
A Max-Flow Approach for Improving Robustness in a
Spacecraft Downlink Schedule

Angelo Oddi and Nicola Policella
Planning & Scheduling Team [PST]

ISTC-CNR – Italian National Research Council
Viale Marx 15, I-00137 Rome, Italy

{a.oddi, policella }@istc.cnr.it

Abstract. In the realm of scheduling problems different
sources of uncertainty can invalidate the solutions. In this
paper we are concerned with the generation of high qual-
ity downlink schedules in a spacecraft domain in presence
of a high degree of uncertainty. In particular, we refer to a
combinatorial optimization problem calledMARS EXPRESS
Memory Dumping Problem (MEX-MDP), which arises in the
European Space Agency programMARS EXPRESS. A MEX-
MDP consists in the generation of dumping commands for
transferring the whole set of data from the satellite to the
ground. The domain is characterized by several kinds of
constraints - such as, bounded on-board memory capacities,
limited communication windows over the downlink channels,
deadlines and ready times imposed by the principal investiga-
tors - and different sources of uncertainty - e.g., the amount
of data generated at each scientific observation or the channel
data rate. This work describes a reduction of theMEX-MDP
to a Max-Flow problem, such that the problem has a solution
when the maximum flow equates the total amount of data to
dump. Based on this reduction, an iterative procedure is built
to improve the robustness of a solution with respect to the uti-
lization of the on-board memory. The underlying idea being
that the lower are the peaks in memory utilization, the higher
the ability of facing unexpectedly larger amount of data.

1 Introduction
In a space domain, as in many other applicative domains,
the usefulness of schedules is limited by their brittleness.
Though a schedule offers the potentials for optimized op-
erations, it must in fact be executed exactly as planned to
achieve this potential. In practice, this is generally made
difficult in a dynamic execution environment, where unex-
pected events quickly invalidate the schedule’s predictive as-
sumptions and the validity of the schedule’s prescribed ac-
tions is continuously brought into question. The lifetime of
a schedule tends to be very short, and hence its optimizing
advantages are generally not realized.

MARS-EXPRESSis an ESA program that has launched a
spacecraft toward Mars on last June 2, 2003 and now, as it
is well-known, the space probe is orbiting around the Red
Planet and is operating seven different payloads.MARS-
EXPRESSrepresents a challenging and interesting domain
for research in automated problem solving. The domain
is characterized by several kinds of constraints - such as

bounded on-board memory capacities, limited communica-
tion windows over the downlink channels, deadlines and
ready times imposed by the main investigators - and differ-
ent sources of uncertainty - e.g., the amount of data gener-
ated at each scientific observation or the channel data rate.

This paper analyzes and models, through a Max-Flow
paradigm, the so calledMARS-EXPRESSMemory Dump-
ing Problem (MEX-MDP). The problem involves the pro-
cess of automating the memory dump operations of both
science and housekeeping data, where we consider peaks of
data in memory utilization as sources of brittleness in the
schedule. As a consequence, we propose a novel iterative
levelingalgorithm, based on the Max-Flow reduction, to in-
crease the robustness of a solution by finding a different dis-
tribution of the dumping operations over the same horizon
throughflattening the peaks in memory utilization. Prob-
lems similar toMEX-MDP can arise in satellite domains
such as the ones described in (Verfaillie and Lemaitre 2001;
Bensanaet al. 1999). Both works concern a set of Earth
observation operations to be allocated over time under a set
of mandatory constraints such as: no overlapping images,
sufficient transition times (orsetuptimes), bounded instan-
taneous data flow and on-board limited recording capacity.

The paper is organized as follows. After a brief intro-
duction ofMEX-MDP, the novel flow network model is de-
scribed. Then, a basic algorithm to solve aMEX-MDP in-
stance and an iterative method to improve the schedule ro-
bustness are introduced. The paper ends with some experi-
mental evaluations and a discussion about the future devel-
opments of the presented method.

