Obviously, such small missions should benefit from
ground segments offering the same qualities: cheaper and
faster! However, the reduction of the global operational
cost for small missions cannot be achieved solely by
reducing the development cost of the dedicated Payload
Ground Segment, the operational costs should also be
reduced. This might be achieved in different ways which

must be adapted depending on the scenario considered,
using for instance:

1. Sharing of the infrastructure between several missions:
the fixed operational costs are spread over different
missions.

2. Unattended operations: less human involvement (day
hours only) and shorter end-to-end delivery time.

3. Design in accordance with a (proved) business model:
suppress unessential operational costs.

Ground Facility owners need to have an estimate, at an
early stage of the system development, of the cost of the
ground operations, helping them to build an attractive offer
to potential customers.

This implies the design of a new generic Advanced Ground
Facility (AGF) with an autonomous decision capability
(e.g. because of the more frequent revisiting time hence the
higher conflicts’ probabilities) and which can easily be
expanded to the forthcoming missions.

The AGF interacts with two main actors: the satellite from
which it receives the payload telemetry data and the
mission center generating demands for acquisitions
(acquisition plan) to be executed and issuing specific
request for product ordered by the end user.

These actors can be extended to other external entities
providing for example the ancillary data required for the
thematic processing, the acquisition services as performed
actually by the ESA stations, archiving or processing
facilities like for the ERS and ENVISAT missions.

The AGF is able to work in a stand-alone environment or
within a pool of AGF where a master AGF controls and
distributes the activities between its dependent facilities.

The AGF is a modular entity: the architecture is based on a
core AGF that can be extended with functions covering
specific needs (thematic processing, long-term archiving,
etc). These functions can be made accessible internally or
externally.

2 Advanced Ground Facility

The AGF functional architecture (see Figure 1) is
composed of a station planning function receiving the
acquisition requests from the Mission Centers and
managing the schedules of the station activities. The
Monitoring & Control is responsible for the execution of
the schedule: triggering the execution of each activity,
controlling their execution and reporting their execution
status to the station planning. The acquisition subsystem
manages the acquisition of the payload telemetry from
antenna RF equipment to the storage of the decommutated
instrument source packets. Each mission processor
computes, from the raw data and auxiliary data, the high
level product that can be directly disseminated to the users.

f Mission
center

Reporting

Acq. Request

PROD. RULES

i Level O.N

AGF

Aux. Data Raw Data Product Meta Data

Long term Central
External DB 91 User

archive catalogue
. AGF Function R} Internal Interface R Y Data Flow
O External Function R External Interface A Control Flow

Figure 1 — AGF functional architecture
The design drivers behind this architecture are:

Automation: the station planning subsystem is in charge
of the automatic handling of the user requests. The driving
of operations is based on the knowledge of constraints
(description of the station resources) and priorities.

Plug & Play Approach: at subsystem level, the
architecture is based on modular SW components, which
can be configured for a particular mission.

This approach gives the ability to benefit from the latest
technology evolution or new standards and provide SW
independence from underlying HW (portability).

Some components that are dedicated to particular mission
are implemented in a plug & play approach: at the
installation time, the component registers itself to the
system providing information on its capability (description
of the provided services) and constraints (performances
and resources required).

Workflow: the planning service is responsible for the
generation of the schedule of the station activities in a
short-term horizon. This generation is dynamic and is
automatically started at each occurrence of an event
reopening the established schedule (new request issued,
resource state modification).

The schedule of the station activities is transmitted to the
Monitoring & Control in a workflow expressed in the
BPEL! standard format.

The usage of this format allows specifying precisely the
execution dependency of the station tasks and thus
avoiding idle state during the schedule execution.

The AGF is devoted to fulfill as efficiently as possible
these three major requirements, using automatic dynamic
scheduling to increase automation level.

3 Station Planning

When looking at the AGF network, there are two different
levels of planning that are considered. On the one hand, at
the network level, the activity of each AGF station is
managed according to tasks submitted to the network. Of
course, a coherence of the dissemination of task realization
onto the different stations is required.

On the other hand, at the station level, the set of tasks
devoted to the station is ordered to satisfy the different
requests in the shortest time, while optimizing the resource
usage when possible.

In the following, we focus on the second aspect of the
problem, dealing with scheduling of requests at the station
level.

3.1 Station System Architecture

The Station Planning (see Figure 2) is implemented as a
Web Service. It receives commands from the Mission
Centers and operators. It handles also the notifications sent
by the Monitoring & Control.

