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Abstract. In the realm of scheduling problems different
sources of uncertainty can invalidate the solutions. In this
paper we are concerned with the generation of high qual-
ity downlink schedules in a spacecraft domain in presence
of a high degree of uncertainty. In particular, we refer to a
combinatorial optimization problem calléd ARS EXPRESS
Memory Dumping ProblemM EX-MDP), which arises in the
European Space Agency progr&dfRs EXPRESS A MEX-

MDP consists in the generation of dumping commands for
transferring the whole set of data from the satellite to the
ground. The domain is characterized by several kinds of
constraints - such as, bounded on-board memory capacities,
limited communication windows over the downlink channels,
deadlines and ready times imposed by the principal investiga-
tors - and different sources of uncertainty - e.g., the amount
of data generated at each scientific observation or the channel
data rate. This work describes a reduction of khex-Mbpp

to a Max-Flow problem, such that the problem has a solution
when the maximum flow equates the total amount of data to
dump. Based on this reduction, an iterative procedure is built
to improve the robustness of a solution with respect to the uti-
lization of the on-board memory. The underlying idea being
that the lower are the peaks in memory utilization, the higher
the ability of facing unexpectedly larger amount of data.

1 Introduction

In a space domain, as in many other applicative domains,
the usefulness of schedules is limited by their brittleness.
Though a schedule offers the potentials for optimized op-
erations, it must in fact be executed exactly as planned to
achieve this potential. In practice, this is generally made
difficult in a dynamic execution environment, where unex-

pected events quickly invalidate the schedule’s predictive as-
sumptions and the validity of the schedule’s prescribed ac-
tions is continuously brought into question. The lifetime of
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bounded on-board memory capacities, limited communica-
tion windows over the downlink channels, deadlines and
ready times imposed by the main investigators - and differ-
ent sources of uncertainty - e.g., the amount of data gener-
ated at each scientific observation or the channel data rate.
This paper analyzes and models, through a Max-Flow
paradigm, the so calleMARsS-EXPRESSMemory Dump-
ing Problem MEX-MDP). The problem involves the pro-
cess of automating the memory dump operations of both
science and housekeeping data, where we consider peaks of
data in memory utilization as sources of brittleness in the
schedule. As a consequence, we propose a novel iterative
levelingalgorithm, based on the Max-Flow reduction, to in-
crease the robustness of a solution by finding a different dis-
tribution of the dumping operations over the same horizon
throughflatteningthe peaks in memory utilization. Prob-
lems similar toMEX-MDP can arise in satellite domains
such as the ones describedWeffaillie and L emaitre 2001
Bensaneet al. 1999. Both works concern a set of Earth
observation operations to be allocated over time under a set
of mandatory constraints such as: no overlapping images,
sufficient transition times (asetuptimes), bounded instan-
taneous data flow and on-board limited recording capacity.
The paper is organized as follows. After a brief intro-
duction of MEX-MDP, the novel flow network model is de-
scribed. Then, a basic algorithm to solvévi&x-MDP in-
stance and an iterative method to improve the schedule ro-
bustness are introduced. The paper ends with some experi-
mental evaluations and a discussion about the future devel-
opments of the presented method.

2 The Memory Dumping Problem

a schedule tends to be very short, and hence its optimizing

advantages are generally not realized. In a deep-space mission likd ARS-EXPRESSdata trans-
MARS-EXPRESSis an ESA program that has launched a mission to Earth represents a fundamental issue. The space-

spacecraft toward Mars on last June 2, 2003 and now, as it probe continuously produces a large amount of data result-

is well-known, the space probe is orbiting around the Red ing from the activities of its payloads (e.g. on-board sci-

Planet and is operating seven different payloatsars- entific programs) and from on-board device monitoring and

ExPRESSrepresents a challenging and interesting domain verification tasks (the so calleldousekeeping dafa All

for research in automated problem solving. The domain these data, usually referred to t@gemetry are to be trans-

is characterized by several kinds of constraints - such as ferred to Earth during downlink sessiofdARS-EXPRESS