2 The Memory Dumping Problem

In a deep-space mission likeMARS-EXPRESSdata trans-
mission to Earth represents a fundamental issue. The space-
probe continuously produces a large amount of data result-
ing from the activities of its payloads (e.g. on-board sci-
entific programs) and from on-board device monitoring and
verification tasks (the so calledhousekeeping data). All
these data, usually referred to astelemetry, are to be trans-
ferred to Earth during downlink sessions.MARS-EXPRESS

VC 1

VC 0

Real−Time

Priority Scheme

SSMM Packet Stores

STORE

SSMM

DMS

TM Router
TM

TM

DUMP

TFG

TM

Figure 1:On-board telemetry flow

is endowed with a single pointing system, thus during regu-
lar operations, it will either point to Mars and perform pay-
load operations or point to Earth and transmit data through
the downlink channel. As a consequence on-board data are
first stored in the Solid State Mass Memory (SSMM) and
then transferred to Earth.

The main problem to be solved consists in synthesizing
spacecraft operations for emptying as much as possible the
on-board memory during the available downlink time inter-
vals, in order to allow the spacecraft to save new informa-
tion without losing previously stored data and to minimize a
given objective function (for example, the average turnover
time - or flow-time - for a set of scientific observations). Sev-
eral of the constraints related to this problem are mutually
conflicting. Besides the communication channel availabil-
ity, different transmission rates are to be taken into account.
Additional constraints arise from the specific use of the on-
board memory. That memory is subdivided into different
memory banks (or packet stores) each having a finite capac-
ity. Also, for each piece of information produced inside the
probe, one or more packet stores are identified in which such
data should be stored. Different data are stored in a sequen-
tial way and the packet stores are managed cyclically. As a
consequence, in case the memory is full, precious data might
be overwritten as new data become available, and this is to
be avoided as much as possible.

2.1 Basic Modeling

The Mars Express Memory Dumping Problem (MEX-MDP)
has been formalized in a previous study conducted for the
ESA (see (Cestaet al. 2002)). In the rest of this section we
describe the mainMEX-MDP components.

Figure 1 shows a sketch of theMARS EXPRESSmod-
ules that are relevant toMEX-MDP. It shows the different
telemetry (TM) data produced on-board and then stored in
theSolid State Mass Memory (SSMM)that is subdivided into
packet stores. Memory stores are downloaded with different
dumps that transfer data to Earth. The basic objects that are
relevant to theMEX-MDP domain can be subdivided into ei-
therresourcesor activities.

Resourcesrepresent domain subsystems able to give ser-
vices, whileactivitiesmodel tasks to be executed using re-
sources over time. Our model ofMARS-EXPRESSrequires
two types of resources:

- Solid State Mass Memory (SSMM). The SSMM is able
to store both science and housekeeping (HK) informa-
tion. SSMM is subdivided into a set ofpackets store
{pk1, pk2, . . . , pkm}, each one with a fixed capacityci

and a prioritypi for dumping data. Each packet store
can be seen as a file of a given maximal size and cycli-
cally managed (previous information is overwritten if the
amount of data overflow the packet store capacity).

- Communication Channels. The downlink connections to
Earth for transmitting data. These resources are char-
acterized by a set of separated communication windows
CW = {wi} identifying intervals of time in which down-
link connections can be established. Each elementwi is a
3-tuple〈ri, si, ei〉, whereri is the available data rate dur-
ing the time windowwi andsi andei are respectively the
start and the end-time of such window.

Activitiesdescribehow resources can be used. Each ac-
tivity ai is characterized by a fixed durationdi and two vari-
ablessi and ei which respectively represent its start-time
and its end-time. Two basic types of activity are relevant to
MEX-MDP: store operationssti and memory dumpsmdi.

- Store Operation. Eachsti “instantaneously” stores an
amount of dataqi at its end-time in a destination packet
storepki.

- Memory Dump. An activity that transmits a set of data
from a packet store to the ground station.

In the MEX-MDP domain there are two different data
sources requiring store operationssti: the so-calledPayload
Operation Request(POR) and a set of housekeeping activ-
ities, which produce a continuous stream of data at a given
constant rate, calledContinuous Data Stream(CDS).

A Payload Operation Requestis a model for a scientific
observation which generates a set of data distributed over
a subset of the available packet stores. According to this
model, the produced data are decomposed in a set of differ-
ent storeoperations such that,pori = {stij}, all of them
with the same durations and start-times.

