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Abstract.

Mission planning and execution for autonomous rovers
with limited resource capacities while moving around in
dynamic environments require to address temporal, re-
source and uncertainty issues. The use of a temporal
planner and a temporal executive which processes are in-
terleaved is desirable. In this paper we propose a frame-
work to integrate deliberative planning, plan repair and
execution control in a dynamic environment with real-
time constraints. It is based on lifted partial order tempo-
ral planning techniques which produce flexible plans and
allow, under certain conditions discussed in the paper,
plan repair interleaved with plan execution. This frame-
work has been implemented using the planning system
IXTET, integrated in the LAAS architecture in interaction
with a procedural executive, tested in simulation and de-
ployed on an ATRV robotic platform.

1 Introduction
Space systems such as spacecraft or rovers become more and
more complex, embedding various sensors, effectors and pro-
cessing functions. Such systems usually execute a sequence
of commands elaborated and monitored by experts from a
ground station (SOJOURNER), or by mixed initiative plan-
ning systems (MAPGEN for MER (Ai-Changet al. 2003)).
Still, due to long communication delays and restricted visibil-
ity windows, these systems cannot efficiently be completely
teleoperated from the ground. Improving their autonomy de-
mands to supply decisional capabilities on-board, allowing
the ground to teleoperate at a goal level.

Space applications however imply stringent requirements.
These remote systems have limited resources (energy, propel-
lant, data space storage), still their lifetime can be extended
by carefully managing these resources. Another main char-
acteristic of the space domain is the importance of time, al-
most all data are denoted by temporal intervals (ground sta-
tions visibility windows, etc.). A rover is also subject to dif-
ficult environmental conditions and evolves in an unknown
and dynamic environment. Such a context requires deliber-
ative capabilities to generate plans achieving mission goals
and respecting deadlines and long-term resource constraints,
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as well as run-time plan adaption mechanisms during plan
execution.

The development of a complex autonomous system relies
on the organization of the software components in a closed
loop architecture, usually organized around two levels. A
decisional levelgenerates a plan of actions which achieves
the mission goals, and executes this plan in a robust way. A
functional level, interfaced with the hardware, executes the
refined actions of the plan. The decisional level usually em-
beds a time-consuming planning process, as well as a time-
bounded reactive execution process. We are interested in the
key problem of defining how these two processes should in-
teract to balance deliberation and reaction.

Numerous strategies have been applied so far. Some ap-
proaches propose the use of a strong executive, enhanced
with deliberative capabilities. Procedural executives, such as
ESL (Gat 1997), TDL (Simmons and Apfelbaum 1998), PRS
(Georgeff and Ingrand 1989), support action decomposition,
synchronization, execution monitoring and exception han-
dling. In PROPEL (Levinson 1995), and PropicePlan (De-
spouys and Ingrand 1999), the planner serves as a resource
for the executive to anticipate by simulating a sequence of
subplans, or to generate a new subplan corresponding to the
current situation. These systems provide a reactive behavior.
Still, they do not perform a projection of the state far in the
future. This look-ahead is yet necessary to manage the level
of a limited resource during the entire mission.

In the “batch planning” approach of the Remote Agent
(Muscettolaet al. 1998) (tested on board the DS1 spacecraft),
planning and plan execution are two separate processes. The
agent can perform replanning (but with long standby periods)
and back to back planning.

Other approaches propose to interleave planning and exe-
cution in a continuous way. The planning process remains ac-
tive to adapt the plan when new goals are added or to resolve
conflicts appearing after a state update; and plan steps which
are ready to be executed are committed to execution even if
the plan is not yet completely generated. Examples include
IPEM (Ambros-Ingerson and Steel 1988), based on the clas-
sical Partial Order Planning framework; ROGUE (Haigh and
Veloso 1998), which has been deployed on mobile robots; or



the multi-agent architecture CPEF (Myers 1999).
But finally, very few approaches really take into account

timing problems, such as actions with duration and goals
with deadlines, and their effects on the planning and exe-
cution processes. Examples of temporal systems developed
for space applications include CASPER and IDEA. In the
CASPER system (Chienet al. 2000), state and temporal data
are regularly updated and potential future conflicts are incre-
mentally resolved using iterative repair techniques. However
this approach does not handle conflicts which appear within
the replanning time interval. The IDEA approach (Muscet-
tola et al. 2002) proposes the use of temporal planning tech-
niques at any level of abstraction (mission planning as well
as reactive execution). This system offers look-ahead abili-
ties with flexible planning horizons and the use of a common
language at any level of abstraction, but does not yet handle
non-unary resources.

In this paper we propose a new framework to combine
deliberative planning, plan repair and execution control that
takes into account resource level updates and temporal con-
straints. These processes are embedded thanks to two in-
teracting components which explicitly represent and reason
about time: a temporal planner and a temporal executive.
First the planner elaborates a complete plan. This plan is then
run by the temporal executive following a “Sense/Plan Re-
pair/Act” cycle: integrate external messages, repair the plan
if needed, decide to execute actions. This cycling enables in-
teraction with the controlled system by taking into account
runtime failures and timeouts, and updating the plan accord-
ingly. Interleaving plan repair and execution is motivated by
the facts that some parts of the plan may remain valid and
executable (parallel branches in the plan independent from
the failed actions), and that the plan can be temporally flex-
ible and thus allow postponing and inserting actions. Plan
repair uses nonlinear planning techniques under certain as-
sumptions discussed in this paper. This framework assumes
that the planning system has the following properties:

• a temporal representation in which the world is described
by a set of state variables, each being a function of time,

• a Partial Order Causal Link (POCL) planning process,

• generation of flexible plans based on CSP, particularly the
time-map manager relies on a Simple Temporal Network
(Dechteret al. 1989).