SSMM Packet Stores

Resourcegepresent domain subsystems able to give ser-

vices, whileactivitiesmodel tasks to be executed using re-
DUMP STORE sources over time. Our model MARS-EXPRESSrequires
| |

two types of resources:

. Priority Scheme - Solid State Mass Memory (SSMM)he SSMM is able
T S R e to store both science and housekeeping (HK) informa-
T e G Real-Time @M tion. SSMM is subdivided into a set qfackets store
o NG {pk1,pka, ... ,pkn}, each one with a fixed capacity

and a priorityp; for dumping data. Each packet store
Figure 1:0n-board telemetry flow can be seen as a file of a given maximal size and cycli-

cally managed (previous information is overwritten if the
amount of data overflow the packet store capacity).

is endowed with a single pointing system, thus during regu- - Communication ChannelsThe downlink connections to
lar operations, it will either point to Mars and perform pay- Earth for transmitting data. These resources are char-
load operations or point to Earth and transmit data through  acterized by a set of separated communication windows
the downlink channel. As a consequence on-board data are CW = {w;} identifying intervals of time in which down-
first stored in the Solid State Mass Memory (SSMM) and link connections can be established. Each elemgiig a
then transferred to Earth. 3-tuple(r;, s;, e;), wherer; is the available data rate dur-
The main problem to be solved consists in synthesizing  ing the time windoww; ands; ande; are respectively the
spacecraft operations for emptying as much as possible the start and the end-time of such window.
on-board memory during the available downlink time inter-
vals, in order to allow the spacecraft to save new informa-
tion without losing previously stored data and to minimize a
given objective function (for example, the average turnover
time - or flow-time - for a set of scientific observations). Sev-
eral of the constraints related to this problem are mutually
conflicting. Besides the communication channel availabil- - Store Operation Eachst; “instantaneously” stores an
ity, different transmission rates are to be taken into account. ~@mount of datay; at its end-time in a destination packet
Additional constraints arise from the specific use of the on-  StOrepk;.
board memory. That memory is subdivided into different - Memory Dump An activity that transmits a set of data
memory banks (or packet stores) each having a finite capac-  from a packet store to the ground station.
ity. Also, for each piece of information produced inside the
probe, one or more packet stores are identified in which such
data should be stored. Different data are stored in a sequen-
tial way and the packet stores are managed cyclically. As a
consequence, in case the memory is full, precious data might
be overwritten as new data become available, and this is to
be avoided as much as possible.

Activitiesdescribehow resources can be used. Each ac-
tivity a; is characterized by a fixed duratidpnand two vari-
abless; ande; which respectively represent its start-time
and its end-time. Two basic types of activity are relevant to
MEX-MDP: store operationst; and memory dumpsud;.

In the MEX-MDP domain there are two different data
sources requiring store operatiofts. the so-calledPayload
Operation RequeqfPOR) and a set of housekeeping activ-
ities, which produce a continuous stream of data at a given
constant rate, calle@ontinuous Data StreagCDS).

A Payload Operation Request a model for a scientific
observation which generates a set of data distributed over
a subset of the available packet stores. According to this
model, the produced data are decomposed in a set of differ-
ent store operations such thapor; = {st;;}, all of them
The Mars Express Memory Dumping Problekigx-MDP) with the same durations and start-times.
has been formalized in a previous study conducted for the  On the other hand, @ontinuous Data Streammodels an
ESA (seelCestaet al. 2002). In the rest of this section we  on-board process which works in “background” with respect
describe the maiM EX-MDP components. to the scientific activities. It generates a flow of data with

Figure[d shows a sketch of tht1ARS ExPRESS mod- constant rate which has to be stored in the SSMM. Examples
ules that are relevant telEx-MDP. It shows the different of such data streams are the housekeeping data collected on
telemetry (TM) data produced on-board and then stored in a regular basis to control the behavior of the on-board sub-
theSolid State Mass Memory (SSMifiat is subdivided into systems.
packet stores. Memory stores are downloaded with different  The two data sources exhibit different characteristics: in
dumps that transfer data to Earth. The basic objects that arefact, a POR is a time bounded activity, which stores data
relevant to theVlEx-MDP domain can be subdivided into ei-  at its end-time, whereas a CDS is a continuous data flow
therresourcesr activities over the domain horizon. However, we choose to model

2.1 Basic Modeling



also a CDS as a periodic sequence of store operations. Inthat is the maximal value of utilization over the set of packet

particular, given a CDS with a flat rate we define a pe-
riod T4, such that, for each instant of timtg = j - T..4s

(5 = 0,1,2,...) an activity st;; stores an amount of data
equal tor - T..4,. In the particular case @f, = 0 we suppose

stores. A solutiort' is optimalwhenr(.S) is minimal.

