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Abstract. In real-life temporal scenarios, uncertainty and
preferences are often essential, coexisting aspects. It is de-
sirable to be able to handle events with uncertain duration
while taking into account the user’s preferences on the tim-
ing of events. This also applies to many problems of space
application domains. The two aspects have been dealt with
separately, extending in two ways Temporal Constraint Sat-
isfaction Problems (TCSPs), a well-known framework for
handling temporal information, widely used in space mission
planners (Deardenet al. 2002; Muscettolaet al. 1998). First,
to account for uncontrollable events, Simple Temporal Prob-
lems with Uncertainty (STPU) have been introduced, and sec-
ond, more recently, to account for soft temporal preferences,
Simple Temporal Problems with Preferences (STPP) have
been defined. In this paper we propose a unifying framework
We present a formalism where temporal constraints with both
preferences and uncertainty can be defined. We show how
three classical notions of controllability (strong, weak and
dynamic), which have been developed for uncertain tempo-
ral problems, can be generalised to handle also preferences.
We then propose algorithms that check the presence of these
properties and we prove that, in general, dealing simultane-
ously with preferences and uncertainty does not increase the
complexity beyond that of the separate cases. In particular,
we develop a dynamic execution algorithm, of polynomial
complexity, that produces plans under uncertainty that are op-
timal w.r.t. preference.

1 Motivation

Research on temporal reasoning, once exposed to the diffi-
culties of real-life problems, can be found lacking both ex-
pressiveness and flexibility. To address the lack of expres-
siveness, preferences can be added to the temporal frame-
work; to address the lack of flexibility to contingency, rea-
soning about uncertainty can be added. In this paper we
introduce a framework to handle both preferences and un-
certainty in temporal problems. This is done by merging the
two pre-existing models ofSimple Temporal Problems with
Preferences(STPPs) (Khatibet al. 2001) andSimple Tempo-
ral Problems with Uncertainty(STPUs). (Vidal and Fargier
1999). We adopt the notion of controllability of STPUs, to
be used instead of consistency because of the presence of
uncertainty, and we adapt it to handle preferences.

The proposed framework,Simple Temporal Problems

with Preferences and Uncertainty(STPPUs), represents
temporal problems with preferences and uncertainty via a
set of variables, which represent the starting or ending times
of events (which may be controllable or not), and a set of
soft temporal constraints over the variables. Each constraint
includes an interval containing the allowed durations of the
event or the allowed interleaving times between events, and
a preference function associating each element of the inter-
val with a value corresponding to how much its preferred.
Such soft constraints can be defined on both controllable and
uncontrollable events.

Examples of real-life problems with temporal constraints,
preferences, and uncertainty can easily be found in several
application domains (Deardenet al. 2002; Layaidaet al.
2002). However, one of the most interesting and promising
application of the work proposed in this paper is planning
and scheduling for space missions. In particular NASA has a
wealth of scheduling problems that in which STPs have been
proved to be a successful tool to handle temporal reasoning
as well as lacking of capability to deal with uncertainty and
preferences. Remote Agent (Rajanet al. 2000), (Muscettola
et al. 1998), represents one of the most interesting exam-
ples of this. The RAX experiment consisted in placing an
artificial intelligence system on board to plan and execute
spacecraft activities. Up to this experiment traditional space
craft were commanded through a time-stamped sequence of
extremely low level commands, such as “open valve-17”
at 10:15 exactly”. This low level direct commanding with
rigid timestamps left the space craft little flexibility to shift
around the time of commanding or to change around what
hardware is used to achieve commands. One of the main
features of Remote Agent was that it was commanded by a
goal-trajectory consisting of high-level goals during differ-
ent mission segments. A goal trajectory could contain goals
such as optical navigation tasks, which specify the duration
and frequency of time windows within which the spacecraft
must take asteroid images to be used for orbit determination
for the on-board navigator. Remote agent dealt with both
flexible time intervals and uncontrollable events. The bene-
fit of adding preferences to this framework would be to allow



the planner to handle uncontrollables while maximizing the
mission manager’s preferences. In a sense the application in
this context of the model we propose would allow to specify
goals of even a higher level as “open valve-17 within 10:00
and 10:30 and as early as possible”. Reasoning on the feasi-
bility of the goals maximizing preferences coupled with the
uncontrollable events can be done as a preprocessing step,
allowing the plan execution to proceed both not ruling out
some possible occurrence times for uncontrollables and ob-
taining the best possible solution preference wise.

A more recent, but some way similar, application is in the
Rovers domain (Deardenet al. 2002). In more detail the
focus is in the generation of optimal plans and schedule for
rovers designed to explore some planets surfaces (e.g. Spirit
and Opportunity for Mars). In (Deardenet al. 2002) the
problem of generating plans for planetary rovers handles un-
certainty that involves continuous quantities as time and re-
sources. Their approach involves first constructing a “seed”
plan, and then incrementally adding contingent branches to
this plan in order to improve utility. Notice that the way
STPPUs are defined and handled in Optimal Dynamic Con-
trollability is well suited for a continuous domain repre-
sentation. Functions can be represented analytically (e.g.
y = ax2 + bx + c) and their actual value computed only on
elements of interest. The procedure proposed also respects
the nature of a continuous representation. Secondly prefer-
ences can be used to embed utilities directly in the temporal
model. For example if we consider a rover’s task, e.g. mov-
ing forward, if the battery is very low a higher preference
can be given to shorter durations of the motion event, while
if the quality is the main goal, as in taking pictures, a longer
time to allow higher resolution should be preferred. With
linear functions over the intervals containing the allowed du-
rations of the activities (moving, taking picture) these pref-
erences can be incorporated in the model and maximized by
the planner. This of course can be done also in presence of
uncontrollable events as we will show.