The proposed framework has been implemented in IXTET-

EXEC, using the planning system IXTET, and integrated in
the decisional level of the LAAS architecture, in interaction
with a procedural executive, to control an autonomous mobile
robot.

The paper is organized as follows. The first section
presents the general behavior of the IXTET-EXEC system, es-
pecially the interactions between the executive and the con-
trolled system, and briefly introduces the underlying planning
system. The second section details the dynamic replanning
framework and addresses the issues raised by the interleaving

of planning and execution processes on the same plan. The
third section illustrates the performances of IXTET-EXEC with a
rover exploration scenario example involving goal deadlines
and resource contention. The last section presents how this
framework has been integrated in the LAAS architecture to
control a mobile robot.

2 Overview of the IXTET-EXEC system
2.1 General behavior

The key component in IXTET-EXEC is the temporal executive:
TEXEC, which interacts with the planner and the controlled
system. It controls the temporal network of the plan to decide
the execution of actions and maps the timepoints to their real
execution time.

The execution of an actiona with grounded parameterspa,
starting timepointsta, ending timepointeta, and identifier
ia is started by sending the command (STARTa pa ia) to
the controlled system. If the action isnon preemptive, eta

is a non controllable variable, and TEXEC just monitors ifa
is completed in due course. Otherwiseeta is controllable.
If the action did not terminate by itself, it is stopped with
the command (END ia) sent as soon as possible ifa is early
preemptive, as late as possible if it islate preemptive.

At planning level, the model represents the world as a set of
state variables, functions of time, generally piece-wise con-
stant. Thus TEXEC only monitors the effects of an action and
not its progress. Such intermediate monitoring has to be done
at a lower level.

TEXEC integrates in the plan the reports sent by the con-
trolled system upon each action completion. A report re-
turns the ending status of the action (nominal, interruptedor
failed) and a partial description of the system state. If nom-
inal, it contains just the final levels1 of the resources, if any,
used by the action. Otherwise, it also contains the final values
of the other state variables relevant2 to the action.

Besides completion reports, TEXEC reacts to two types of
event: user requests to insert a new goal and sudden alter-
ations of a resource capacity (e.g. partial loss of memory stor-
age). Other situations that forbid further execution of the plan
without plan adaptation are:
– temporal failures- The temporal network constrains each
timepointt to occur inside a time interval[tlb, tub]. Thus two
types of failure lead to an inconsistent plan: the correspond-
ing event (typically, the end of an action) happenstoo early
or too late(time-out).
– action failure- The controlled system returns a non nomi-
nal report.
– resource level adjustment- If an action has con-
sumed/produced more/less than expected, the plan may con-

1Note that the system returns a global level of a resource and not
a report on the specific quantity used by the action. Indeed, in case
of concurrent actions, it is often impossible to discriminate the exact
share of a resource usage due to each action.

2The state variables present in the action definition.



tain future resource contention. If a reservoir-like resource is
over-produced, it may contain future overflow.

To take advantage of the temporal flexibility of the plan,
the dynamic replanning strategy has two steps. A first attempt
consists in repairing the plan using IXTET algorithms while
executing its valid part in parallel. If this plan repair fails or
if a timepoint times out, the execution is aborted and IXTET
completely replans from scratch. Before describing in more
details this strategy in the next section, we briefly introduce
the underlying planning system.

2.2 The IXTET planning system

IXTET is a lifted POCL temporal planner based on CSPs.
Its temporal representation describes the world as a set
of attributes: logical attributes (e.g.AT ROBOT X(?r) rep-
resenting the position of the robot?r), which are multi-
valued functions of time, and resource attributes (e.g.BAT-
TERY LEVEL()) over which borrowings, consumptions or
productions can be specified. We noteLgcA andRscA, re-
spectively the sets of logical and resource attributes.LgcAg

andRscAg designate the sets of all possible instantiations of
these attributes.

The evolution of a logical attribute value is depicted
through the predicatehold, which asserts the persistence of
a value over a time interval, and the predicateevent, which
states an instantaneous change of values. The predicatesuse,
consumeand producespecify, respectively, the borrowing
over an interval, the consumption or the production at a given
instant of a given resource quantity.

An action (also calledtask) consists of a set ofeventsde-
scribing the change of the world induced by the action, a set
of hold expressing required conditions or the protection of
some fact between two events, a set of resource usages, and a
set of temporal and binding constraints on the timepoints and
variables of the action. An example is given in Figure 3.

A plan relies on two CSP managers (temporal/atemporal).
A Floyd-Warshall like propagation schema ensures the global
consistency of the temporal network. The other CSP manages
symbolic variables with constraints such as domain restric-
tions, equalities or inequalities. A recent extension ((Trin-
quart and Ghallab 2001)) has improved the expressiveness of
the planner by handling numeric variables over infinite do-
mains and complex numeric constraints. Furthermore, mixed
constraints between temporal and atemporal variables can be
expressed (e.g.?dist =?speed∗(et−st)). They are managed
by a supervisor that transfers information from one CSP to
the other one when required. These CSP managers take part
in the elaboration of flexible plans: they compute for each
variable a minimal domain which reflects only the necessary
constraints in the plan.