3 A Max-Flow Approach for MEX-MDP
A MEX-MDP instance concerns the synthesis of a set of

the amount of stored date is zero. Hence, we can conS|derdump commands for transferring to the ground the whole

as input data for the problem just an equivalent set of store

set of data collected by the satellite. To face such a problem

operations containing data packets, such that, each IoalCketthe following abstraction has been adopted: on a first level,

contains a pointer to its source.

2.2 Problem Definition

Given these basic domain entities, let us now define the
MEx-MDpP. A set of scientific observationsPOR =
{por1, pors,...,por,} and a set of housekeeping produc-
tions, CDS = {cdsy,cdss,...,cds,,}, are both reduced
to a set of store operations on the on-board memory. A
solutionto a MEX-MDP, is a set of dumping operations
S = {mdy, mda, ..., md,} such that:

- the whole set of data are “available” on ground within the
considered temporal horizdd = [0, H].

- Each dump operation starts after the generation of the

corresponding data. For each packet store, the data are

moved through the communication channel according to
a First In First Out (FIFO) policy.

- Each dump activitymd;, is executed within an assigned
time windoww; which has a constant data rate More-
over, dump operations cannot mutually overlap.

- At each instant € H, the amount of data stored in each
packet store@ks; has to be less or equal to the packet store
capacityc; (i.e., overwriting is not allowed).

Though a solution should satisfy all the imposed constraints,
however our main goal is to fingigh qualitysolutions with
respect itgobustnessinformally, a high quality plan deliv-
ers all the stored data and is able to adsorb external modifi-
cations that might arise in a dynamic execution environment
Our definition of solution’s robustness is related to the
idea ofdistance of the solution to the overwriting stale
other words, we consider peaks of data in a packet store
close to its maximal capacity as sources of schedule’s brit-
tleness and a way to increase robustnessflatthese peaks
by finding a different distribution of the dumping operation
over the same problem horizon. In particular, given a solu-
tion to aMEX-MDP instance, for each packet stqrk; it is
possible to give a time functiamse; (¢), with¢ € [0, H], rep-
resenting the amount of data memorized in the packet store
pk; atthe instant. Letuse™® the maximal value over the

k2
horizon[0, H] of use;(t). We define the packet store utiliza-
tion o; = useg’"‘”)/q as the ration between the maximal
level of data in the packet stogé:; and its capacity;. The
robustness of a solutiofi is defined as:

)

() = mazi=1.m{oi}

called Data Dump levelit is assessed the amount of data
to dump from each packet store for each time window. In
a successive level, calld®hcket levelthe final dump com-
mands are generated from the first level results. This second
step can be done automatically once a solution for the Data
Dump level is achieved. For this reason in this work we fo-
cus our attention exclusively on the Data Dump level. This
problemdecompositions motivated by the complexity of
the optimization problem. Using this abstraction we focus
on thedominantaspects of the problem that consist of rea-
soning on data quantities, packets store capacities and dump
capability over the communication links, without consider-
ing the problem of decomposing the dumped data into dump
commands.

In the remainder of the section we introduce a formaliza-
tion for MEX-MDP as a Max-Flow problem and the flow
network associated tol Ex-M DP instance.