Notifications about the execution of the requests are
asynchronously returned to the Mission Centers.

! Business Process Execution Language

The product requests are processed by the "Tasks
Generator" that uses inference rules to break the request
into a list of constrained activities: a chain of tasks that
perform the product and make it available at the end. At
this level, the decomposition of the request is achieved in a
straightforward way (no selection based on user profile or
priority rule). The resources that are involved remain at a
certain level of abstraction: for example, the resource type
is identified but not the device (computer, antenna, disk,
network, etc) that is used at the end.

This list of activities is forwarded to the planning engine
that "binds" resources and devices using the
Planner/Scheduler, adding time constraints to avoid
bottlenecks. The planning is done according to available
resources and their associated performances. The resource
manager provides this information. For a same incoming
list of tasks, there can be several possible solutions; an
optimization criterion (time based or resource based) is
specified to select the most suitable one according to
scheduling policy.

The operator can define "MODES", expressing the AGF
policy at a given moment. The modes are conditioned by a
temporal applicability (for example from a given date, or
during weekend)

XML XML XML
. XML XML
Product Control Diagnose | |\ icication Notification
Orders C Command

v
[Soap Server J
* R History
Demarshalling XML (reports)

v

Task
Generator
Ab

resources)

‘ Planning

Engine

N\

Inference
Rules

AGF Database

Station
Planning

Marshalling XML

l XML
Operator Workflow

Figure 2 — Station Planning Architecture

The resource manager is regularly notified of the resources
availability and asks the corresponding modules for
recording the resource performances. The Mode Manager
can modify the panel of resources that the planning engine
can use at each moment in the schedule horizon, depending
on resource modes. Typically, a resource can be marked as

"not usable" during a given period of time, even if the
resource is actually available.

Finally, the History Manager receives diagnostic or report
requests and uses the AGF database to build an answer.
The History Manager also receives from the planning
engine a plan for statistics evaluation. This module is also
responsible for storing the notifications received from the
Monitoring & Control and for dispatching them into the
AGF database and to the main AGF service.

3.2 Planning Architecture

The planning engine is composed of three main software
components (see Figure 3):

¢ The report manager is in charge of generating reports on
the AGF activity according to past and current task
schedules.

¢ The planning engine generates some new task schedules
when called by the Supervisor.

e The Supervisor is in charge of managing incoming
requests. When some requests are submitted, the
Supervisor decides on the computation of a new plan,
when computing a new plan and how this plan is
computed, using a global schedule approach or a plan
repair algorithm.

The supervisor is also in charge of monitoring at high level
the plan that is currently executed in the station. It can
decide to change this (and if necessary to call the planning
engine) according to possible drifts in plan execution.

Planning Planning
Local Representation strategy Models

l Parameters l
AGF AGF Plan

Database ;
Information, comman
/ update

Data
update

Short term

Report Plan

notification

Update Monitoring
and control Database
information

Figure 3 — The Planning component architecture

Among these three components, only the Supervisor is
interfaced to other components of the AGF. These
interfaces are all directed to the AGF database. The
Supervisor polls the database to be informed of new
requests stored in it. It also writes its proper data in this
database, so that the rest of the AGF can view them.

4 Dynamic Scheduling

4.1 Problem Statement

In the AGF, the problem consists in scheduling some
elementary tasks and in allocating specific sets of resources
to them. This is close to classical jobshop-scheduling
problem [1]. However, considering the structure of the
workflows of elementary tasks associated to the different
product realizations, it appears that some parts of the
schedule can be conditioned by the results of previous
tasks. Moreover, some tasks, e.g. acquisitions, have some
strict start and end dates that cannot be moved. The
following 9 points can summarize the global scheduling
problem:

1. The basic problem consists in scheduling sets of
elementary tasks according to their dependencies. These
dependencies are stated by the realization rules of the
product to which they belong.

2. Some resources (processor, data storage, antenna) are
affected to the tasks according to the needs.

3. Some tasks could be conditioned by the success or the
quality of results of a previous scheduled task. This
creates some alternatives (choice points) in the AGF
schedule that must be managed.

4. Some tasks are dependent on conditions external to the
AGF. For instance, acquisition is dependent on the
passage of the satellite over the horizon of the antenna.
Then the scheduler enables the right resources at the
right time to perform these tasks.