On the other hand, aContinuous Data Streammodels an
on-board process which works in “background” with respect
to the scientific activities. It generates a flow of data with
constant rate which has to be stored in the SSMM. Examples
of such data streams are the housekeeping data collected on
a regular basis to control the behavior of the on-board sub-
systems.

The two data sources exhibit different characteristics: in
fact, a POR is a time bounded activity, which stores data
at its end-time, whereas a CDS is a continuous data flow
over the domain horizon. However, we choose to model

also a CDS as a periodic sequence of store operations. In
particular, given a CDS with a flat rater, we define a pe-
riod Tcds, such that, for each instant of timetj = j · Tcds

(j = 0, 1, 2, . . .) an activitystij stores an amount of data
equal tor ·Tcds. In the particular case oft0 = 0 we suppose
the amount of stored date is zero. Hence, we can consider
as input data for the problem just an equivalent set of store
operations containing data packets, such that, each packet
contains a pointer to its source.

2.2 Problem Definition

Given these basic domain entities, let us now define the
MEX-MDP. A set of scientific observations,POR =
{por1, por2, . . . , porn} and a set of housekeeping produc-
tions, CDS = {cds1, cds2, . . . , cdsm}, are both reduced
to a set of store operations on the on-board memory. A
solution to a MEX-MDP, is a set of dumping operations
S = {md1, md2, . . . , mds} such that:

- the whole set of data are “available” on ground within the
considered temporal horizonH = [0,H].

- Each dump operation starts after the generation of the
corresponding data. For each packet store, the data are
moved through the communication channel according to
a First In First Out (FIFO) policy.

- Each dump activity,mdi, is executed within an assigned
time windowwj which has a constant data raterj . More-
over, dump operations cannot mutually overlap.

- At each instantt ∈ H, the amount of data stored in each
packet storepksi has to be less or equal to the packet store
capacityci (i.e., overwriting is not allowed).

Though a solution should satisfy all the imposed constraints,
however our main goal is to findhigh qualitysolutions with
respect itsrobustness. Informally, a high quality plan deliv-
ers all the stored data and is able to adsorb external modifi-
cations that might arise in a dynamic execution environment.

Our definition of solution’s robustness is related to the
idea ofdistance of the solution to the overwriting state. In
other words, we consider peaks of data in a packet store
close to its maximal capacity as sources of schedule’s brit-
tleness and a way to increase robustness is toflat these peaks
by finding a different distribution of the dumping operation
over the same problem horizon. In particular, given a solu-
tion to aMEX-MDP instance, for each packet storepki it is
possible to give a time functionusei(t), with t ∈ [0,H], rep-
resenting the amount of data memorized in the packet store
pki at the instantt. Letuse

(max)
i the maximal value over the

horizon[0,H] of usei(t). We define the packet store utiliza-
tion αi = use

(max)
i /ci as the ration between the maximal

level of data in the packet storepki and its capacityci. The
robustness of a solutionS is defined as:

r(S) = maxi=1..m{αi} (1)

that is the maximal value of utilization over the set of packet
stores. A solutionS is optimalwhenr(S) is minimal.

3 A Max-Flow Approach for MEX-MDP
A MEX-MDP instance concerns the synthesis of a set of
dump commands for transferring to the ground the whole
set of data collected by the satellite. To face such a problem
the following abstraction has been adopted: on a first level,
calledData Dump level, it is assessed the amount of data
to dump from each packet store for each time window. In
a successive level, calledPacket level, the final dump com-
mands are generated from the first level results. This second
step can be done automatically once a solution for the Data
Dump level is achieved. For this reason in this work we fo-
cus our attention exclusively on the Data Dump level. This
problemdecompositionis motivated by the complexity of
the optimization problem. Using this abstraction we focus
on thedominantaspects of the problem that consist of rea-
soning on data quantities, packets store capacities and dump
capability over the communication links, without consider-
ing the problem of decomposing the dumped data into dump
commands.

In the remainder of the section we introduce a formaliza-
tion for MEX-MDP as a Max-Flow problem and the flow
network associated to aMEX-MDP instance.