3.1 A formalization for MEX-MDP

The formalization is based on a partition of the tempo-
ral horizonH = [0, H] into a set of contiguous windows
W =Awy = [to,t1] [ to = 0} U{w; = (t;-1,t5] | j =
2...m,t; € H}, such thatu!”,w; = H. The partition
is realized upon consideration of significant events. Such
events are assumed to be the start and the end of the tem-
poral horizon, the time instants where a memory reservation
on a packet store is performed, and the time instants where
a change on the channel data rate is operated. It is assumed
that such significant events take place at the windows’ edges.
The key point of the formalization is represented by the
variables:

t=1.n, j=1.m,

)

each defined in the domailf, oc). These represent the
amount of data to dump from the packet stpkg within
awindoww;. To formally represent the domain constraints,
for each packet storgk; (¢ = 1..n) and for each time win-
doww; (j = 1..m) some additional definitions are needed:

- d;;, amount of data memorized in the packet statgat
t;. Where the variableg;y < c; represent the initial data
level in the packet storgks;;

- 1;;, maximal level (amount of data stored) allowed: at
for the packet storgk;, I;; € [0, ¢;];

- bj, maximal dumping capacity availablea;



We introduce two classes of constraints on the set of deci-
sion variables;;. A first constraint captures the fact that for
each windoww; the difference between the amount of gen-

3.3 The Max-Flow Model for MEX-M DP

The current paragraph aims at introducing the flow network
model associated tol Ex-MDP instance. Figur® shows

erated data and the amount of dumped data cannot exceedan example of flow network in the case of two packets store,

the maximal imposed level in the winday (overwriting).

however this example can be easily generalized to the case

Addltlona"y, the dumped data cannot exceed the generated of n packets stores. There are four types of nom”ce

data pverdumpiny We define the following inequalities as
conservative constraints

J J
> di =Y 6k <l ®3)
k=0 k=1
Zdlk—Zm >0 4)

k=1

forec=1...n andj = 1...m. The store operations; are
'impulsive actions’ performed at the end of each time win-
dow w;, whereas the dumping operatiaf)s are performed
during the windoww;. As a consequence, the amount of
datad;; cannot be dumped in the window;, because the
data are not available during;. Hence, we have to check
the constrain{4) to avoid dumping more data than the avail-
able amount at;(;_;) and the constrain[3] at¢;, to avoid
storing more data than the allowed levgl

A second class of constraints concerns the dumping ca-
pacity imposed by the communication channel:

0<L i (Si]‘ < bj
i=1

these inequalities, callatbwnlink constraintsstate that for
each windoww; is not possible to dump more than a certain
amount of data (i.eb;).

j=1.m (5)

3.2 The Max-Flow Problem

In the following we briefly review the theory behind the
Max-Flow problem [Cormenet al. _2007). A flow net-
work G(V, E) is a direct graph wher& is a set of ver-
tices andF is a set of edge@&:, v) with nonnegative capacity
c(u,v) > 0. The flow network has two special vertices: a
sources and sinkt. A flow in G is a real-valued function
f:V xV — Rthat satisfies the following three properties:

- forallu,v € V, f(u,v) < c(u,v)
- forall u,v € V, f(u,v) = —f(v,u)
- forallu € VU {s,t}, >, oy f(u,v) =0.
the value of a flowf into the graph’, is defined as
F=>f(sv),
veV

that is the total flow out of the source. In the Max-Flow
problem given a flow networ&, the goal is to find a flow of
maximum value from source to sink.

sink packet-store nodgs; (as explained below such nodes
are actuallymacro-nodepand channel nodes;.

The packet store nodg;; is composed of two nodes
to represent the two conservative constraints (seef3jig.
The first nodepgjl.) represents the@verdumpingconstraint
@), such that, within the window; it is not possible to
dump more data than the amount available;ag. On the

other hand the nodpw , represents theverwriting con-
straint ), such that, the amount of residual data in the
packet store after the dumping operation over the window
w;, added to the amount of data storedta(d;;), is less
or equal to the allowed capacity of the packet stgye In

particular, on the nodell) there are the following three

flows: f(pi(jfl)’plj)a f(pzjaCh ) andf(p” >p532)) The

flow f(pi(;—1),pi;) represents the residual amount of data
on pk; att;_q, that is, Z?@;E dir, — Zi;ll d;1.The value
f(pij, chj) represents the amount of data dumped fygm
during the time windoww;, that isé;; = f(p:j,ch;). This
edge is labeled witla(p;;, ch;) = b; to hold the constraint
d;; < bj, that is,it is not possible to dump more data than
the channel capacity;. Finally the flowf(pgjl),pg)) rep-
resents the amount of residual data which remains in the
packet store after the dumping over the window