The search explores a treeT in the partial plan space. In
a POCL framework, a partial plan is generally defined as a
4-tuple (A,C,L, F ), whereA is a set of partially instanti-
ated actions,C is a set of constraints on the temporal and

atemporal variables of actions inA, L is a set of causal links3

andF is a set of flaws. A partial plan stands for a family of
plans. A partial plan is considered to be a valid solution if all
these plans are coherent, that isF is empty.

The root node ofT consists of: the initial state (initial val-
ues of all instantiated attributes), expected availability pro-
files of resources, goals to be achieved (desired values for
specific instantiated attributes) and a set of constraints be-
tween these elements. The branches ofT correspond to re-
solvers (new actions or constraints) inserted into the partial
plan in order to solve one of its flaws. Three kinds of flaws
are considered:
– open conditionsare events or assertions that have not yet
been established. Resolvers consist in finding an establishing
event (in the plan or thanks to the insertion of a new action)
and adding a causal link (an assertionhold) that protects the
attribute value between the establishing event and the open
condition.
– threatscorrespond to pairs ofeventand hold which val-
ues are potentially in conflict. Such conflicts are solved by
adding temporal or binding constraints.
– resource conflictsare detected as over-consuming cliques
in a particular graph. Resolvers include insertion of resource
production action, etc. (Laborie and Ghallab 1995).
The control algorithm detects flaws in the current partial plan;
if there is no flaw, a solution is found; otherwise a flaw is
selected, a resolver is chosen in the associated list of possi-
ble resolvers and inserted into the partial plan on which the
algorithm proceeds recursively. This algorithm is complete.
Moreover, the flaw and resolver choices are guided by di-
verse heuristics not discussed here (see (Garcia and Laborie
1995)).

The advantages of the CSP-based functional approach are
numerous in the context of plan execution. Besides the ex-
pressiveness of the representation (handling of time and re-
sources), the flexibility of plans (partially ordered and par-
tially instantiated, with minimal constraints) is well-adapted
to their execution in an uncertain and dynamic environment.
Plans are further constrained at execution time. Finally, the
planner, performing a search in the plan space, can be adapted
to incremental planning and plan repair.

3 Temporal plan execution and replanning
This section details the execution cycle - the plan updates
(action reports, state and resource levels), and the parallel
plan repair and execution - as well as the complete replan-
ning process. Interleaving partial order planning and execu-
tion may introduce flaws in the plan, and we formally spec-
ify under which conditions such a partial plan remains exe-
cutable. With this aim in view, we first present some useful
notations and definitions.

3A causal linkai
p→ aj denotes a commitment by the planner

that a propositionp of actionaj is established by an effect of action
ai. The precedence constraintai ≺ aj and binding constraints for
variables ofai andaj appearing inp are inC.



3.1 Definitions

We extend the previous definition of a partial plan to the def-
inition of Pt: a partial plan partially executed up to time
t.

Definition 1 Pt = (RAt, FAt, St, Gt, Ct, Lt, Ft).

RAt is the set of currentlyrunning actions(a ∈ RAt if
staub < t and etaub > t), FAt is the set offuture actions
(a ∈ FAt if staub ≥ t). St represents thestate of the world
at timet. It is composed of 2 sets:LgcSt contains the last
value of each attributela ∈ LgcAg, 4 RscLt contains the
level at timet of each resourcer ∈ RscAg. Gt is the set of
goalsnot yet completely achieved at timet (and eventually
not established)5. Ct is the set of constraints on the variables
appearing inFAt, RAt, St andGt. Lt is the set of causal
links supporting future actions.Ft is the set of flaws present
in the partial plan at timet.

Past actions do not belong to the plan anymore. Their time-
points and parameters are completely instantiated and thus do
not appear inCt, still, useful information about their effects
is kept inSt.

The level of a resource at a certain time in the future cannot
be computed, since it depends on the partial order of actions
using this resource. But at timet the past part of the plan is
completely instantiated and linearized. Two cases have to be
considered: if no running action modifiesr, the exact level
can be computed (case (1)); if at least one action inRAt re-
quires the resource, only an estimation is available (case (2)).

In case (1), the exact level is computed in IXTET according
to formula (1). We noteC(r) the resource capacity. Letp be
a production, belonging to the actionap, of a quantity?qp of
the resourcer at timetp andP (r) be the set of productions
of resourcer in the plan. Similarly,C(r) is the set of con-
sumptionsc, belonging to the actionac, of a quantity?qc at
time tc, andB(r) is the set of borrowingsb, belonging to the
actionab, of a quantity?qb betweenstb andetb. Then, if no
running action modifiesr, RscLt(r) = Levpast

t (r) with:

Levpast
t (r) = C(r) +

∑
p∈P (r)/
tp
ub<t and
ap /∈RAt

?qp −
∑

c∈C(r)/
tc
ub<t and
ac /∈RAt

?qc (1)

This level is a variable ranging over[levpast
lb , levpast

ub ].
In case (2), the uncertainty follows from the insufficient

model of the resource usage (piece-wise constant whereas
a production, for instance, may correspond to a monotonic
increase). The previous level definition is completed by an
estimation of the level modification by the running actions
(LevRA(r)) according to formula (2). The total amount pro-
duced, consumed or borrowed by an action is represented by
a variable?q in [qmin, qmax]. At a given time in the course