5. Tasks have some priority orders and deadlines
according to their associated product priority and nature.

6. The scheduler works on different time horizons. A
weekly schedule enables to consider AGF possibilities
for long term. A short-term schedule (hourly) enables to
manage the AGF daily.

7. Some tasks need resource initialization before their
execution. For example, some parameters of an antenna
must be initialized (e.g. orientation) to make a data
acquisition of a given satellite. This implies time
constraint between data acquisition start time and the
current time.

8. Multiple resources can be involved in one task
execution. For example, CPU processor and bandwidth
resource are needed to the execution of a dissemination
task.

9. The AGF owns a heterogeneous resources pool. AGF
resources can be disjunctive (only one task can be
executed at a time), cumulative renewable (the quantity
of resource consumed is restored at the end of the task)
or consumable.

Among these scheduling constraints, the most complex is
the possibility of conditional plans according to tasks
results. It is obvious that the resulting choice points
increase combinatorial complexity; each possibility has to
be explored when building the future AGF activity plan.

4.2 Scheduling Conditional Tasks

Introducing conditional tasks have an important impact on
the way to produce the AGF plan of activity. Obviously,
according to a set of tasks to schedule, different valid
schedule exist. A selection can be made among these
schedules using an optimization criterion (time or resource
usage for instance). By considering choices points, the
complexity is dramatically include. For instance,
considering the short example in Figure 4, where two
possible schedules of the two flows are shown. In the first
one, the task B succeed and task C is executed after. In the
second one, the task B failed and task D is executed.
Finding a schedule needs to explore all the possibilities in
tasks arrangements and in choice points evaluation.
Moreover, the effective result of the different choice points
is known only at execution time. This means that we can
not a priori determine the optimal schedule as we don't
know exactly what set of tasks will be executed.

\, Task stating choice point

D Normal task

Schedule 1: [A[E]®)[c](®[q]
Schedule 2: [a]E](®)[p](F)[q]

Figure 4 — Short schedule example

Generally speaking, we consider that a choice point
resulting from a task result corresponds to three
alternatives at most: value 0 (success of the task), 1 (failure
of the task) or 2 (other alternative; e.g. lower quality of
result). This restriction matches the specification of task
flows and reduces the complexity by maximizing the
number of different choices.

Another constraint stated in the specification was to
maintain good system reactivity; it is necessary to perform
task scheduling in a reasonable time (less than ten minutes
on a standard desktop computer). This means that we will
certainly not be able to determine all the possible schedules
according to possible tasks results before starting
execution.

In order to match the conditions introduced in the schedule
by some elementary tasks, the final AGF activity plan? is
computed one branch after the other according to the tree
representation of the plan. This is performed using the
algorithm in Figure 5.

This algorithm starts by computing a first schedule
corresponding to the case of each choice point is evaluated
to 0 (expected success of the all the tasks). This first
schedule enables to fix an order on the different choices
points. Once we have this first schedule, we can determine
the other parts of the plan, meaning the possible schedule
in case of one or more choice points are not evaluated to 0.

The objective is to be able to start to execute the first
computed schedule while continuing to determine
alternative ones. Algorithm so computes first the
alternatives schedules that are the earliest in the plan to
feed the execution when necessary. The process ends when
all the possible alternatives have been taken into account,
determining the complete AGF plan.
Begin

Compute the schedule in case of all
choice points have value 0.

(1) If

(It exists a part of plan not vyet
scheduled)

Or
(It exists a task not yet scheduled)
Then

Select the part to schedule next
according to earliest date

Determine the set of tasks to
schedule on this part

Schedule this part of plan
Return to (1)
End if
End

Figure 5 — Algorithm

This iterative algorithm enables to maintain a good
reactivity of the system. Next section illustrates its
behavior on a practical example.

4.3 Scheduling Example

To understand how this algorithm works, let us consider
the example of Figure 6.

? In this approach, we call "plan" the complete set of possible
schedule that should be computed according to choice points
evaluation in order to realize all the process.

Figure 6 — Workflow example

We consider that the current schedule plan consists in the
first workflow including the ordered task set /4, B, C, D,
E, FJ. In this workflow, a choice point is set according to
the result of task 4. For instance, let us assume that 4
corresponds to an acquisition; if this acquisition succeeds,
then process level 0 data (task C), process level 1 data (task
D) and according to results of processing, disseminate
(task F) if success, or erase data (task F) if failure. The
schedule corresponding to this workflow is illustrated in
the first plan of Figure 7.