3.1 A formalization for M EX-M DP

The formalization is based on a partition of the tempo-
ral horizonH = [0,H] into a set of contiguous windows
W = {w1 = [t0, t1] | t0 = 0} ∪ {wj = (tj−1, tj] | j =
2 . . . m, ti ∈ H}, such that∪m

i=1wi = H. The partition
is realized upon consideration of significant events. Such
events are assumed to be the start and the end of the tem-
poral horizon, the time instants where a memory reservation
on a packet store is performed, and the time instants where
a change on the channel data rate is operated. It is assumed
that such significant events take place at the windows’ edges.

The key point of the formalization is represented by the
variables:

δij i = 1..n, j = 1..m, (2)

each defined in the domain[0,∞). These represent the
amount of data to dump from the packet storepki within
a windowwj . To formally represent the domain constraints,
for each packet storepki (i = 1..n) and for each time win-
dowwj (j = 1..m) some additional definitions are needed:

- dij , amount of data memorized in the packet storepki at
tj . Where the variablesdi0 ≤ ci represent the initial data
level in the packet storepksi;

- lij , maximal level (amount of data stored) allowed attj
for the packet storepki, lij ∈ [0, ci];

- bj , maximal dumping capacity available inwj ;

We introduce two classes of constraints on the set of deci-
sion variablesδij . A first constraint captures the fact that for
each windowwj the difference between the amount of gen-
erated data and the amount of dumped data cannot exceed
the maximal imposed level in the windowlij (overwriting).
Additionally, the dumped data cannot exceed the generated
data (overdumping). We define the following inequalities as
conservative constraints:

j∑

k=0

dik −
j∑

k=1

δik ≤ lij (3)

j−1∑

k=0

dik −
j∑

k=1

δik ≥ 0 (4)

for i = 1 . . . n andj = 1 . . .m. The store operationsdij are
’impulsive actions’ performed at the end of each time win-
dowwj , whereas the dumping operationsδij are performed
during the windowwj . As a consequence, the amount of
datadij cannot be dumped in the windowwj , because the
data are not available duringwj . Hence, we have to check
the constraint (4) to avoid dumping more data than the avail-
able amount atti(j−1) and the constraint (3) at tj , to avoid
storing more data than the allowed levellij .

A second class of constraints concerns the dumping ca-
pacity imposed by the communication channel:

0 ≤
n∑

i=1

δij ≤ bj j = 1..m (5)

these inequalities, calleddownlink constraints, state that for
each windowwj is not possible to dump more than a certain
amount of data (i.e.bj).

3.2 The Max-Flow Problem

In the following we briefly review the theory behind the
Max-Flow problem (Cormenet al. 2001). A flow net-
work G(V, E) is a direct graph whereV is a set of ver-
tices andE is a set of edges(u, v) with nonnegative capacity
c(u, v) ≥ 0. The flow network has two special vertices: a
sources and sinkt. A flow in G is a real-valued function
f : V × V → < that satisfies the following three properties:

- for all u, v ∈ V , f(u, v) ≤ c(u, v)

- for all u, v ∈ V , f(u, v) = −f(v, u)

- for all u ∈ V ∪ {s, t}, ∑
v∈V f(u, v) = 0.

the value of a flowf into the graphG, is defined as

f =
∑

v∈V

f(s, v),

that is the total flow out of the source. In the Max-Flow
problem given a flow networkG, the goal is to find a flow of
maximum value from source to sink.

3.3 The Max-Flow Model for M EX-M DP

The current paragraph aims at introducing the flow network
model associated to aMEX-MDP instance. Figure2 shows
an example of flow network in the case of two packets store,
however this example can be easily generalized to the case
of n packets stores. There are four types of nodes:source,
sink, packet-store nodespij (as explained below such nodes
are actuallymacro-nodes) and channel nodeschj .