In this paper we will consider a running example from
another space application: planning for Fleets of Earth Ob-
serving Satellites (Franket al. 2001). This planning prob-
lem involves multiple satellites, hundreds of requests, con-
straints on when and how to service each request, and mul-
tiple resources. Scientists place requests to receive earth im-
ages from space. After the image data is acquired by an
EOS, it can either be downlinked in real time or recorded
on board for playback at a later time. Ground stations or
other satellites are available to receive downlinked images.
Each satellite can communicate only with a subset of other
satellites and/or ground stations, and transmission rates dif-
fer. Further, there may be different costs associated with
using different communication resources. In (Franket al.
2001), the EOS scheduling problem is dealt with through
a constraint-based interval representation. Candidate plans
are represented by variables and constraints which reflect

the temporal relationships and ordering decisions between
actions.

This problem contains all the aspects we address in this
paper. It has temporal constraints which include duration
and ordering constraints associated with the data collect-
ing, recording, and downlinking tasks. Moreover, solutions
are preferred based on objectives such maximising the num-
ber of high priority requests serviced, maximising the ex-
pected quality of the observations, and minimising the cost
of downlink operations (notice that most of these prefer-
ences can be directly translated into preferences on dura-
tions of tasks). Finally, there is uncertainty due to weather:
specifically to the duration and persistence of cloud cover,
since image quality is reduced by the amount of cloud cover
over the target. In the rest of the paper, we will use EOS as
a running example to illustrate our STPPU framework.

The specific contributions of this paper are: a way to
model simple temporal problems with both uncertainty and
preferences; definitions of strong, weak, and dynamic con-
trollability for such problems; an overall view of the logical
relationship among these notions; algorithms to check con-
trollability, complexity results, and a general scheme which
guides in the use of the algorithms. In particular, we show
that checking dynamic controllability of a Simple Tempo-
ral Problem with Preferences and Uncertainty can be done
in polynomial time. Thus we prove that adding preferences
does not make the problem more difficult, given that uncon-
trollable events may occur.

This paper is a revised and updated version of (Yorke-
Smithet al. 2003), a poster paper focused mainly on strong
controllability.

2 Background
In a Temporal Constraint Problem(Dechteret al. 1991),
variables denote timepoints and constraints represent the
possible temporal relations between them. The constraints
are quantitative, describing restrictions either on durations of
events or on distances (interleaving times) between events,
in terms of intervals over the timeline. In general such prob-
lems areNP-complete. However, if each temporal constraint
has just one interval — hence the constraints have form
lij ≤ xj − xi ≤ uij , where thex denote timepoints —
then we have aSimple Temporal Problem(STP) that can
be solved in polynomial time by enforcing path consistency.
An STP is said to bepath consistentiff any consistent as-
signment to two variables can be extended to a consistent as-
signment to three variables. Path consistency in the context
of STPs is enforced performing two operation on temporal
intervals: intersection(⊕), andcomposition(⊗). Intersec-
tion is defined as the usual interval intersection. Composi-
tion is defined as:I1 ⊗ I2 = {t = a + b | a ∈ I1, b ∈ I2}.
Given an STP and a constraintcij on variablesxi andxj

with intervalIij , it is possible to show that the STP is path
consistent iff∀i, j, Iij ⊆ Iij ⊕ (Iik⊗ Ikj) ∀k (Schwalb and



Vila 1998).
To address the lack of flexibility in execution of stan-

dard STPs, theSimple Temporal Problem under Uncertainty
(STPU) framework (Vidal and Fargier 1999) divides the
timepoints into two classes:executable(or requirement) and
contingent(or uncontrollable). The former, as in an STP, are
decided by the agent, but the latter are decided by ‘Nature’:
the agent has no control over when the activity will end; it
observes rather than executes. The only information known
prior to observation is that Nature will respect the interval
on the duration. Durations of contingent links are assumed
independent.

Controllability of an STPU is the analogue of consistency
of an STP. Controllable implies the agent has a means to
execute the timepoints under its control, subject to all con-
straints. Three notions have been proposed in (Vidal and
Fargier 1999). Firstly, an STPU isStrongly Controllable
(SC) if there is a fixed execution strategy that works in
all situations(an observation of all contingent timepoints).
Checking strong controllability is inP (Vidal and Fargier
1999). Secondly, an STPU isDynamically Controllable
(DC) if there is an online execution strategy that depends
only on observed timepoints in the past and that can always
be extended to a complete schedule whatever may happen in
the future. Checking dynamic controllability is also inP and
we will call the algorithm proposed in (Morriset al. 2001)
to test this propertyCHECK-DC. Thirdly, an STPU isWeakly
Controllable(WC) if there exists at least one execution strat-
egy for every situation. Checking weak controllability is co-
NP (Vidal and Fargier 1999). The three notions are ordered
by their strength: Strong⇒ Dynamic⇒ Weak.

Separately, to address the lack of expressiveness in stan-
dard STPs, theSimple Temporal Problem with Preferences
(STPP) framework (Khatibet al. 2001) merges STPs with
semiring-based soft constraints. Soft temporal constraints
are specified by means of apreference functionon the con-
straint interval,f : [l, u] → A, whereA is a set of preference
values. The setA is part of a semiring. Recall that asemiring
is a tuple〈A, +,×,0,1〉 such that:A is a set and0,1 ∈ A;
+ is commutative, associative and0 is its unit element;×
is associative, distributes over+, 1 is its unit element and0
is its absorbing element. Further, in ac-semiring+ is idem-
potent,1 is its absorbing element and× is commutative. In
(Bistarelli et al. 1997) semiring-based soft constraints are
presented as a unifying, expressive framework since they
can model various types of preferences and different ways
of aggregating them. In this paper we will use, as under-
lying structure for handling preference, thefuzzysemiring
SFCSP= 〈[0, 1], max,min, 0, 1〉.