4In IXTET, LgcSt contains the last executedeventfor eachla.
5In IXTET, a goal is represented by a grounded proposition

hold(GoalAtt(g) : GoalV alue, (stg, etg)). Gt contains goals
such thatetg

ub ≥ t.

of the action, the only information that the planner can de-
duce is that the amount produced/consumed up to now is in
[0, qmax] or that the amount borrowed is in[qmin, qmax]. An
estimation of the level would then be:

levRA
min ≤ RscLt(r)− Levpast

t (r) ≤ levRA
max (2)

with levRA
min = −

∑
c∈C(r)/
ac∈RAt

qcmax
−

∑
b∈B(r)/

ab∈RAt

qbmax

levRA
max =

∑
p∈P (r)/
ap∈RAt

qpmax
−

∑
b∈B(r)/

ab∈RAt

qbmin

Finally, the level of a resourcer at timet is comprised in
the interval[RscLlb, RscLub] with, in case (1):

RscLlb = levpast
lb , RscLub = levpast

ub ,

and in case (2):

RscLlb = levpast
lb + levRA

min, RscLub = levpast
ub + levRA

max.

A timepoint in the temporal network may correspond to a
goal timepoint or to an action start or end timepoint.

Definition 2 (executable timepoint) A timepoint T is
executable at time t if all timepointsT p that must directly
precede it in the temporal network have already been
executed (T p

lb = T p
ub < t) and if t ∈ [Tlb, Tub].

A goal is instantaneously achieved or persistent (achieve and
maintain a property betweenstg andetg).

Definition 3 (achievable goal)A goal g is achievable at
timet if stg is executable and ifg /∈ Ft.

Let Af
t be the set of actions that are involved inFt. 6

Definition 4 (executable action)A future action a is
executable at timet if its start timepoint is executable and if
a /∈ Af

t .

Definition 5 (executable plan) A partial plan Pt is
executable at timet if the constraint networks are consistent
and ifRAt ∩Af

t = ∅.

3.2 Execution cycle
The solution plan produced by the planner is run by the ex-
ecutive following a “sense/plan repair/act” cycle. The exec-
utive wakes up when it needs to do something, i.e. a mes-
sage has been received, or it is time to execute some time-
point or a plan repair process is in progress. Let us call
ExecutingP lan the plan being executed.Sensingconsists
in integrating messages inExecutingP lan which may par-
tially invalidate it. If ExecutingP lan contains new flaws, a
plan repair consists in keeping the structure of the plan (the

6The determination ofAf
t is straightforward in the case of open

conditions and resource conflicts. In a threat case, an actionak has
effects in contradiction with the establishment of propositionp by
the causal linkai

p→ aj and (ai ≺ ak ≺ aj) is consistent.Af
t

containsak andaj .



ordering of actions) and taking advantage of the flexibility to
try and find a solution plan. Planning is distributed on sev-
eral cycles to allow reactivity to events and concurrent exe-
cution of the valid part.Actingconsists in determining which
timepoints have to be executed, processing them or detecting
time-out.

We calltimestep(ts) the maximum time allowed to the ex-
ecution cycle. It is defined by the user and may vary with
the application. The exact execution time is not guaranteed
if two timepoints have to be executed within an interval less
than one timestep: they will be executed during the same cy-
cle still according to their precedence constraints. Thus, the
minimal duration of an action is one timestep. Note however
that the cycle usually takes less time, and the global reactivity
to new messages is better.

Distributing planning on several cycles raises two impor-
tant problems:

1. On which plan relies the execution in the “act” part, es-
pecially if no solution has been found?This plan has to
beexecutable(the currently running actions are fully sup-
ported). At each planning step, the node is labeled if the
corresponding partial plan isexecutable. When the max-
imum time allowed to plan repair in the cycle is reached,
and if the current partial plan is not acceptable, the last la-
beled node is chosen and its corresponding plan becomes
ExecutingP lan.

2. On which plan and which search tree relies the plan-
ning process in the next cycle?If no decision has been
made meanwhile (no timepoint execution, no message re-
ception), the search tree can be kept as is and further devel-
oped during the next “plan repair” part. It is even possible
to backtrack on decisions made in previous cycles. How-
ever, if the plan has been modified, a new search tree is
mandatory. Its root node is the newExecutingP lan. The
planning decisions made in the previous cycles are now
fixed, no backtrack is possible.

The following subsections further detail the different phases
of the cycle. Basically, all modifications made to
ExecutingP lan have to guarantee that anexecutableplan
is available after each step of the cycle. If this condi-
tion does not hold, cycling is stopped and a complete re-
planning is mandatory. During a cycle without plan repair,
ExecutingP lan remains a solution plan.

3.3 Message integration

A message can be of three different types: report upon action
completion, new goal request or notification of a capacity al-
teration.