The packet store nodepij is composed of two nodes
to represent the two conservative constraints (see Fig.3).
The first nodep(1)

ij represents theoverdumpingconstraint
(4), such that, within the windowwj it is not possible to
dump more data than the amount available attj−1. On the

other hand, the nodep(2)
ij , represents theoverwriting con-

straint (3), such that, the amount of residual data in the
packet store after the dumping operation over the window
wj , added to the amount of data stored attj (dij), is less
or equal to the allowed capacity of the packet storelij . In

particular, on the nodep(1)
ij there are the following three

flows: f(pi(j−1), pij), f(pij , chj), andf(p(1)
ij , p

(2)
ij). The

flow f(pi(j−1), pij) represents the residual amount of data

on pki at tj−1, that is,
∑j−1

k=0 dik −
∑j−1

k=1 δik.The value
f(pij , chj) represents the amount of data dumped frompki

during the time windowwj , that isδij = f(pij , chj). This
edge is labeled withc(pij , chj) = bj to hold the constraint
δij ≤ bj , that is,it is not possible to dump more data than

the channel capacitybj . Finally the flowf(p(1)
ij , p

(2)
ij) rep-

resents the amount of residual data which remains in the
packet store after the dumping over the windowwj .

We remark that we split the nodepij for the same motiva-
tion above explained for the inequalities (3) and (4). In fact,
if we consider the flow balance on the nodep

(1)
ij we have

that:

f(pi(j−1), pij)− f(pij , chj) = f(p(1)
ij , p

(2)
ij)

that can be rewritten as:
j−1∑

k=0

dik − (
j−1∑

k=1

δik + δij) = f(p(1)
ij , p

(2)
ij) ≥ 0

which coincides with the inequality (4). On the other hand,
on the nodep(2)

ij there are the following flows:f(p(1)
ij , p

(2)
ij),

f(s, pij), andf(pij , pi(j+1)), where the latter represents the

residual amount of data
∑j

k=0 dik−
∑j

k=1 δik, and the flow
f(s, pij) concerns the amount of data stored at the window
wj , which can be at most equals todij . Considering the flow

balance onp(2)
ij we have that:

f(p(1)
ij , p

(2)
ij) + f(s, pij) = f(pij , pi(j+1))

that can be rewritten as:

(
j−1∑

k=0

ik + dij)−
j∑

k=1

δik = f(pij , pi(j+1)) ≤ lij

p22

s

t

b1

b1

l11

d10

b1

l12 l1(m−1)

ln1 ln2

d11

d20

l2(m−1)

d1m

d22

b2

b2

d12

l2m

l1m

b2
bm

d21

b1 b2 bm

bm
bm

d2m

p11

ch1 ch2 chm

p12 p1m

p2mp21

Figure 2:A flow network forMEX-MDP.

bj

pij

p
(2)
ijp

(1)
ij

lijli(j−1) lij

dij

Figure 3:The internal structure of a macro-nodepij .

which coincides with the inequality (3).

To represent the initial value of each packet store the
arcs(s, p(1)

i0) are labeled with the valuedi0 whilst the arcs

(p(2)
im, t) are used to represent the overall residual amount of

data on the packets storepki. To synthesize solutions which
dump all the data on the ground these arcs are labeled with
lim = 0.

Finally the flow through each channel nodechj represents
thedownlinkconstraint over the time windowwj ,

∑

i=1,...,m

f(pij , chj) =
∑

i=1,...,m

δij = f(chj , t) ≤ bj

that is, the sum of data dumped from each packet store
over the windowwj is less or equal the channel capacitybj .

To conclude, a flow assignment to any edges is computed
by applying a Max Flow algorithm to the flow network in
Fig. 3. The result represents the maximum value of data
which can be conveyed through the communication channel.
Thus aMEX-MDP will admit a solutionif and only if :

f(s, pij) = c(s, pij) = dij

for eachi = 1, . . . , n andj = 1, . . . ,m. In other words,
the formula above states that the maximum flow through the
network equates the whole data set stored in the different
packets store.

Based on the model described above, in the next section
two methods for approaching aMEX-MDP instance are in-
troduced: the former computes a solution, while the latter
aims at refining an initial solution for the sake of robustness.