In general, STPPs areNP-complete. However, under cer-
tain restrictions — if preference functions are semi-convex
(i.e. having at most one peak), constraints are combined via
an idempotent operation (likemin), and preference values
are totally ordered (like[0, 1]) — then finding an optimal

solution of an STPP is a polynomial problem (Khatibet al.
2001).

Two solvers for STPPs with the features above are pre-
sented by (Rossiet al. 2002). Here, we are interested in
CHOP-SOLVER, the less general but more efficient solver. It
finds the maximum level̀ at which the preference functions
can be ‘chopped’, i.e. reduced to the set{x : x ∈ I, f(x) ≥
`}. Since this set is a simple interval for each`, by chopping
the STPP we obtain a standard STP, denotedJ`. By binary
search, the solver finds the maximal` for whichJ` is consis-
tent. The solutions of this STP are the optimal solutions of
the original STPP. A third solver, that obtains Pareto optimal
solutions, is in (Khatibet al. 2003).

3 Simple Temporal Problems with Prefer-
ences and Uncertainty

An intuitive definition of an STPPU is an STPP for which
the timepoints are partitioned into two classes, executable
and contingent, just as in an STPU. Symmetrically an
STPPU can be viewed as an STPU to which preference func-
tions are added. Contingent constraints becomesoft con-
tingent constraintsand requirement constraints becomesoft
requirement constraints.

Both soft contingent and requirement constraints are de-
fined as a pair〈I, f〉, where (as before) the intervalI =
[l, u] contains the possible durations or distances between
the two constrained timepoints, andfij : I → A is a
preference functionmapping each element of the interval
into an element of the preference set of the semiringS =
〈A,+,×,0,1〉. Since we are assuming the fuzzy semir-
ing as a underlying structure, the optimisation criterion in
this paper is to maximise the minimum preference obtained
by an assignment on any constraint. Although it may ap-
pear conservative, this ‘weakest link’ criterion applies in
many cases and it is attractive computationally because of
the idempotency of the multiplicative operatormin. Fur-
ther, without loss of generality, and following the assump-
tions made for STPUs (Morriset al. 2001), we may assume
no two contingent constraints end at the same timepoint.

In both types of constraints, the preference function repre-
sents the preference of the agent on the duration of an event
or on the distance between two events. The difference is that,
while for soft requirement constraints the agent has control
and can be guided by the preferences in choosing values for
the timepoints, for soft contingent constraints the preference
represents merely a desire of the agent on the possible out-
comes of Nature; there is no control on the outcomes. We
will illustrate shortly.

We can now state formally the definition of an STPPU:

Definition 1 (STPPU) A Simple Temporal Problem with
Preferences and Uncertainty (STPPU)P is a tupleP =
(Ne, Nc, Lr, Lc, S) where: Ne is the set of executable
points; Nc is the set of contingent points;Lr is the set of
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Figure 1: Example STPPU from the Earth Observing Satel-
lites domain

soft requirement constraints over semiring S;Lc is the set
of soft contingent constraints over semiring S; andS =
〈A, +,×,0,1〉 is a c-semiring.

Once we have a complete assignment to all timepoints we
can compute its global preference. This is done according to
the semiring-based soft constraint schema: first we project
the assignment on all soft constraints, obtaining an element
of the interval and the preference associated to that element;
then we combine all the preferences obtained with the multi-
plicative operator of the semiring (min in this paper). Given
two assignments with their preference, the best is chosen us-
ing the additive operator (max in this paper). An assignment
is optimal if there is no other with a higher preference.

A solution of an STPPU, aschedule, is a complete assign-
ment of values (times) to all the timepoints, executable and
contingent, that satisfies the constraints with preference≥ 0.
We can distinguish two parts of a schedule: asituationω, the
duration of all contingent events, and acontrol sequenceδ,
the set of assignments to all executable timepoints. One the
one hand,ω represents the assignments made by Nature; on
the other hand,δ represents the decisions made by the agent.
We defineSol(P ) to be the set of all schedules. Given a sit-
uation ω, the projection Pω of an STPPUP is the STPP
obtained by replacing inP the contingent events with their
values inω and the associated preferences. We indicate with
opt(Pω) the preference value of an optimal solution ofPω.
We defineProj (P ) to be the set of all projections. Then a
strategyis a mapS: Proj (P ) → Sol(P ) such that for every
projectionPω, S(Pω) is a schedule which includesω. Re-
garding notation, given an executable timepointx, we will
write [S(Pω)]x to indicate the value assigned tox in S(Pω),
and [S(Pω)]<x to indicate the durations of the contingent
events that finish prior tox in S(Pω).

Example. Consider as an example the following scenario

from the Earth Observing Satellites domain (Franket al.
2001) described in Section 1. Suppose a request for observ-
ing a region of interest has been received and accepted. To
collect the data, the instrument must be aimed at the target
before images can be taken. It might be, however, that for
a certain period during the time window allocated for this
observation, the region of interest is covered by clouds. The
earlier the cloud coverage ends the better, since it will max-
imise both the quality and the quantity of retrieved data; but
coverage is not controllable.

Suppose the time window reserved for an observation is
from 1 to 8 units of time and that we start counting time
when the cloud occlusion on the region of interest is observ-
able. Suppose, in order for the observation to succeed, the
aiming procedure must start before5 units after the starting
time, ideally before3 units, and it actually can only begin af-
ter at least1 time unit after the weather becomes observable.
Ideally the aiming procedure should start slightly before the
cloud coverage will end. If it starts too early, then, since the
instrument is activated immediately after it is aimed, clouds
might still occlude the region and the image quality will be
poor. On the other hand, if it waits until the clouds have dis-
appeared then precious time during which there is no occlu-
sion will be wasted aiming the instrument instead of taking
images. The aiming procedure can be controlled by the mis-
sion manager and it can take anywhere between2 and5 units
of time. An ideal duration is3 or 4 units, since a short time
of 2 units would put the instrument under pressure, while a
long duration, like5 units, would waste energy.