In this current schedule plan, we want to introduce the
ordered task set {G, H, I} that corresponds to the product
sequence of a new user request.
b
b,

£ 4
b, C D o bs
b,

Yl
.
. Gin
o) o LEHEHE o
bs

5
b H
(cHuHD) b, (3)

b
B i

a

b,
3 (S}Ho)
L S e
eHA) L
(RHIHE

Branch already processed
Next branch to be processed
Branch not yet processed

" Task

Figure 7 — Conditional flows scheduling

According to the algorithm, some tasks have to be inserted
in the schedule, so that the complete graph of possible
schedules have to be processed again to insert them. The
next step determines the path made of branches {b;, b,, b}
(sample 2 in Figure 7). All the tasks are taken into account.
A possible resulting schedule in case of task 4 and D
success is /G, A, C, H, D, E, I]. Note that it is only an
example of possible schedule that can be returned

according to real tasks resource usage, dependencies, etc.
However, to fix the ideas, let us say that the scheduler
returns the solution /G, 4, C, H, D, E, I].

Once this step is complete, we iterate the algorithm. Some
branches have not been recomputed: b; and b5 (sample 2 in
Figure 7). According to the earliest date, the next part to
schedule is {b;}. It corresponds to the case of 4's failure. A
possible schedule is for instance: /G, 4, H, I, B]. Note that
the two computed schedules have the part /G, A] in
common. The structure of this part is stated as a hard
constraint when computing branch {b;} in order to ensure
that the different alternative plans are compatible.

The last step consists in determining the schedule for the
last branch, {bs!, corresponding to the last possibility in
choice point in which 4 succeeds and D does not. This last
schedule is /G, 4, C, H, D, I, F] (sample 4 in Figure 7).
Once again, the part made of {b;, b,} is common to both
schedules.

In this example, the new workflow does not add additional
choice points. But in some cases it does: the process is
exactly the same but the number of possible plan is
increased. The position of choice points is determined by
the first plans to be scheduled and reused to compute other
plans.

According to this fix choice point policy, the algorithm
could give non-optimal solutions on the last branches to be
scheduled. However, it enables dynamic and efficient re-
scheduling of AGF activities while maintaining the
deadline constraints stated on previously scheduled tasks.

4.4 Scheduling Models

The schedule generation is based on a constraint
programming approach. The scheduling model is then
described as constraints to fit the implementation approach.
The model relative to classical jobshop scheduling
problems [2] is not explained, only the model relative to
problem specificities is.

To model the tasks behavior (especially, the processing
tasks) we must take into account that their resource
consumption could change over time according to the
number of tasks executed at the same time on the resource.
We also need a good approximation of their duration to
evaluate the overall schedule time according to task
dependencies. Instead of models based on an upper
approximation of the task duration independently from its
resource usage, we prefer another one taking into account
this dependency. Thus the duration of task is modeled
according to the amount of resource that is allocated to it.

The model is based on a task-centric approach of the
problem. All variables instantiated during the schedule
computation are associated to the tasks. For each one, we
specify:

e The resources associated to its execution:

[Ry,...,R,], where R; is the resource identifier of the i
resource, on which is executed the task,

e Atall time stamp in the schedule:
The status of the task (currently scheduled or not),

The foreseen resource consumption.

4.5 Time Stamp

In order to represent these data in a discrete environment
— only using finite domain variables — we define a time
stamp. However, instead of defining some regular time
step along the schedule horizon, we define a time stamp
based on task scheduling events, as shown in Figure 8. In
this figure, 4 time stamps are identified corresponding to
the different time events at which resource usage change

[5].

The main advantage of this approach is that it reduces the
overall number of time steps without under-constraining
the problem, as the resource consumption of a task only
changes when another task execution is started or stopped.
Nevertheless, this dynamic specification is also the main
drawback, as the time stamps definition is made only at
variables instantiation time.

=
8
2
1
1
1

A B

1 Resource °

]
R
A

t, t, ty t, Time

~
Time stamps

Figure 8 — time stamp
The data associated to tasks are then the following:
e The task's time bounds: 7, T,.
¢ The matrix:
Capy,, Cap,
Cap,)

Cap(k,l) Cap(k,n)

Where Cap,;; is the resource consumption at time stamp i
on the j resource.

4.6 Resource Consumption

The task duration model must express that the duration of
the task depends on the resource consumption. Figure 9
illustrates this property.