4 Solving Methods
As mentioned above, to find a solution to theMEX-MDP

problem is sufficient to apply a Max-Flow algorithm to the
associated flow network (see Figure3). A solution of a prob-
lem instancemdp exists if and only if the flow through each

ITERATIVE-LEVELING(mdp, ε)
1 δ ← SOLVEBYMAX FLOW(mdp)
2 if δ 6= ∅ then
3 for j = 1 to m
4 flatten[k] ← TRUE

5 while ∃i|flatten[i] =TRUE

6 pkk ← SELECTPACKETSTORE()
7 for j = 1 to m
8 lkj ← αk(1− ε)lkj

9 δ′ ← SOLVEBYMAX FLOW(mdp)
10 if δ′ = ∅ then
11 flatten[k] ← FALSE

12 for j = 1 to m

13 lkj ← lkj

αk(1−ε)

14 else δ ← δ′

15 return δ

Figure 4:Iterative-Leveling algorithm.

arc (s, pij) equates the capacity value, that is,f(s, pij) =
c(s, pij). In such a case we have that the set of values
δij = f(pij , chj) is a solution ofmdp. There are differ-
ent polynomial algorithms to solve the Max-Flow problem.
Our current implementation is based on the Edmond-Karp
version of the Ford-Fulkerson method. The Edmond-Karp
algorithm runs inO(|V ||E|2) time, where|V | and |E| are
respectively the number of nodes and the number of arcs
in the flow network. Being in our case|V | = O(m n)
and |E| = O(mn), our current implementation runs in
O(m3n3). An improvement in the sense of CPU time can
be achieved using more sophisticated max flow methods
like the preflow-flush one (Goldberg and Tarjan 1988). The
reader can find an essential survey on this issue in (Cormen
et al. 2001, chapter 26).

4.1 Iterative leveling

In this section we present an iterative algorithm for improv-
ing the robustness of an input solution. We recall that in this
domain we consider a solution robust if the level of data over
time of each packet store has no peaks close to its maximal
capacity, such that there is always available memory for un-
expected larger amount of data.

We propose an heuristic algorithm for improving robust-
ness which iteratively applies the three-steps cyclesolution
analysis/problem update/construction. Our approach some-
how resembles the concept of “feedback” widely used in
Control Theory. Furthermore, a similar issue has been also
used in the work (Joslin and Clements 1999) for the opti-
mization of the makespan of scheduling problems.

Figure4 shows the algorithm. It takes in input aMEX-
MDP instancemdp, and a parameterε ∈ (0, 1). The al-
gorithm starts by finding an initial solution solution, rep-

resented in compact way byδ = {δij} (line 1). If a so-
lution is found, δ 6= ∅, the algorithm proceeds initializ-
ing all the elements of the vectorflatten[] at TRUE, where
flatten[i] = TRUE means that the usage of the packet store
pki can be improved.

Thewhile loop (Steps 5-14) represents the core of the al-
gorithm. In this the following three steps are iteratively re-
peated:

1. analyze the current solution and selects acritical packet
storepkk, such that the percentage usage valueαk is max-
imum (Step 6);

2. for any time windowwj , the capacitylkj of the selected
packet storepkk is reduced to the valueαk(1 − ε)lkj

(Steps 7-8). In this way the maximum percentage usage
is forced to be less thanαk;

3. solve the modified problem (Step 9). If this does not admit
a solution then the “modified” packet storepki, is labeled
as not improvableflatten[i] = FALSE and the previous
consistent situation is reloaded (Steps 11-13). Otherwise
the current best solution is updated (Step 14).

The aim of the three steps is to iteratively flat the current
critical packet store. These steps will be repeated until there
is at least one packet store which admit an improvement.

5 Experimental Evaluation
The method described above has been evaluated using the
benchmark sets defined during a study conducted for the
ESA and described in (Cestaet al. 2002). In this section
we present the results for one of these benchmark sets1, B5.
This benchmark is composed of 9 problems and is one of the
most critical with respect to, on one hand, the competition
among the packet stores for the same channel bandwidth,
and, on the other hand with respect to the limited capacity
of the packet stores relatively to the amount of generated
data on the other.