Report A report is associated with the end timepointeta of
the corresponding actiona. If the message is received inside
the bounds[etalb, et

a
ub], et

a is set to the current timet 7. If it is

7Equivalent to posting the constraint(eta − origin) = t in the
STN.

too late, the plan is not executable anymore. If it is too early
(typically, a failed action can terminate very soon), a new
end timepoint, set tot and constrained to occur before the
executable timepoints, is created and the failed one is relaxed
(constraints on the failed timepoint are removed). The net-
work is then recomputed. In IXTET, such an operation keeps
the network consistent since the only constraint that can be
specified between two actionsa anda′ is a precedence con-
straint which upper bound is flexible:(sta

′−eta) in ]0,+∞[.
If the report contains information about the state,St is up-
dated in the following way:

Resource level -For each resourcer, the report returns
the current “real” levellr. RscLt(r) is compared tolr and
adjusted.

• If lr ∈ [RscLlb, RscLub], the plan is consistent with re-
ality. If the exact level can be computed (case (1) - see
Definitions), its value is updated by adding the constraint
RscLt(r) = lr.

• If (lr < RscLlb), the over-consumption is reflected on the
plan by adding a consumption of quantityc = RscLlb−lr.
In case (1), the new level (RscL′

t(r) = RscLt(r) − c)
is updated by adding the constraintRscLt(r) = RscLlb,
equivalent toRscL′

t(r) = lr. If some running action mod-
ifies r (case (2)), the part of the level due to past actions
(Lpast

t (r)) is updated by considering the worst case and
adding the constraintLpast

t (r) = levpast
lb .

• If (lr > RscLub), the over-production is reflected on the
plan by adding a production of quantityp = lr −RscLub.
Similarly, the level is updated by adding the constraint
RscLt(r) = RscLub in case (1), andLpast

t (r) = levpast
ub

in case (2).

The plan remains executable in case (1) since no running
action is concerned byr, whereas conflicts may appear in
case (2), requiring execution abortion. If the plan is exe-
cutable, plan repair is requested in case of over-consumption
and in case of over-production of a reservoir resource.

State variables -LgcSt contains the last value for each in-
stantiated logical attribute. If the report is nominal,LgcSt is
updated with the effects ofa expected in the plan. Otherwise,
it is updated with the values returned in the report. A value
is not inserted if it leads to a non executable plan (threatens
some proposition of a running actionar). In that case and if
ar is preemptive, its interruption is requested. Else, the value
is inserted and causal links which contradict it are broken.
This update leads to an executable plan with open conditions
on which plan repair can be processed.

Goal request One specifies for each goal: a priority, a du-
ration intervalId, an estimation of its minimal achievement
durationdachiev and a time intervalIg for its start timepoint
stg. A goal is rejected if the following set of constraints is
not consistent with the plan at current timet: {((etg − stg)
in Id), ((stg − origin) in Ig), (stg-origin ≥ t + dachiev)}.
Moreover the goal is constrained to occur after each running



actiona such that the goal proposition threatens a proposition
in a. A goal integration results in an executable plan with an
open condition.

Capacity alteration As a consequence of an exogenous
uncontrollable event a resource capacity has increased or de-
creased by a quantityq. The capacity is updated. If the plan
is not executable anymore, execution is aborted. Otherwise
a plan repair is requested in case of decrease or increase of a
reservoir resource.

Causal links removal After message integration, the plan
may contain flaws on a set of grounded attributesAttf , even-
tually repaired thanks to the insertion of new actions. Let
considerAtti the set of the attributes appearing in these ac-
tions. Additional causal links, protecting propositions in the
plan on attributes inAtti, have to be broken to allow the in-
sertion of actions in the current plan structure.

The determination ofAtti is based on information given
by an abstraction hierarchy verifying the Ordered Mono-
tonicity Property (Knoblock 1994) and generated offline
from the model description. Notably, this hierarchy differ-
entiates the primary and secondary effects of an operator.
Primary effects justify the insertion of an action to solve a
flaw. Let us callmain attributesof an action the attributes ap-
pearing in its primary effects.Atti, initialized withAttf , is
computed by searching the action operators for which at least
one attributeattm in Atti is a main attribute. This operator
is partially grounded (by binding its corresponding parameter
with attm) and the (eventually grounded) attributes appear-
ing in the operator and not yet taken into account are added to
Atti. The algorithm proceeds recursively until a fixed point
is reached.

In IXTET, the selection of the causal links to break is an
adaptation of the work presented in (Gaborit 1996). In short,
a causal link inLt is removed if it concerns an attribute in
Atti and does not belong to the extension of its establishing
event8.

Finally, the partial plan is executable and the sets of actions
independent from the failures are executable.

3.4 Plan repair
The plan repair is similar to the IXTET search process in the
plan space. The root of the search treeT is ExecutingP lan,
partially invalidated.T is developed according to an ordered
depth first search strategy. Planning is distributed, if nec-
essary, on several cycles and each time a new timepoint is
inserted, it is constrained to occur after the end of the cur-
rent cycle. Planning during one cycle is done one step at a
time until it results in a dead-end (there is no solution), or a
solution is found or a deadline is reached. This deadline cor-
responds to the share of the timestepts allocated to the plan
repair part. This parameterµ can be tuned by the user.

8The extension of an event corresponds to the interval during
which the value established by the event is imposed (by some asser-
tion of an action, . . . ).
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Figure 1: Timepoint execution.
Some aggregation mechanisms (corresponding to past for-

getting) allow a significative reduction of the search space.
Especially in IXTET, the establishing events are looked for in
LgcSt and executed resource propositions are aggregated in
one proposition.