This scenario, rather tedious to describe in words, can be
compactly represented by the STPPU shown in Fig. 1 with
the following features:

• a set of executable timepointsSC, SA, EA;

• a contingent timepointEC;

• a set of soft requirement constraints on{SC → SA, SA →
EC, SA → EA};

• a soft contingent constraint{SC → EC};
• the fuzzy semiringSFCSP= 〈[0, 1], max, min, 0, 1〉.

A solution of the STPPU in Fig. 1 is the schedules =
{SC = 0, SA = 2, EC = 5, EA = 7}. The situation
associated withs is the projection on the only contingent
constraint,SC → EC, i.e. ωs = 5, while the control se-
quence is the assignment to the executable timepoints, i.e.
δs = {SC = 0, SA = 2, EA = 7}. The global prefer-
ence is obtained considering the preferences associated with
the projections on all constraints, that ispref(2) = 1 on
SC → SA, pref(3) = 0.6 on SA → EC, pref(5) = 0.9
on SA → EA andpref(5) = 0.8 on SC → EC. The pref-
erences must then be combined using the multiplicative op-
erator of the semiring, which ismin, so the global prefer-
ence ofs is 0.6. Another solutions′ = {SC = 0, SA = 4,
EC = 5, EA = 9} has global preference0.8. Thuss′ is



a better solution thans according to the semiring ordering
sincemax(0.6, 0.8) = 0.8.2

4 Strong and Weak Controllability with Pref-
erences

We now consider how it is possible to extend the notion of
controllability to accommodate preferences. In general we
are interested in the ability of the agent to execute the time-
points under its control not only subject to all constraints but
also in the best possible way w.r.t. preferences. It transpires
the meaning of ‘best possible way’ depends on the types of
controllability we introduced earlier.

Definition 2 (Optimal Strong Controllability) An STPPU
P is Optimally Strongly Controllable(OSC) iff there is an
execution strategyS s.t.∀Pω ∈ Proj (P ), S(Pω) is an op-
timal solution ofPω, and [S(P1)]x = [S(P2)]x, ∀P1, P2

projections and for every executable timepointx.

In other words, an STPPU is OSC if there is a fixed con-
trol sequence that works in all possible situations and is op-
timal in each of them. In the definition, ‘optimal’ means that
there is no other assignment the agent can choose for the ex-
ecutable timepoints that could yield a higher preference in
any situation. Since this is a powerful restriction, we can
instead look at just reaching a certain quality threshold:

Definition 3 (α-Strong Controllability) An STPPUP is
α-Strongly Controllable(α-SC), withα ∈ A a preference,
iff there is a strategyS s.t.:

1. ∀Pω ∈ Proj (P ), S(Pω) is a solution ofPω such that
[S(P1)]x = [S(P2)]x, ∀P1, P2 projections and for every
executable timepointx; and

2. the global preference ofS(Pω) is at least preference
opt(Pω) if opt(Pω) ≤ α.

In other words, an STPPU isα-SC if there is a fixed con-
trol sequence that works in all situations and results in op-
timal schedules for those situation where the optimal pref-
erence level of the projection is≤ α. Clearly, OSC implies
α-SC∀α.

It is possible to check whether an STPPU is Optimally
Strongly Controllable orα-Strongly Controllable in polyno-
mial time (Yorke-Smithet al. 2003). To check if an STPPU
is OSC we chop it at every preference level, starting from
the minimum preference. At each level we obtain a differ-
ent STPU; the SC of each STPU is checked using the algo-
rithm proposed in (Vidal and Fargier 1999), which reduces
the problem to checking the consistency of an STP only on
the executable timepoints. The original STPPU is OSC iff
at each preference level the STP obtained is consistent and,
considering each constraint of the STPs, the intersection of
its intervals across all preference values is non-empty.

Notice, however, that it is very unlikely for an STPPU
to be OSC, since OSC isopt-SC whereopt is the optimal
preference value of the STPPU considered as an STPP. The

algorithm proposed for checking OSC can be easily modi-
fied to check, given a certain preferenceα, if the STPPU is
α-SC; or even to find the highestα such that this property
is satisfied. For example, the STPPU in Fig. 1 is not OSC
since there is no choice forSA that will be optimal whatever
happens on the contingent constraintSC → EC. However
the strategy that assigns a time toSA that is4 units after that
assigned toSC works in all possible situations and is opti-
mal for all those situations that have an optimal value of their
projection≤ 0.9. Hence the STPPU in Fig. 1 is0.9-SC.

Secondly, we extend similarly Weak Controllability:

Definition 4 (Optimal Weak Controllability) An STPPU
is Optimally Weakly Controllable(OWC) iff ∀Pω ∈
Proj (P ) there is a strategySω s.t. Sω(Pω) is an optimal
solution ofPω.

In other words, an STPPU is OWC if, for every situation,
there is a fixed control sequence that results in an optimal
schedule for that situation.

Optimal Weak Controllability of an STPPU is equivalent
to Weak Controllability of the corresponding STPU obtained
by ignoring preferences. The reason is that if a projection
Pω has at least one solution then it must have an optimal so-
lution (i.e. one with the highest preferenceopt(Pω)). This
also implies that an STPPU is such that its underlying STPU
is either WC or not. Hence it does not make sense to de-
fine a notion ofα-Weak Controllability. To check OWC,
it is enough to apply the algorithm proposed in (Vidal and
Ghallab 1996) to the underlying STPU.