On this figure, D represents the minimum duration of the
task, corresponding to duration required to perform the

task if the entire resource is affected to its execution
(hatched blue area). The real resource assignment
represented by the brown shape must be such that the
brown area is equal to the hatched blue area. The length of
the brown shape determines the real duration of the task
according to resource allocation.

Task duration

Figure 9 — Task duration

Using the variables introduced before, a definition of the
task duration is given by:

Nb time steps)
vj, 2, (Cap)/*T, =D

i=1
V), Vi, (T, <T)v([,>T)e (Cap’ =0)

Using the same variables, the resource consumption model
can be defined, stating that:

e The whole resource must be fully consumed at every
time.

e All tasks consume same quantity at any time.

Thus, two processing tasks executed at the same time on a
given processor are supposed to use the same amount of
the resource (50% CPU). Identically, two dissemination
tasks take 50% of the bandwidth each. This is given by the
following formula:

Vj, Vi, " (Cap,) €0,100]

te Tasks

v}, Vi,vt, (Cap,) =K/

For each task ¢, for each resource 7 at each time stamp j, the
sum of resource capacity used is between 0 and 700
resource units. And for each task ¢, each resource i and
each time stamp j, the instantaneous capacity used depends
only on the resource and the time stamp.

4.7 Search Strategies

The resolution mechanism of the constraint programming
approach takes the complete problem and tries to solve it
as a whole [3]. However, as previously said, user requests
may be submitted to the system at any time. Taking these
requests into account in the schedule is equivalent to
inserting new tasks in the current schedule. A plan-

improving algorithm, also called plan repair algorithm, can
be very efficient to solve this kind of problem.

The plan repair algorithm for this problem is based on the
improvement of an existing solution, valid or not. It tries,
by using a partial search method, to find a valid solution
close to the existing one. The improvement mechanism is
based on:

e Adding new tasks to the initial schedule.

® Moving or deleting tasks already present in the plan in
case of invalid initial solution.

In addition to this plan repair approach, a specific
constraint inference algorithm has been implemented. It is
based on inference over the tasks duration to improve
propagation of variables during resolution. Figure 10
shows an example of this constraint application. The
duration D represents the minimum duration during
which tasks 4 and B share the same resource. The
constraint infers on the duration of these two tasks
according to the associated resource allocation. In the
example, during the period D, tasks 4 and B equitably
share the resource. Their duration is increased of D/2.

1 - B

time

Figure 10 — Task duration constraint

5 Schedule Control and Supervision

As previously explained, the role of the Supervision
component is to check the right execution of the current
schedule, and to decide when and how it is necessary to
modify it.

Figure 11 describes the architecture of the Supervisor.

The schedule monitor permanently polls the database table
containing the current task execution information. It builds
a representation of the current system state and transmits it
to the planning control. The planning control analyses this
state and decides whether it is necessary to change the
current task schedule (i.e., to compute a new schedule by
calling the planner).

The planning control uses a rule-based system to perform
the decision-taking activity. This system is based on the
RETE rule inference algorithm. This algorithm
decomposes a set of rules into a directed graph that allows
quickly inferring of the right-hand sides of these rules. In

planning control, these rules are used to determine whether
a new schedule has to be computed, and how this is done.

AGF
Database

Current plan
Rules . Resources parameters
Strategies | Tasks status

Supervisor| Planning
Component
Schedule
Monitor
Execution
status
Planning jPlanner/
Control L Scheduler

Task schedule (plan)

AGF task
scheduler

Figure 11 — Supervisor structure

The rules are written in a Prolog-like style, as depicted in
Figure 12. The tail of the rule represents the premises.
They can be structured using conjunction marks (with
coma character), or disjunction (using semicolon
character). The head of a rule represents the consequence.
Having a single goal in the head does not limit rule
expression, as several rules using the same premises can be
specified. The rules can also be used to change task
priorities according to deadline, changing spare resource
policy, etc.

The rules are gathered using rule sets, also named
configurations. These configurations determine the system
policy. The different rule sets are managed in a
configuration stack. Each time a configuration is added to
the system, it subsumes the previous one. Each time a
configuration is removed, the previous one is restored. A
basic system configuration is given which cannot be
removed.

Conjunction Premises

Disjunction

A:- (B;C),D
Head Tail
(Single (Conjunction and
consequence) disjunction of premises)

Figure 12 — Scheduling rule structure

6 Experiment Results

A prototype has been implemented using the Finite
Domain library of SICStus Prolog. As the system is
currently under development, it has not been fully tested
yet. However, early made in first time on simple examples,
and further on more representative sets of tasks show a
good solution, near the optimal one, is found in few
minutes. This time scale is convenient as the time to
reschedule the system is evaluated as a tenth of minutes,
which augurs satisfying system behavior on the real set of
tasks that is still to be determined.