This plan repair process is not guaranteed to find a valid
plan everytime (backtrack nodes frozen by execution or tem-
poral constraints too tight to add new actions . . . ), but can
avoid aborting execution and completely replanning at each
failure. By invalidating only a part of the plan, the amount of
decisions is rather limited and a repaired plan may be found
in a few cycles. Plan repair is especially efficient and use-
ful for temporally flexible plans and plans with some paral-
lelism (some sets of actions can be executed independently).
This mechanism is also efficient to compensate for inade-
quate models of actions. For instance, it is almost impos-
sible to have an accurate estimation of the time taken by a
robot to go from a locationL1 to a locationL2 in an un-
known and dynamic environment. In the IXTET-EXEC model,
move(L1,L2) is defined as a late preemptive action. If the
robot takes longer than expected in the model (e.g. due to ob-
stacle avoidance), the action is interrupted. The controlled
system returns the intermediate locationLi and, if some tem-
poral flexibility remains, a newmove(Li,L2) is inserted and
launched. This example is simple but representative of the
failures that frequently break plan execution.

3.5 Action
Each timepoint is associated with anexecution timetexec. If
T is a start or goal timepoint, or an end timepoint of an early
preemptive action,texec = Tlb. If T is an end timepoint of
a late preemptive action,texec = Tub − ts. If T is an end
timepoint of a non preemptive action,texec = Tub. During
the “act” part, the executive determines the set of timepoints
to execute during the current cycle (ExecTPs): these time-
points are executable and their execution time happens before
the end of the cycle.ExecTPs is updated after each time-
point execution to take into account newly executable time-
points. Figure 1 summarizes timepoint execution, depending
on its type. If a goal is not achievable or if an action is not
executable and if some flexibility remains, their execution is
postponed. The execution time of a preemptive end timepoint
is set when the corresponding report is received (expected in
the next cycle). Finally, timeouts are detected when reports
have not been received in time.
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Figure 2: Example of scenario and reactions.

During plan execution, the assignment of the execution
time is equivalent to adding a constraint between the origin
and the timepoint. The propagation algorithm keeps the STN
minimal(the edge constraints are minimal with respect to the
intersection) and guarantees that a complete execution is pos-
sible.

3.6 Complete replanning

When the plan is not executable anymore, it is necessary to
replan from scratch. Execution is aborted, leading to the par-
tial planPts

= (∅, FAts
, Sts

, Gts
, Cts

, Lts
, Fts

). The initial
planning problem is extracted fromPts as:

Pti
= (∅, ∅, Sti

, Gti
, Cti

, ∅, Fti
)

Sti
= Sts

,

Gti
= {g ∈ Gts

/ temporal constraints ong

are coherent with current time},
Cti

= {c ∈ Cts
/c is a constraint just

on variables appearing inSti
andGti

}
(Cti

notably contains constraints

on origin and horizon timepoints),
Fti

contains the open conditions inGti
.

Non linear planning can not be interrupted at any time and
come up with an applicable plan. Still we have to guarantee
that there remains enough time at the end of the replanning
process to execute the solution plan and meet the goal dead-
lines. We have been inspired by the approach used in the Re-
mote Agent (Muscettolaet al. 1998) (“planning to plan”) and
propose to add a specific flexible timepointT end to Pti , that
corresponds to the end of the planning process.T end is only
constrained to occur before the end of the horizon (and after
ti). Each time a new timepoint is inserted by the planning
process, it is constrained to occur afterT end (and before the
end of the horizon). ThusT end

ub decreases as new actions or
new temporal constraints are added, and there is not enough
time to execute the current plan if:T end

ub < current time.
Note however thatT end

ub can increase when backtracking.
The strategy is then to plan one step at a time until it re-

sults in a dead-end, or a solution is found, or a time limitl is
reached.l is defined asl = T end

ub −d, d being aslackduration
(tuned by the user) to save enough time at the end of planning
for execution cycle initialization.l is updated after each plan-
ning step. Planning is stopped whenl is reached unless the

next planning step corresponds to a backtrack node. In that
case, and if the next step increasesl, planning is pursued.

If planning is aborted without finding a solution, some
goals are rejected and a new attempt is done. A new plan
Pti

is extracted fromPts
. At this point, some goals may have

been rejected due to temporal constraints not consistent with
current time. Otherwise, one goal is selected and abandoned.
Is rejected the goal with the lowest priority, and, if several
goals have the same priority, the goal with the less flexibil-
ity for its achievement (this flexibility is computed as (stgub

- dachiev)). This criterion has been chosen to keep the goals
that are more likely to be achieved in due course.

A drawback of this strategy is that the state of the con-
trolled system is supposed to remain unchanged during the
planning process. The solution found is valid with respect
to this initial state. The advantage of our global approach is
that, if the state has changed, the plan may be repaired once
execution is started (resource updates, etc.). An improvement
would consist in updating the system state (Sts ) between each
complete replanning attempt.

4 Example of scenario
We face some difficulties to evaluate our work since there is
no benchmark (involving time and resource issues) to apply
the system to. We illustrate in this section the performances
of IXTET-EXEC with an example of failure scenario for a simu-
lated rover with an exploration mission. In such a domain, the
quantitative effects and durations of actions can be estimated
in advance for planning but are accurately known only at ex-
ecution time (e.g. the actual compression rate of an image or
the actual duration of a navigation task).