It is easy to see thatα-SC for anyα implies OWC. In
Section 8 we discuss the relations between the properties
defined in this and the next section. For instance, in the ex-
ample in Section 3, from the fact that the STPPU is0.9-SC
we can derive that it is also OWC.

5 Dynamic Controllability with Preferences
Dynamic Controllability is seen as the more useful notion
of controllability in practice. It addresses the ability of the
agent to execute a schedule by choosing incrementally the
values to be assigned to executable timepoints, looking only
at the past. When preferences are available, it is desirable
that the agent acts not only in a way that is guaranteed to
be consistent with any possible future outcome but also in a
way that ensures the absence of regrets w.r.t preferences.

Definition 5 (Optimal Dynamic Controllability) An
STPPU P isOptimal Dynamic Controllable(ODC) iff there
is a strategyS such that∀P1, P2 in Proj (P ) and for any
executable timepointx:

1. if [S(P1)]<x = [S(P2)]<x then[S(P1)]x = [S(P2)]x;

2. S(P1) is a consistent complete assignment forP1 and
S(P2) is a consistent complete assignment forP2;

3. pref(S(P1)) is optimal inP1 andpref(S(P2)) is optimal
in P2.



In other words, an STPPU is ODC is there exists a means
of extending any current partial control sequence to a com-
plete control sequence in the future in such a way that the
resulting schedule will be optimal. As before, we also soften
the optimality requirement to having a preference reaching
a certain threshold.

Definition 6 (α-Dynamic Controllability) An STPPU P is
α-Dynamic Controllable(α-DC) iff there is a strategyS
such that∀P1, P2 in Proj (P ) such thatopt(P1) ≤ α and
opt(P2) ≤ α, and for any executablex, the three conditions
of Definition 5 hold.

In other words, an STPPU isα-DC if there is a means of
extending any current partial control sequence to a complete
sequence; but optimality is guaranteed only for situations
with preference less or equal toα.

6 Checking Optimal Dynamic Controllability
In this section we describe an algorithm that tests whether
an STPPU is ODC, and we prove that the test is performed
in polynomial time. The existing algorithm for checking DC
proposed in (Morriset al. 2001) is based on considering tri-
angles of constraints. We describe it here briefly since some
familiarity is important for understanding our algorithm on
ODC.

Consider a triangle of simple temporal constraints (with
no preferences), on two executable timepointsA andB and
a contingent timepointC. Without loss of generality, let the
intervals to be[x, y] on the contingent constraintAC, [p, q]
on the requirement constraintAB and [u, v] on the other
requirement constraintBC. For example, in Fig. 1,A = SC,
B = SA, andC = EC.

Based on the signs ofu andv, three different cases arise.
In theFollow case(v < 0), B will always follow C. If the
STPU is path consistent then it is also Dynamically Control-
lable since, given the time at whichC occurs afterA, it is al-
ways possible to find a consistent value for B. In thePrecede
case(u ≥ 0), B will always precede or happen simultane-
ously withC. Then the STPU is DC ify−v ≤ x−u; thus the
interval[p, q] onAB should be replaced by[y−v, x−u]: that
is, by the sub-interval containing all the elements of[p, q]
that are consistent with each element of[x, y].

In theUnordered case(u < 0 andv ≥ 0), B can either
follow or precedeC. To ensure DC,B must wait either for
C to occur first, or fort = y − v units of time to pass after
A. In other words, eitherC occurs andB can be activated
at the first value consistent withC ’s time, orB can safely
be executedt units of time afterA’s execution. This can
be described by an additional constraint which is expressed
as await on AB and is written〈C, t〉. Of course ifx ≥
y − v then we can raise the lower bound ofAB to y − v
(unconditional Unordered reduction), and in any case we
can raise it tox if x > p (general Unordered reduction).
Waits can be propagated, orregressed, from one constraint

to another. For example, a wait onAB may induce a wait
on other constraints involvingA, e.g.AD, depending on the
type of constraintDB.

Algorithm CHECK-DC (Morris et al. 2001) applies these
rules to all triangles in the STPU and regresses all possible
waits. If no inconsistency is found, i.e. no requirement inter-
val becomes empty and no contingent interval is squeezed,
then the STPU is DC. In that case, the algorithm returns an
STPU where some constraints may have waits to satisfy, and
the intervals contain only the elements that appear in at least
one possible dynamic strategy. This STPU can then be given
to an execution algorithm which dynamically assigns values
to the executables according to the current situation.

We now define a new property of an STPPU which holds
iff the STPPU is ODC. The reason for introducing the prop-
erty is that it is possible to readily design an algorithm to
check it by following its definition.

Theorem 1 Consider an STPPUP and the STPUQα ob-
tained choppingP at level α and applying path consis-
tency. Let[pα

AB , qα
AB ] be the interval obtained on any re-

quirement constraintAB, by applyingCHECK-DC to Qα,
and let 〈C, tα〉 be its wait, if any. ThenP is ODC iff the
following conditions hold: (1) for everyα, Qα is DC; (2)
for each requirement constraint AB, the intersectionI =⋂

α[tαAB , qα
AB ] is not empty.2

We refer to the two conditions in the theorem as prop-
erty M . It is not hard to see whyM is necessary for ODC.
First, assume the first conditionM1 does not hold. Since
Proj (Qα) ⊆ Proj (P ), and sinceProj (Qα) contains all the
projections that have optimum preference at leastα, then,
sinceQα is not DC, there is no global strategyS for P such
that S(P1) has optimal preference inP1 andS(P2) in P2,
∀P1, P2 with preference at leastα. This allows us to con-
clude thatP is not ODC. Secondly, assume instead thatM1
holds butM2 does not. Each requirement constraintAB
might, at different preference levelsα, be squeezed in dif-
ferent ways and have different waitstαAB . At each levelα
the sub interval[tαAB , qα

AB ] contains the assignments forB
that are consistent with all future values of any contingent
timepoint and that guarantee a preference≥ α. If intersect-
ing these sub-intervals across all preference levels gives an
empty interval, then there is no unique value forB that sat-
isfies the properties mentioned above (consistency and opti-
mality) for every preference level. Thus,P is not ODC.

