
Commentary on Paper 026:

A Max-Flow Approach for Improving Robustness in a Spacecraft Downlink

Schedule

Gregg Rabideau

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

gregg.rabideau@jpl.nasa.gov

Abstract. In this paper I will discuss the paper titled “A
Max-Flow Approach for Improving Robustness” and
authored by Angelo Oddi and Nicola Policella from the
Planning & Scheduling Team, Italian National Research
Council. The authors describe a solution to the M ARS
EXPRESS Memory Dumping Problem (M EX-M DP). Their
solution involves reducing the problem to a Max-Flow
problem and making use of standard algorithms to find
solutions. They also describe an iterative procedure for
increasing the robustness of solutions. My comments will
focus mostly on how these techniques might be adapted by
a new project and how they might be integrated into a
mission operations system.

1 Introduction
The paper offers a novel and promising approach to
solving a very common problem in spacecraft operations.
Specifically, the authors address the problem of generating
a spacecraft operations schedule to downlink on-board
data to Earth. The operations for collecting the data are
assumed to be fixed and include both requested science
data and continuous engineering (or housekeeping) data.
Several typical constraints are considered during
scheduling, including on-board memory capacity and
communication bandwidth. The problem is first redefined as
a well-known computer science problem – the Max-Flow
Problem. By doing this, the problem can be solved using
well-studied and highly optimized algorithms. The authors
also tackle the added complexity of execution uncertainty.
During operations, the actual amount of data generated on-
board may be more than expected (due to unknown
compression factors) and the actual amount of data
downlinked may be less than expected (due to unknown
downlink rates). To address this problem, the authors
present an iterative algorithm for increasing the robustness
of the downlink schedule. Robustness is roughly defined
by the maximum percent usage of any on-board memory
bank (packet store) at any point in time. The smaller the
maximum, the more robust the schedule, and the more
amenable it is to execution uncertainty. The authors present

a simple and clever algorithm that works to reduce this
maximum value.

2 Using Max-Flow
The MARS EXPRESS Memory Dumping Problem (MEX-
MDP) is solved by first mapping the specific problem to
the more general Max-Flow graph (or network) problem.
The Max-Flow problem seems like the perfect match for
MEX-MDP and the mapping described in the paper is
very intuitive. Activities, resources, and constraints from
the MEX-MDP become nodes and edges in the Max-
Flow graph. One interesting detail is the introduction of a
“tuning” parameter for the maximal level of a packet
store. This parameter, a value between 0 and the store
capacity, will be used later in the iterative-leveling
algorithm. The remaining details of this transformation
are clearly stated in the paper. However, it is important to
note that many of these details can be hidden from the
end user by automatically generating the graph structure
from a simple problem description. In other words, the
user would only need to specify how many data stores
are available, their capacities, etc.

Once this transformation is complete, one of the existing
graph algorithms can be used to find a solution. The run-
time of the chosen algorithm scales with the number of
packet stores and time points, where the number of
timepoints is roughly proportional to the number of store
operations, memory dumps, and downlink rate changes.
A particular solution to the Max-Flow problem directly
corresponds back to the original MEX-MDP. In other
words, the result will tell you if there is enough memory
and bandwidth to downlink all data being collected. If a
solution exists, the downlink schedule can be extracted
from the result. In general, it seems that the paper
assumes that the problem is under-constrained and it is
not clear what would be done if no solution is found.

3 Uncertainty, Robustness, and the Iterative-
Leveling Algorithm
In the MEX-MDP, there is uncertainty in the amount of
data stored (due to on-board data compression) and the
amount of data downlinked (due to downlink rates). This
means that the actual amount of data stored in memory at
any time may be more than the predicted amount (which
is most likely based on average compression and
downlink rates). The schedule should be robust to
accommodate small differences that arise from these
uncertainties. If the memory use is close to the capacity,
then there is a greater chance of losing data. To address
the difficult problem of execution uncertainty, the
authors present the Iterative-Leveling algorithm to
increase schedule robustness. On each iteration of the
algorithm, the critical packet store is identified, the
maximum level parameter is decreased, and the Max-Flow
algorithm is run again. The critical packet store is the one
that is (at any time) closest to its maximum level
parameter. The maximum level parameter was introduced
to provide a way to “tune” the Max-Flow algorithm.
When the maximum level is set to the memory capacity,
the Max-Flow algorithm generates a consistent but
possibly sub-optimal solution. By decreasing the value,
the algorithm generates a new solution that improves on
the worst part of the previous solution.

4 System Integration
It is interesting to think about how these algorithms
could be used in conjunction with a full planning system
as part of a mission operations system or as a flight
software component. First, the authors have focused on
a sub-problem to a larger spacecraft planning problem.
We would like to solve the full planning problem while
taking advantage of the techniques and results of the
authors. Specifically, the MEX-MDP uses robustness to
define schedule quality. More generally, schedule quality
can be thought of as some measure of data return.
Schedule robustness is a key factor but other factors
must be considered. For example, what if the maximum
memory levels were reduced so much that more Payload
Operations Requests could be added? Should they be?
Adding them could return more data, but will also
decrease robustness and increase the likelihood of losing
data. As the authors discuss in Future Work, many
similar trade-offs exist in the larger planning problem.

To focus on a specific problem, the paper assumes that
the operations for collecting data have been provided as
input and do not change. In practice, to solve the larger
problem we need to generate the data collect schedule as
well as the downlink schedule. The author’s approach to
the sub-problem seems well suited for use as a sub-

component of larger problem solvers. For example, similar
to the Iterative-Leveling algorithm, one could imagine
another iterative algorithm that adds or removes Payload
Operations Requests and runs the Max-Flow algorithm to
generate a downlink schedule for the new problem.
Performance may become a problem, however. While the
polynomial time of Max-Flow is fast in theory, when used
on large practical problems, and as only one step in a
repeating process, it may prove to be too expensive.

While what the authors present is new research, it is
based on proven algorithms and could be part of a flight
software system. Flight qualified CPUs are typically
much slower than desktop computers, sometimes making
even polynomial time algorithms too slow to be used for
critical operations. Generating the first downlink
schedule with Max-Flow is critical, but only needs to be
done once. Iterative-Leveling, on the other hand, is a
non-critical optimization algorithm. It is a natural any-time
algorithm that always has a solution, and can be run in
the background to continuously make the schedule more
robust when CPU is available. In addition to addressing
execution uncertainty, it is interesting to note that the
Iterative-Leveling algorithm could also make the
schedule robust to changes in Payload Operations
Requests. For example, a request submitted at the last
minute is more likely to fit into a robust schedule. If an
on-board planner is used to schedule Payload
Operations Requests, then Iterative-Leveling makes the
downlink schedule more robust to unexpected re-
scheduling of the store operations due to execution
failures.

5 Conclusion
The authors present a unique and effective approach for
generating and optimizing data downlink schedules. This
is a very common problem for space mission operations.
The algorithms presented are general and seem likely to
be easily adapted to new domains. I look forward to
future work in this area of planning and scheduling.