All the algorithms presented in this paper are imple-
mented in Java on an Athlon 1800 Mhz machine. Figure5(a)
shows how the application of theIterative-Levelingalgo-
rithm can improve the robustness (see Section2) of a so-
lution. In particular, the graph labeled withINIT repre-
sents the robustness of a solution generated with one run
of the solving algorithm based on the Max-Flow reduction.
Whereas the graph labeled withLEV represents the robust-
ness values after the application of theIterative-Leveling
algorithm described in Section4 with ε = 0.02. As Fig-
ure 5(a) shows, for some problems the robustness is im-
proved from100% to 75%. The average CPU-times are
respectively0.8 seconds to generate an initial solution and
21.8 seconds to improve its robustness.

In addition, two further curves,INIT-AVGandLEV-AVG,
are shown in Figure5(a). These represent the average of the

1The benchmark sets are available at the address:
http://mexar.istc.cnr.it .

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

ro
bu

st
ne

ss
 (

%
)

problem instance

INIT
LEV

INIT-AVG
LEV-AVG

(a) Robustness values

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9

M
T

T
 (

se
co

nd
s)

problem instance

 LEV
 INIT

 LB

(b) MTT values

Figure 5:Performance on benchmark B5

set of valuesuse
(max)
i over the set of the used packet stores

respectively before and after the application of theIterative-
Levelingalgorithm. Clearly, the main effect of the leveling
algorithm is to create a different distribution of the dumping
operations over the horizon in order to removedangerous
data peaks.

One more aspect we want to highlight is the following:
the new distribution of data over the problem horizon comes
at a price in term of other performance measures. In a pre-
vious work we have described several heuristic strategies to
solve MEX-MDP as a combinatorial optimization problem
to minimize the so calledmean turnover time(MTT) (Oddi
et al. 2003). The turnover time of a single payload opera-
tion pori coincides with the time elapsed from the store of
the data in the Solid State Mass Memory device, SSMM, to
its delivery to Earth. In Figure5(b) we present MTT val-
ues for the same set of problems used for robustness evalu-
ation. In particular, the curves labeled withINIT andLEV
represent the MTT values obtained through the application
of the iterative sampling optimization strategy described in

(Oddi et al. 2003) respectively with and without the appli-
cation of the leveling algorithm described above. A qual-
ity decrease in term of MTT is evident when the robustness
performance is increased. In fact, we observe that in or-
der to improve the mean turnover time, a simple and effec-
tive heuristic is to dump first the activities with the smallest
amount of data. On the other hand, the less are the capacities
of the packets store, the fewer are the chances to follow the
above heuristic, because activities involving larger amount
of data should be dumped before less demanding activities in
order to satisfy the memory capacity constraints. In general,
it is a well-known concept that the improvement of an ob-
jective measure often stems from the decay of another one.
However, in our case the price to pay is not so high, in fact
the obtained MTT values when the the objective function is
scheduling robustness are only twice the best MTT value ob-
tained. Since the average values are around one minute, the
new values are clearly acceptable.

6 Future Work
Generating high quality schedules for spacecraft downlink
scheduling problems can hardly be seen as a single objective
optimization problem, but rather as an optimization problem
involving multiple, conflicting and non-commensurate cri-
teria. MEXAR project (Cortellessaet al. 2004) has started
a research path along in this direction with the main goal
of defining a Decision Support System (DSS) for solving
MEX-MDP 2. Within this project the main idea is to in-
tegrate human strategic capabilities and automatic problem
solving algorithms to find solutions withthe right compro-
mise among different and contrasting goals. Our future
work will be still focused along this path, in particular, a
remarkable aspect to pursue will be the integration of the
method presented in this paper with an interaction module.
Such a module should provide the user with the ability to
analyze the solution and, more importantly, to participate to
the leveling process.

7 Conclusions
This paper has introduced a novel approach to solve the so
calledMARS-EXPRESSMemory Dumping Problem (MEX-
MDP). A problem arisen during a project work for the Eu-
ropean Space Agency (Cestaet al. 2002). The work de-
scribes a reduction of theMEX-MDP to a classical problem:
the Max Flow problem (Cormenet al. 2001). The reduc-
tion can be intuitive considering that a solution to the dump-
ing problem can be seen as a flow from the satellite to the
ground, such that the problem has a solution when the max-
imum flow equates the total amount of data to dump.