The example in Section 3 is not ODC. Consider the tri-
angle of constraints on variablesSC, SA, EC whereEC is
the only contingent timepoint. Table 1 shows the intervals
obtained on each of the constraints chopped at all prefer-
ence levels. In the last column we show intervals[tαAB , qα

AB ]
where constraintAB is SC → SA.

It is easy to see that chopping the problem at any prefer-
ence level gives a STPU that is Dynamically Controllable.
At preference level1 we get an instance of the Follow case,



Table 1: First column: preference levelα. Next three
columns: intervals obtained chopping at all preference levels
the constraint triangle on variablesSC, SA, andEC shown
in Fig. 1. Last column: subintervals obtained on constraint
(SC,SA) by applyingCHECK-DC and considering only ele-
ments following the wait

pref (SC, EC)α (SC, SA)α (SA, EC)α [tα
SC,SA, qα

SC,SA]

0.5 [1, 8] [1, 5] [−6, 4] [4, 5]
0.6 [1, 7] [1, 5] [−6, 4] [3, 5]
0.7 [1, 6] [1, 5] [−5, 2] [4, 5]
0.8 [1, 5] [1, 5] [−4, 1] [4, 5]
0.9 [1, 4] [1, 5] [−3, 0] [4, 5]
1 [1, 2] [1, 3] [−2,−1] [2, 3]

so consistency is equivalent to controllability. If we con-
sider preference levels0.5, 0.7, 0.8, and0.9, thenSA will
either have to wait for the cloud coverage to end or wait for
at least4 units of time after the clouds have been observed
at first (i.e. afterSC). At preference level0.6, SA must wait
only for 3 time units. However the STPPU is not ODC since
the intersection of the intervals in the last column is empty.
Consider the scenario in which the clouds coverage lasts for
2 units of time. Since this is consistent withSA occurring1
unit afterSC and this gives a solution with preference value
1, the optimal preference of the projection of situationω = 2
on contingent constraintSC → EC is 1. However if we ex-
ecuteSA at 1 time unit afterSC andEC happens, say, at4
units afterSC, then the solution obtained has preference0.6,
which is not optimal for the STPP corresponding to situa-
tion ω = 4 on contingent constraintSC → EC (which has
0.9 as optimal preference value). This shows that there is no
way of dynamically assigning values to the executables to
guarantee optimality in every possible situation.

6.1 Determining ODC by checking property M

We have just informally shown that propertyM is neces-
sary for ODC. To see that it is also sufficient for ODC, we
present the pseudocode of an algorithm that, given as input
an STPPUP , checks ifM is satisfied. We then show that if
the algorithm reports success thenP is ODC. Fig. 6.1 shows
the pseudocode of the algorithm that checksM .

Algorithm CHECK-ODC takes as input an STPPUP . It
checks whether the STPUQ obtained ignoring the prefer-
ence functions,IP(P ) (line 1) is DC, by applyingCHECK-DC
(line 2). If it is not the case, there is no chance for the origi-
nal STPPU to be ODC. Otherwise,CHOP-SOLVER is applied
to IU(P ), that is toP considered as an STPP (line 4). This
allows us to find the global optimal preferenceopt. At this
point the algorithm checks if the STPUs obtained by chop-
ping P and applying path consistency withPC-2 at differ-
ent preference levels are DC (lines 5–9). It starts bottom-up
from preferenceαmin up to opt, whereαmin is the mini-

CHECK-ODC( triangular STPPUP )
1 STPUQ ← IP(P )
2 if CHECK-DC(Q) returns ‘not DC’
3 then return ‘not ODC’
4 CHOP-SOLVER(IU (P ))
5 for α ← αmin to opt
6 do STPPQα ← PC-2(CHOP(P, α))
7 if CHECK-DC(Qα) returns ‘not DC’
8 then return ‘not ODC’
9 saveDC(Qα)

10 for requirement linksAB s.t. ∃α : tαAB < qα
AB

11 do I ← ⋂
α[tαAB , qα

AB ]
12 if I = ∅
13 then return ‘not ODC’
14 IAB ← [minα{pα

AB}, minα{qα
AB}]

15 waittAB ← maxα{tαAB}
16 PC-2(IP(IU (P )))

Figure 2: Algorithm for checking ODC of an STPPU by
determining whetherM holds

mum preference on any constraint.1 If at any level the DC
test fails the algorithm stops and returns failure (line 8). The
dynamically controllable versions of the STPUs at each the
preference level are saved (line 9).

Now, for every preference levelα, each requirement con-
straintAB will have intervalIα

AB = [pα
AB , qα

AB ] and a wait
tαAB which is the maximum wait thatB must satisfy for any
related contingent timepointC, for the subproblem at pref-
erence levelα. CHECK-ODC thus considers each require-
ment constraint and checks if it is in an Unordered or Pre-
cede case with at least one contingent timepoint at some
preference level (line 10). If so, the algorithm computes
the intersection of the sub-intervals[tαAB , qα

AB ] (line 11).
If this intersection is empty then the algorithm again stops
and returns failure (line 13). While checking this property,
the algorithm updatesP , replacing the interval onAB with
IAB = [minα{pα

AB},minα{qα
AB}], the preference func-

tion with its restriction to this interval, and imposing wait
tAB = maxα{tαAB} (lines 14 and 15). The last step is to
apply path consistency to the STP obtained ignoring pref-
erences and uncertainty (line 16). This reduces the intervals
by leaving out the elements that are not in any solution of the
STP. Running path consistency in line 16 does not squeeze
any contingent interval since it is possible to show that no
element of a contingent interval loses its support, because of
the reductions in line 14.