Goals are a list of targets to take a picture of, constraints
correspond to deadlines and limited resources (memory stor-
age, battery level). The planning model contains five actions:
move, take picture, move ptu (change the orientation of the
cameras through commands to the pan&tilt unit),download
images (to free memory storage) andrecharge battery (the
robot stays still while solar panels recharge the battery). The
sequence of actions to achieve a goal is: go to the target (cam-
era looking forward), change the camera orientation, take a
picture.

IXTET-EXEC is interfaced with the procedural system Open-
PRS which simulates the robot state evolution (position of the
robot, progressive decharge of the battery level, compression
and download rates of images, etc.). Figure 2 describes an



event(AT_ROBOT_X():(?xi,+oo),st);
hold(AT_ROBOT_X():+oo,(st,et));
event(AT_ROBOT_X():(+oo,?xf),et);
event(AT_ROBOT_Y():(?yi,+oo),st);
hold(AT_ROBOT_Y():+oo,(st,et));
event(AT_ROBOT_Y():(+oo,?yf),et);

hold(ROBOT_STATUS():MOVING,(st,et));
event(ROBOT_STATUS():(MOVING,STILL),et);

event(ROBOT_STATUS():(STILL,MOVING),st);

(b)(a)

task INIT_MVT_GENERATION()(st,et){

}nonPreemptive

hold(ROBOT_STATUS():STILL,(st,et));
use(CAMERA():1,(st,et));

event(MVT_INIT():(F,IDLE_INIT),st);
hold(MVT_INIT():IDLE_INIT,(st,et));
event(MVT_INIT():(IDLE_INIT,T),et);

task MOVE(?xi,?yi,?xf,?yf)(st,et){
?xi,?yi,?xf,?yf in ]−oo,+oo[;

hold(PTU_POS():FORWARD,(st,et));
hold(MVT_INIT():T,(st,et));

use(CAMERA():1,(st,et));
variable ?s,?dist,?duration;
distance(?xi,?yi,?xf,?yf,?dist);
speed(?s);
?dist = ?s * ?duration;
?duration = et − st;
}latePreemptive

(et−st) in ]2,60];

Figure 3: Example of action models for Dala in IXTET formalism.

example of IXTET-EXEC reactivity to a scenario with multiple
failures. The initial plan contains 5 goals (g1,. . . ,g5). The
third goal has a strict deadline and a higher priority. Since
storage capacity is limited to 3 images, the plan contains a
download action afterg3. The battery initial level is sufficient
to complete the plan. The following events occur:
— (e1) action failure - The firsttake picture fails, plan repair
begins.
— (e2) timeout - Due to g3 deadline, the next executable
timepoint times out. After a complete replanning,g2 has been
removed. Further plan execution achievesg1, g3 andg4.
— (e3) new goal- During thedownload action, a new flexi-
ble goalg6 is received. Plan repair begins.
— (e4) new goal - A new goalg7 is received 3s later. The
repaired plan finally contains three goals not yet achieved.
— (e5) sub-production - Thedownload action has produced
less than expected, the new level allows to take only two im-
ages. Plan repair leads to the insertion of adownload action
before the lasttake picture action.
— (e6) capacity alteration During a move action, a sud-
den drop in battery level forbids the plan completion with-
out recharging. Even if the current action completion is not
directly threatened by the drop, it takes part in the future re-
source contention. Thus execution is aborted and a complete
replanning leads to the insertion of an immediaterecharge
action. The plan can then be successfully completed.

Note that the battery and memory storage levels are regu-
larly adjusted. This example has been run on a Pentium IV,
with ts = 1.3s andµ = 61%. The average cycle duration
during nominal execution is 0.22s.

5 Integration in the LAAS architecture

Experiments have also been carried out on Dala, an iRobot
ATRV, with an exploration mission scenario which requires
the robot to achieve three types of goals: “take pictures of
specific targets” (in locations (0,0), (9,0), (10,-3) and (8,-
5)), “communicate with a ground station during visibility
windows” (W1 and W2), and “return to location (0,0) at
the end of the mission”. Dala runs a Pentium III under
Linux and is equipped with the following sensors: odom-
etry and a stereo camera pair mounted on a pan&tilt unit
(PTU). Five main actions are considered at the mission plan-
ning level: take picture, move ptu, move (cf. Figure 3(a)),
download images, communicate. The first three actions can
be physically performed by Dala, the execution of the other

actions is simulated on-board the robot. The execution of
a move action in an unknown environment implies complex
processes: localization, map building, motion generation,
etc. (Lacroixet al. 2003; Goldberget al. 2002). The LAAS
architecture (Alamiet al. 1998) and its associated tools pro-
vide a support in order to design and integrate such an au-
tonomous system.

Decisional Level

Functional Level

Temporal Executive

Requests Control Level

Environment

mission report

ExoGen

GenoM

Requests and Resources Checker

OpenPRS

Procedural
Executive

Planner
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Position 
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Pos

Camera Images
pos-tag

LANE
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Env

P3D
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Motion 
Planner

Speed
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Cor. Im
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STEO
Stereo 

Odometry
Pos
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Pos RFLEXPos

Figure 4: The LAAS architecture on Dala.