Given this reduction, a novel definition of solution robust-
ness is proposed together an iterative procedure to improve

2For further information see theMEXAR project home page at
http://mexar.istc.cnr.it .

the robustness of a solution. The underlying idea being that
the lower the memory utilization the higher the ability of
facing unexpectedly larger amount of data.

Some experimental data support our thesis: we can effec-
tively removedangerouspeaks of data and distribute them
over the problem horizon by using theIterative-Leveling
procedure. However, as it is expected, this process comes at
a price as other solution quality measures, for example the
mean turnover time, might get worse. This opens interest-
ing research scenarios toward the definition of more effec-
tive procedures for Decision Support Systems and Mixed-
Initiative problem solving approaches, where we we have
to consider the problem from a multi-objective optimization
point of view.

We remark that even though theMEX-MDP problem
comes from a specific study, its features are quite general
and many of the conclusions reported in this paper can be
extended to other spacecraft domains which adopt the same
model of on-board memory. In particular, the Max-Flow re-
duction allows to check the existence of a solution in polyno-
mial time, and this property might be used in many different
contexts, as the definition of a multi-objective optimization
procedure or a Decision Support System. In this work we
have used this reduction to propose a fast heuristic approach
to improve robustness in a solution.

Acknowledgements. The MEX-MDP has been studied
in a study conducted for ESA from November 2000 to
July 2002 (contract No. 14709/00/D/IM). The authors are
currently supported by ASI (Italian Space Agency) under
projects SACSO and ARISCOM. The authors would like to
thank their colleague Riccardo Rasconi for his precious sug-
gestions.

References
[Bensanaet al.1999] E. Bensana, M. Lemaitre, and G. Ver-
faillie. Earth Observation Satellite Management.Con-
straints: An International Journal, 4(3):293–299, 1999.

[Cestaet al.2002] A. Cesta, A. Oddi, G. Cortellessa, and
N. Policella. Automating the Generation of Spacecraft
Downlink Operations inMARS EXPRESS: Analysis, Al-
gorithms and an Interactive Solution Aid. Technical Re-
port MEXAR-TR-02-10 (Project Final Report), ISTC-
CNR [PST], Italian National Research Council, July 2002.

[Cormenet al.2001] T. H. Cormen, C. E. Leiserson, R. L.
Rivest, and C. Stein.Introduction to Algorithms,Second
Edition. MIT Press, 2001.

[Cortellessaet al.2004] G. Cortellessa, A. Cesta, A. Oddi,
and N. Policella. User Interaction with an Automated
Solver. The Case of a Mission Planner.PsychNology Jour-
nal, 2(1):140–162, 2004.

[Goldberg and Tarjan 1988]A. V. Goldberg and R. E. Tar-

jan. A new approach to the maximum flow problem.Jour-
nal of ACM, 35(4):921–940, October 1988.

[Joslin and Clements 1999]D.E. Joslin and D.P. Clements.
“Squeaky Wheel” Optimization.Journal of Artificial Intel-
ligence Research, 10:353–373, 1999.

[Oddi et al.2003] A. Oddi, N. Policella, A. Cesta, and
G. Cortellessa. Generating High Quality Schedules for a
Spacecraft Memory Downlink Problem. In F. Rossi, ed-
itor, Principles and Practice of Constraint Programming,
9th International Conference, CP 2003, number 2833 in
Lecture Notes in Computer Science, pages 570–584, Kin-
sale, Ireland, 29 September - 3 October 2003. Springer.

[Verfaillie and Lemaitre 2001]G. Verfaillie and
M. Lemaitre. Selecting and Scheduling Observations
for Agile Satellites: Some Lessons from the Constraint
Reasoning Community Point of View. In T. Walsh, editor,
Principles and Practice of Constraint Programming,
7th International Conference, CP 2001, number 2239
in Lecture Notes in Computer Science, pages 670–684.
Springer, 2001.

	Introduction
	The Memory Dumping Problem
	Basic Modeling
	Problem Definition

	A Max-Flow Approach for MEX-MDP
	A formalization for Mex-Mdp
	The Max-Flow Problem
	The Max-Flow Model for Mex-Mdp

	Solving Methods
	Iterative leveling

	Experimental Evaluation
	Future Work
	Conclusions