1In general the minimum preference,αmin , will be assigned
to an element of a contingent constraint, since it is reasonable to
leave in the requirement constraints only elements with a prefer-
ence higher than that of the worst possible uncontrollable outcome.



6.2 Executing an ODC STPPU

We now reconsider the execution algorithm,EXECUTE, pre-
sented in (Morriset al. 2001), in light of preferences. Adapt-
ing it, we show that if given as input an STPPU which has
passedCHECK-ODC, it produces dynamically an optimal
execution strategy. After initial propagation from the start
timepoint,EXECUTE performs iteratively the following steps
until the execution is completed. First, it immediately exe-
cutes any executable timepoints that have reached their up-
per bounds. Then it arbitrarily picks and executes any exe-
cutable timepointx such that (1) the current time is within its
bounds, (2) all the timepoints,y, that must be executed be-
fore x have been executed, and (3) all waits onx have been
satisfied. The effect of the execution is propagated. If execu-
tion is not complete then the current time is advanced, prop-
agating the effect of any contingent timepoints that occur.
For an STPPU, the only difference is that the propagation
now involves also preferences. Propagating the effect of an
execution implies chopping the the requirement constraints
at the minimum preference level obtained by that execution
on any constraint up to the current time. Note that chop-
ping the problem at the minimum preference means keeping
only elements that have a preference equal or higher than the
minimum obtained so far. This allows the user to choose in
the future assignments to variables that are “locally” maxi-
mal on some constraints even if the global preference of the
complete schedule will in the end be the mimum preference
obtained on any constraint, due to the fact that the aggre-
gation operator of the fuzzy semiring,SFCSP , is min. We
denoteEXECUTE equipped with this new type of propagation
asEXECUTE-ODC.

Assuming that an STPPUP has passedCHECK-ODC,
then the corresponding STPU obtained ignoring prefer-
ences,Q = IP(P ), is DC. LetP ′ be the STPPU returned by
running CHECK-ODC on P , andQ′ be the STPU returned
by procedureCHECK-DC on Q. Observe that the contin-
gent intervals inIP(P ′) andQ′ are exactly the same (in fact
they are those ofP and Q respectively); both algorithms
CHECK-ODC andCHECK-DC leave contingent intervals un-
changed, as required by the definitions of ODC and DC. Fur-
ther, given a requirement constraintAB and and a contin-
gent timepointC, if 〈C, t〉 is the wait inP ′ and〈C, t′〉 is the
wait in Q′, thent ≥ t′ (intuitively: the wait necessary to be
optimal may be longer than the one necessary to be only con-
sistent). These relationships allow us to inherit directly from
(Morris et al. 2001) that runningEXECUTE-ODC on STPPU
P ′ cannot fail due to any of the following events: a deadlock
caused by a wait that never expires, an un-respected wait, or
a squeezed contingent interval.

At this point we know that a dynamic schedule is com-
pleted by the execution algorithm, so it only remains to
prove that it is optimal.

Theorem 2 If STPPU P has successfully passed

CHECK-ODC then the dynamic schedule produced by
EXECUTE-ODC is optimal.2

Since all waits have been respected, it must be([S(P )]B−
[S(P )]A) ≥ tAB , for any requirement constraintAB. This
means that([S(P )]B − [S(P )]A) ∈ ⋂

α[tαAB , qα
AB ]. But

hencefAB([S(P )]B − [S(P )]A) ≥ α = optP sinceP has
passedCHECK-ODC.

We now consider the complexity ofCHECK-ODC. Assum-
ing there is a maximum number of pointsR in an interval,
in (Morris et al. 2001) it is shown that checking DC of an
STPU can be done in timeO(n2R). If there are a finite num-
ber` of different preference levels, we can state the follow-
ing result forCHECK-ODC, since the complexity of applying
CHOP-SOLVER in line 5 of algorithm,O(n3`R), dominates
that of all other steps.

Theorem 3 The complexity of determining ODC of an
STPPU withn variables,` preference levels, and intervals
of maximum sizeR is O(n3`R).2

7 Checkingα-Dynamic Controllability
Optimal Dynamic Controllability is a strong property. In-
stead, one may be satisfied by knowing for a given pref-
erence valueα, whether the STPPU isα-Dynamically Con-
trollable. As said earlier, this implies that a control sequence
can be incrementally created only on the basis of past assign-
ments. It is guaranteed to be optimal if the ‘partial’ prefer-
ence obtained by combining the preferences on contingent
constraints is smaller or equal toα. In other words, what is
guaranteed is that, up to preference levelα, there is always
a choice for the executables that will not worsen the overall
complexity; for preferences aboveα this might not be the
case.

We can state a theorem analogous to that presented for
ODC. The two conditions in Theorem 1 now must hold only
for all β ≤ α, rather than for allα. In fact, an STPPU
is ODC iff it is opt-DC, whereopt is the optimal pref-
erence value of STPPU P considered as an STPP. Conse-
quently, the algorithm used to testα-DC is exactly the same
asCHECK-ODC, except for line 4, which is no longer nec-
essary (since we do not need to compute valueopt), and for
line 5, where thefor loop need only go up to preference level
α and notopt. Thus the worst case complexity of checking
α-DC is the same as that of checking ODC.