Figure 4 presents the architecture as set for the experiment.
The functional levelincludes all the basic built-in robot ac-
tion and perception capabilities, encapsulated into control-
lable communicating modules. Modules are activated by re-
quests, send reports upon completion and export data. The
POM module for instance computes the best position esti-
mate from standard (RFLEX) and visual (STEO) odometry,
while the wheels are controlled by RFLEX according to the
reference velocity produced by the reactive motion planner
(P3D), etc. Therequests control levelfilters the requests ac-
cording to the current state of the system and a formal model
of allowed and forbidden states.

IXTET-EXEC has been integrated in thedecisional leveland
interacts with the user and the functional level through a
procedural executive (OpenPRS). The plan execution is con-
trolled by both executives as follows. TEXEC decides when
to start or stop an action in the plan and handles plan adap-



tations. OpenPRS expands the action into commands to the
functional level9, monitors its execution and can recover from
specific failures. It finally reports to TEXEC upon the action
completion.

Figure 5:Initial plan

This mission (the corresponding initial plan is shown in
Fig. 5) has been executed by Dala under IXTET-EXEC control
(with ts = 2s, µ = 60%). Each resulting run was different.
One is illustrated in Figures 6 and 7. The first figure repre-
sents the execution trace10. In complement, the second figure
indicates for each cycle: its starting time, its total duration
and the duration of each phase of the cycle. Two execution
events required a plan repair:

1. Due to obstacles, themovex(0,0,9,0) action takes more
time than expected. It is interrupted in cycle 5. Not much
flexibility is left before the visibility windowW1, still the
plan repair finds a solution (in 50 planning steps and 4 cy-
cles) before the starting timepoint of thecommunicate ac-
tion times out. Amove action is inserted after the commu-
nication.

2. A take picture action takes less time than expected. The
plan repair process (39 planning steps) is distributed on 4
cycles (14 to 17). Note that amove pan tilt unit action is
launched as soon as it is supported in the plan (cycle 16),
and before a solution plan is found.

Figure 8 shows the evolution during the run of the memory
level available for the storage of pictures. Measures are done:
at the beginning of the mission (cycle 1), after each picture
(cycles 3, 14, 22, 29), and after thedownload action (cycle
28). The points linked by lines correspond to the minimal
and maximal levels authorized in the initial plan. The circles
and crosses show how these minimal and maximal “theoreti-
cal” levels evolve when updated during execution. Finally,

9For thedownload images andcommunicate actions, specific proce-
dures simulate the visibility windows and the gradual download of
images.

10It gives for each cycle: the messages exchanged with OpenPRS
(in bold: launch or interruption of actions, in italic: reports sent back
at the end of the action) and the actions that are postponed when a
plan repair is in progress.

the squares represent the real level at the end of each ac-
tion. Thus, at each action end, the real level is compared with
the corresponding theoretical bounds, which are then updated
accordingly. The flexibility in the resource model allows to
handle the uncertainty on the actual usage of the resource at
execution time (here, the actual compression rate). This us-
age varies with each run, but a plan repair becomes necessary
only if the level is outside of the theoretical bounds for which
the plan is guaranteed valid and if a conflict is detected.
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Figure 6:Execution trace
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Other failures (e.g. failure of a PTU command and fail-

ure of map building) required a reinitialization of certain
modules. Two actions (platine init and init mvt generation
- cf. Figure 3(b)) and specific attributes (PTU INIT() and
MVT INIT()) have been added to the model. When a cer-
tain type of error is returned by the P3D module (here: “no



map available”), OpenPRS sends back to TEXEC a failed
move report containing the valuefalse for the attribute
MVT INIT() and the current position of the robot for the at-
tributesAT ROBOT X() andAT ROBOT Y(). The plan repair
process inserts the initialization action followed by amove
action to reach the destination.

The goal of these experiments was mostly to show that
such an approach can be completely run on board an “out
of the shelf” robot and with a “real-world application”. The
run presented above lasted 1285s, IXTET-EXEC woke up 32
times and used 541s of CPU time, whereas the other main
processes: STEO (visual odometry), CAMERA, SCORREL
(stereo correlation), OpenPRS, LANE (map building) and
P3D (motion planner), have respectively used 270s, 145s,
123s, 80s, 55s and 18s of CPU time.

6 Conclusion and prospects
We have presented the IXTET-EXEC system which combines
a temporal lifted POCL planner with a temporal executive
to integrate deliberative planning, execution monitoring and
replanning while respecting real-time constraints. This ap-
proach cannot account for all the possible execution failures
in all their generality, nevertheless, in many situations where
some temporal and resource flexibility has been left, and for
domains where the activities are slightly decoupled, the pre-
sented repair techniques greatly improve the overall perfor-
mance of the system by:
- reducing the number of complete replannings,
- improving the system reactivity to unexpected events,
- taking into account new goals on the fly,
- managing the resources capacity changes,
- managing the uncertainty in the model description (actions
duration, consumption/production).

Still, IXTET-EXEC effectiveness can be increased by improv-
ing replanning strategies (rejected goals selection, state up-
date requests) and handling contingency earlier in the plan-
ning process and propagation algorithms. Indeed, the sys-
tem only detects when non controllable timepoints time out,
but contingent durations can be squeezed during propagation.
We plan to use the STNU framework and adapt the polyno-
mial Dynamic Controllability Checking algorithms proposed
in (Morris et al. 2001). The current results are very encour-
aging and, providing we use proper heuristics for the search
of flaws and resolvers, we envision using this approach for
more complex domains.
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