We remark that we split the noge; for the same motiva-
tion above explained for the inequalitié® @nd @). In fact,
if we consider the flow balance on the nopfe) we have
that:

) (2))

i1y, pij) — [(piz, chy) = f(p” ) Dij

that can be rewritten as:

Z dzk - Z (Szk + 51] (ngl),Pg)

which comcrdes wrth the inequaliti). On the other hand,
on the node> there are the following flowsf (p{}’, p(>)),
f(s,pi5), al’ldf(pw,pl( +1)) where the latter represents the
residual amount of dafg’; _, Zk 1 01, and the flow
f(s,pi;) concerns the amount of data stored at the window
w;, which can be at most equalsdg. Considering the flow

balance on!?’ we have that:

FO pD) + f(s.pij) =

that can be rewritten as:
j—1 j

k=0

)>0

f(pijapi(j+1))

J
— Z Sir = f(Pijs Pigi+1)) < lij
k=1



Figure 2:A flow network forMEX-MDP.

Figure 3:The internal structure of a macro-noglg.

which coincides with the inequalitg).

To represent the initial value of each packet store the
arcs(s, pgé)) are labeled with the valué;, whilst the arcs
(pz(-iz, t) are used to represent the overall residual amount of
data on the packets stgpé;. To synthesize solutions which

dump all the data on the ground these arcs are labeled with

lim = 0.

Finally the flow through each channel noglg represents
thedownlinkconstraint over the time window;;,

> figichy) = > 6y = flchy,t) <b;
i=1,....m =1 m

that is, the sum of data dumped from each packet store
over the windoww; is less or equal the channel capacity

To conclude, a flow assignment to any edges is computed
by applying a Max Flow algorithm to the flow network in
Fig. The result represents the maximum value of data
which can be conveyed through the communication channel.

Thus aMEx-MDP will admit a solutionif and only if :
f(s:piz) = c(s,pij) = dij

foreachi = 1,...,nandj = 1,...,m. In other words,
the formula above states that the maximum flow through the
network equates the whole data set stored in the different
packets store.

Based on the model described above, in the next section
two methods for approachingMEeXx-MDP instance are in-

troduced: the former computes a solution, while the latter
aims at refining an initial solution for the sake of robustness.

4 Solving Methods

As mentioned above, to find a solution to theEX-MDP
problem is sufficient to apply a Max-Flow algorithm to the
associated flow network (see Fig{e A solution of a prob-
lem instancendp exists if and only if the flow through each



resented in compact way by = {¢;;} (line[D. If a so-
lution is found,§ # 0, the algorithm proceeds initializ-
ing all the elements of the vectgiatten[] at TRUE, where
flatten[i] = TRUE means that the usage of the packet store
pk; can be improved.

Thewhile loop (Steps 5-14) represents the core of the al-
gorithm. In this the following three steps are iteratively re-
peated:

1. analyze the current solution and selectsritical packet
storepky, such that the percentage usage valyés max-

ITERATIVE-LEVELING(mdp, €)

1 § < SoLvEBYMAXFLOW(mdp)

2 if § # (then

3 forj=1tom

4 flatten[k] — TRUE

5 while 3i| flatten[i] =TRUE

6 pky, «— SELECTPACKETSTORE()
7 forj=1tom

8 lk',j — Otk,(l - €)lkj

9 0" «— SOLVEBYMAXFLOW(mdp)

10 if & = 0 then imum (Step 6);

11 flatten[k] < FALSE 2. for any time windoww;, the capacity,; of the selected

12 for j=1tom packet storepky, is reduced to the valuey (1 — €)ly;

13 lyj — = l(’ij_e) (Steps 7-8). In this way the maximum percentage usage
14 else § — & k is forced to be less tham;;

15 return § 3. solve the modified problem (Step 9). If this does not admit

a solution then the “modified” packet stasg;, is labeled

as not improvableflatten[i] = FALSE and the previous
consistent situation is reloaded (Steps 11-13). Otherwise
the current best solution is updated (Step 14).