A further query we might ask is: what is the highest level
α at whichP isα-DC? This query can be answered by modi-
fying CHOP-ODC in order to find the highest preference level
at which a dynamic schedule exists. We will call this algo-
rithm MAX -α-DC. The only change needed is in line 12. As-
suming the intersection proceeds bottom-up from the lowest
preferenceαmin , if a preference levelβ is found such that
the intersection becomes empty, the algorithm does not stop;
instead it savesβ and continues until it has considered all the
requirement constraints. It then returns the minimum of all



Table 2: Solutions of the STPPU in Fig. 1. The first four
columns are the assignments to the variables, the fifth col-
umn is the global preference of the solution and the last col-
umn is the optimal preference level of the STPP that is the
projection of the corresponding situation

SC EC SA EA pref opt

0 1 4 7 0.9 1
0 2 4 7 0.9 1
0 3 4 7 0.9 0.9
0 4 4 7 0.9 0.9
0 5 4 7 0.8 0.8
0 6 4 7 0.7 0.7
0 7 4 7 0.6 0.6
0 8 4 7 0.5 0.5

OSC oo //

²²

opt-SC //

²²
α-SC //

²²
αmin -SC //

²²
0-SC

²²

// SC

²²
ODC oo // opt-DC // α-DC // αmin -DC // 0-DC // DC

Figure 3: Comparison of controllability notions.αmin is the
smallest preference over any constraint;opt ≥ α ≥ αmin.

suchβ preferences found,βmin . It is easy to see thatβmin

is the highest preferenceαmax level for which there exists a
dynamic schedule. Again the complexity of this algorithm is
the same as that of checking ODC and hence is polynomial.

Consider now our example described in Section 3 and the
results in Table 1. It is easy to see that the STPPU shown
is, for example 0.7-DC and 0.8-DC. The highest preference
α such that it isα-DC is 0.9. In fact, if we choose to as-
sign toSA either4 or 5 units of time (i.e. any element in
the intersection of intervals[tαSC,SA, qα

SC,SA] for α from 0.5
to 0.9), the preference of the complete solution is at least
greater or equal to that of the corresponding projection, for
those projections that have optimal preference≤ 0.9. We
obtain the set of solutions represented in Table 2, according
to the value assigned by Nature toEC.

8 Comparing and Using Controllability

In all, we have introduced five new notions of controllability.
In Fig. 3 we show the relations between the extended notions
of Strong and Dynamic Controllability. The proofs of such
relations are rather immediate. Notice that we have omitted
Weak Controllability, in the schema, since we have shown
that it is equivalent to Optimal Weak Controllability.

As a general strategy, given an STPPU, the first property
to check is OSC. This can be done in polynomial time. If
the problem is OSC, the solution obtained is valid and op-
timal in all possible situations. However, OSC is a strong
property and holds infrequently. If the problem is not OSC,
the highest preference levelα for which α-SC holds can be
found in polynomial time by using the algorithm described
in Section 4. If such preference level is not satisfactory (for

it can be very low), then we can turn to checking ODC orβ-
DC for β > α. Both these things can be done in polynomial
time.

If the problem is not even Dynamically Controllable, but
the situation can be known (just) before execution, then the
last possibility is to check WC, which is equivalent to OWC.
This will at least allow the agent to know in advance if there
is a way to cope with every situation. However, checking
WC is not necessarily inP (Vidal and Fargier 1999).

9 Related Work
Temporal reasoning is a diverse area, dividing roughly into
qualitative and quantitative approaches. For the Temporal
Constraint Problem (TCP), a survey is (Schwalb and Vila
1998), which also discusses some of the hybrid qualita-
tive/quantitative approaches. The Simple Temporal Problem
with Uncertainty, which the STPPU builds on, introduces
uncertainty due to contingent events. Besides STPUs, un-
certainty has been introduced into the TCP with possibilistic
reasoning; (Vila and Godo 1994) is one framework forFuzzy
Temporal Constraint Problems. In principle, vagueness due
to soft preferences can also be accommodated with fuzzy
constraints. Closer to STPPUs, contingent events can be as-
cribed an explicit probability distribution (rather than the im-
plicit uniform distribution of a STPU), to yieldProbabilistic
STPs(Tsamardinos 2002); preferences are not part of this
framework. Note, in contrast to STPPUs, the complexity of
solving both Fuzzy TCP and Probabilistic STPs is not poly-
nomial in general. Probabilistic temporal reasoning is found
outside the TCP, for instance in temporal synthesis (Kupfer-
manet al. 2000), where the amount of memory required for
a dynamic solving strategy is also considered. Separately,
for the general CSP, (Fargieret al. 1996) introduced the dis-
tinction between controllable and uncontrollable variables,
to yield mixed CSP. Many authors have introduced prefer-
ences, to yield soft CSP frameworks: for instance the unify-
ing semiring-based soft CSPs (Bistarelliet al. 1997) which
the STPPU builds on.

10 Summary and Future work
Temporal constraint problems in the real-world feature both
preferences and uncertainty. In this paper we have intro-
duced the Simple Temporal Problem with Preferences and
Uncertainty and defined five levels of controllability. We
have provided algorithms to determine whether the different
levels hold, and shown that the complexity of checking con-
trollability in a STPPU is the same as that for the equivalent
notion in a STPU. In particular, the key notion of Dynamic
Controllability can be tractably extended to account for pref-
erences.

We have implemented and tested the algorithms for OSC
and ODC on randomly generated problems. The experimen-
tal results show that, as expected, the time needed to check
OSC and ODC grows with the size of the problem. ODC is



slower than OSC on Strongly Controllable problems. How-
ever, in both cases controllability checking can be performed
in reasonable time (less than 3 minutes for 500 variables).

Future work is to apply the algorithms to the Earth Ob-
serving Satellites and other real-world problem domains.
Another interesting issue is improve the execution algorithm
in order to produce Pareto undominated solutions following
the ideas proposed in (Khatibet al. 2003). We are also inves-
tigating the use of probabilities over contingent constraints
and their combination with preferences and uncertainty.
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