The data related to the most significant example are the
following:

e A pool of 6 resources of 3 different types is defined,
whose properties are described in Table 1 below.

RESOURCES | Renewable | Type | Capacity
1 No 1 10
2 No 1 12
3 Yes 2 16
4 Yes 2 12
5 Yes 2 20
6 Yes 3 12

Table 1 — Example’s resource data

e 39 tasks have to be scheduled. Each of them has an
initial time delay after which they must necessarily be
executed. They also have a strict deadline date. Each
task can only be processed using a resource of one of
the three types. Among the 39 tasks, 8 have to be
processed using resources of type 1, 21 using
resources of type 2 and 10 using resources of type 3.

e The time horizon of the schedule is fixed to 1000 time
units (a time unit is equivalent to a 20 seconds).

e The optimization function maximized the number of
tasks included in the schedule, trying to schedule as
many tasks as possible while respecting activation
times and deadlines.

First Solution | Solution | Optimal
solution #8 #14 Solution

Computation time 1 38 142 584

Cost optimization
criterion value -5 -100 -150 -165
(minimization)

Number of

scheduled tasks 1 20 30 34

Table 2 - Search results (times in seconds)

The results in Table 2 correspond to an execution of the
algorithm implementation on an x86-linux based

environment installed on a 2.4 GHz CPU platform. The
solutions #8 and #14 are found during the search; they are
exposed to illustrate the evolution of the solution quality
according to search time and optimal solution.

In this realistic example, the best solution is found in less
than 10 minutes, which is a correct time according to
expected system performances. However, the algorithm
gives a solution with quality ratio near to 91% in only 2
minutes and 22 seconds. This lets augur very satisfying
system performances for dynamic rescheduling, taking into
account system variability rate and task durations that are
expected to be several minutes or several tens of minutes.

Future work will consist in implementing a repair
algorithm based on task selection and time value selection
heuristics to decrease even more the search time needed to
obtain the optimal solution. This shall satisfy the capability
of system evolution in stressing conditions (with higher
variability rate of its environment).

7 Conclusion

In this paper, we have presented an automated approach to
activity management of an AGF. It enables decreasing
human intervention in the deployment of ground-based
infrastructure for small missions. The main advantages
would be then to make ground station for small missions
cheaper and potentially usable by a large scope of users.

The proposed approach to scheduling problem is based on
existing techniques, suited to particular ground station
management problem. It encompasses the schedule plan
generation and the control of schedule execution. The first
results gathered while developing the Planning Service are
encouraging and augur that the final prototype of AGF is
going to be able to manage the ground station in an
efficient way.

Based on generic scalable models, this approach could also
be enlarged to the whole network of AGF to implement
efficient ground station network, providing end-to-end
services to final users. This could be an opportunity for
interesting future work in this domain.

8 Acknowledgements

The work presented in this article is funded by
ESA/ESRIN under contract number 15831/02/I-SB. This
project is carried out by a consortium consisting of
Kongsberg Spacetec (Norway) and Axlog (France) under
the lead of Spacebel.

Thanks to Nelly Strady-Lécubin and Philippe Morignot for
useful comments on first drafts of this paper and/or
insightful discussions and/or design and implementation
help.

8.1
(1]

(4]

[5]

References
Anant Singh Jain & Sheik Meeran (1998); 4 State-

Of-The-Art Review Of Job-Shop Scheduling
Techniques, at
http://citeseer.nj.nec.com/jain98stateart.html

Claude Lepape (1985); 4 Daily Workshop

Scheduling System, in Expert System, vol 85, pp.
95-211.

J.K. Lenstra, Kan Rinnooy, A.H.G. and P. Brucker;
Complexity of Machine Scheduling Problems, in
Annals of Discrete Mathematics, vol 7, pp. 343-362.

JK. Lenstra and Kan Rinnooy, AH.G;
Computational Complexity of Discrete Optimisation
Problems, Annals of Discrete Mathematics, vol 4,
pp- 121-140.

A. Aggoun and N. Beldiceanu, Extending CHIP in
order to Solve Complex Scheduling and Placement
Problems, Mathl. Comput. Modelling, vol. 17, no. 7,
pp. 57-73, Pergamon Press Ltd., 1993.