Figure 4:lterative-Leveling algorithm.

arc (s,p;;) equates the capacity value, that i&s, p;;) = The aim of the three steps is to iteratively flat the current
c(s,pij). In such a case we have that the set of values critical packet store. These steps will be repeated until there
di; = f(pij,ch;) is a solution ofmdp. There are differ- is at least one packet store which admit an improvement.

ent polynomial algorithms to solve the Max-Flow problem. . )
Our current implementation is based on the Edmond-Karp © EXxperimental Evaluation
version of the Ford-Fulkerson method. The Edmond-Karp The method described above has been evaluated using the

algorithm runs inO(|V||E|?) time, where|V| and |E| are benchmark sets defined during a study conducted for the
respectively the number of nodes and the number of arcs ESA and described ifdestaet al. 2002). In this section
in the flow network. Being in our cas@’| = O(mn) we present the results for one of these benchmarl, $&s
and [E| = O(mmn), our current implementation runs in  This benchmark is composed of 9 problems and is one of the

O(m3n3). An improvement in the sense of CPU time can most critical with respect to, on one hand, the competition
be achieved using more sophisticated max flow methods among the packet stores for the same channel bandwidth,
like the preflow-flush oneGoldberg and Tarjan 1938The and, on the other hand with respect to the limited capacity

reader can find an essential survey on this issu€armen of the packet stores relatively to the amount of generated
et al. 2007, chapter 26). data on the other.

All the algorithms presented in this paper are imple-
4.1 lterative leveling mented in Java on an Athlon 1800 Mhz machine. Fiffi{eg

In this section we present an iterative algorithm for improv- Shows how the application of thierative-Levelingalgo-
ing the robustness of an input solution. We recall that in this ithm can improve the robustness (see Seddpof a so-
domain we consider a solution robust if the level of data over 1ution. In particular, the graph labeled withV /7" repre-
time of each packet store has no peaks close to its maximal S€nts the robustness of a solution generated with one run
capacity, such that there is always available memory for un- ©f the solving algorithm based on the Max-Flow reduction.
expected larger amount of data. Whereas the graph labeled witlEV represents the robust-
We propose an heuristic algorithm for improving robust- N€sS values after the application of therative-Leveling
ness which iteratively applies the three-steps cgoletion algorithm described in Sectidf with ¢ = 0.02. As Fig-
analysis/problem update/constructioBur approach some-  Ureé[5(@] shows, for some problems the robustness is im-
how resembles the concept of “feedback” widely used in Proved from100% to 75%. The average CPU-times are
Control Theory. Furthermore, a similar issue has been also respectively0.8 seconds to generate an initial solution and

used in the workiJoslin and Clements 199%or the opti- 21.8 seconds to improve its robustness.

mization of the makespan of scheduling problems. In addition, two further curvesNIT-AVGandLEV-AVG
Figure[ shows the algorithm. It takes in inpUtMEX- are shown in Figurg(a} These represent the average of the

Mpp instancemdp, and a parameter € (0,1). The al- The benchmark sets are available at the address:

gorithm starts by finding an initial solution solution, rep- http://mexar.istc.cnr.it
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set of valuesuse; over the set of the used packet stores
respectively before and after the application of leeative-
Levelingalgorithm. Clearly, the main effect of the leveling
algorithm is to create a different distribution of the dumping
operations over the horizon in order to remalengerous
data peaks.

One more aspect we want to highlight is the following:
the new distribution of data over the problem horizon comes
at a price in term of other performance measures. In a pre-
vious work we have described several heuristic strategies to
solve MEX-MDP as a combinatorial optimization problem
to minimize the so callethean turnover timéMTT) (Oddi
et al. 2003. The turnover time of a single payload opera-
tion por; coincides with the time elapsed from the store of
the data in the Solid State Mass Memory device, SSMM, to
its delivery to Earth. In Figur(b] we present MTT val-
ues for the same set of problems used for robustness evalu-
ation. In particular, the curves labeled witkIT andLEV
represent the MTT values obtained through the application
of the iterative sampling optimization strategy described in

(Oddi et al. 2003 respectively with and without the appli-
cation of the leveling algorithm described above. A qual-
ity decrease in term of MTT is evident when the robustness
performance is increased. In fact, we observe that in or-
der to improve the mean turnover time, a simple and effec-
tive heuristic is to dump first the activities with the smallest
amount of data. On the other hand, the less are the capacities
of the packets store, the fewer are the chances to follow the
above heuristic, because activities involving larger amount
of data should be dumped before less demanding activities in
order to satisfy the memory capacity constraints. In general,
it is a well-known concept that the improvement of an ob-
jective measure often stems from the decay of another one.
However, in our case the price to pay is not so high, in fact
the obtained MTT values when the the objective function is
scheduling robustness are only twice the best MTT value ob-
tained. Since the average values are around one minute, the
new values are clearly acceptable.

6 Future Work

Generating high quality schedules for spacecraft downlink
scheduling problems can hardly be seen as a single objective
optimization problem, but rather as an optimization problem
involving multiple, conflicting and non-commensurate cri-
teria. MEXAR project [Cortellesseet al. 2004 has started

a research path along in this direction with the main goal
of defining a Decision Support System (DSS) for solving
MEex-Mpp 2. Within this project the main idea is to in-
tegrate human strategic capabilities and automatic problem
solving algorithms to find solutions witthe right compro-
mise among different and contrasting goal©ur future
work will be still focused along this path, in particular, a
remarkable aspect to pursue will be the integration of the
method presented in this paper with an interaction module.
Such a module should provide the user with the ability to
analyze the solution and, more importantly, to participate to
the leveling process.

7 Conclusions

This paper has introduced a novel approach to solve the so
calledMARS-ExPRESSMemory Dumping ProblemN] Ex-
MDP). A problem arisen during a project work for the Eu-
ropean Space AgenciCéstaet al. 2002). The work de-
scribes a reduction of tHd EX-MDP to a classical problem:
the Max Flow problem[Cormenet al. 2001). The reduc-
tion can be intuitive considering that a solution to the dump-
ing problem can be seen as a flow from the satellite to the
ground, such that the problem has a solution when the max-
imum flow equates the total amount of data to dump.

Given this reduction, a novel definition of solution robust-
ness is proposed together an iterative procedure to improve

2For further information see thiél EXAR project home page at
http://mexar.istc.cnr.it



the robustness of a solution. The underlying idea being that jan. A new approach to the maximum flow probledour-

the lower the memory utilization the higher the ability of
facing unexpectedly larger amount of data.

Some experimental data support our thesis: we can effec-
tively removedangerougpeaks of data and distribute them
over the problem horizon by using theerative-Leveling

nal of ACM 35(4):921-940, October 1988.

[Joslin and Clements 1999).E. Joslin and D.P. Clements.

“Squeaky Wheel” OptimizationJournal of Artificial Intel-
ligence Researgt 0:353—-373, 1999.

[Oddi et al.2003] A. Oddi, N. Policella, A. Cesta, and

procedure. However, as it is expected, this process comes al G. Cortellessa. Generating High Quality Schedules for a

a price as other solution quality measures, for example the
mean turnover time, might get worse. This opens interest-
ing research scenarios toward the definition of more effec-
tive procedures for Decision Support Systems and Mixed-
Initiative problem solving approaches, where we we have
to consider the problem from a multi-objective optimization
point of view.
We remark that even though tHdeEx-MDP problem

comes from a specific study, its features are quite general
and many of the conclusions reported in this paper can be

extended to other spacecraft domains which adopt the same

model of on-board memory. In particular, the Max-Flow re-
duction allows to check the existence of a solution in polyno-
mial time, and this property might be used in many different
contexts, as the definition of a multi-objective optimization
procedure or a Decision Support System. In this work we
have used this reduction to propose a fast heuristic approach
to improve robustness in a solution.
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