
Task Swapping: Making Space in Schedules for Space

Laurence A. Kramer and Stephen F. Smith
The Robotics Institute, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh PA 15213
{lkramer,sfs}@cs.cmu.edu

Abstract. Given their inherent expense, space missions
must utilize available resources efficiently. Allocating re-
sources to a single mission or scientific instrument is in it-
self a challenging task, and this complexity becomes magni-
fied as fleets of satellites and networks of groundstations and
antennas are managed as resource pools. Techniques which
perform well for generating schedules for unit capacity re-
sources, though, may not be as well suited for multi-capacity
and multi-resource domains. Similarly, techniques which
perform well at producing good schedules may not be appro-
priate for schedule improvement and schedule repair. While
there has been increasing interest paid to multi-capacity and
multi-resource domains in space, most existing approaches
do not adequately address the problem of schedule stability in
the context of schedule change. We present a general “task-
swapping” procedure which is designed to improve oversub-
scribed schedules in an anytime fashion in multi-capacity and
multi-resource space domains.

1 Introduction
Space mission planning and scheduling is an endeavor
where there are rarely enough resources to support all of a
mission’s goals. There are always more deserving science
observations that could be scheduled on the Hubble Space
Telescope than actually can be scheduled. There is quite of-
ten more data that could be generated by the Landsat 7 than
can be accommodated in the solid state recorder (SSR). Due
in part to the expense of the resources involved and the com-
plexity of managing them, automated planning and schedul-
ing tools have been successfully employed to improve re-
source usage – making sure the highest priority tasks are
allocated to provide the highest signal to noise ratio. In gen-
eral, though, there is room for improvement, both in gen-
erating more highly optimized schedules, and in repairing
schedules in response to unplanned events.

In this paper we review some of the approaches taken to
maximize resource usage in space missions, and question
whether they are applicable to addressing problems where
there are multi-capacity resources and/or resource pools,
where the schedule may fail, or where there is a need to
incorporate additional tasks. Scheduling observations on an
earth orbiting satellite (EOS) is a unit-capacity problem in
that one observation can be assigned to a given science in-

strument at any given time. Scheduling the same observa-
tions to the solid state recorder (SSR) on that satellite is
a multi-capacity problem, since more than one observation
can share the data capacity of the SSR. Scheduling an obser-
vation on a fleet of EOS’s is a multi-resource problem that
takes advantage of resource pools that share the same char-
acteristics.

We claim that many existing techniques for schedule gen-
eration and schedule repair fall short in addressing the in-
creasingly important problem class of multi-capacity, multi-
resource, oversubscribed domains. We discuss a task-
swapping procedure (referred to asMissionSwap) (Kramer
and Smith 2003; 2004) that has been successfully applied
to aircraft mission scheduling, a domain that shares many
attributes with space mission resource allocation problems.
We generalize this procedure such that, given an appropri-
ate task flexibility heuristic, it can address several common
space mission scheduling problems.

2 Techniques for Optimized Schedule Gener-
ation and Schedule Repair

In the domain of space mission planning and scheduling a
number of approaches have been applied to oversubscribed
problems. Most of these rely on constraint directed search
and can be characterized as eitherconstructiveor repair-
based. Constructive techniques aim at building a sched-
ule from scratch; they often rely on lookahead heuristics
to identify potential resource conflicts and backtrack when
confronted with an impasse. Repair based techniques pro-
gressively refine a given schedule state to address problems
of resource allocation and infeasibility.

One early approach to augmenting an existing schedule
with additional tasks was applied to a remote sensing satel-
lite (SPOT). (Verfaillie and Schiex 1994) describe an al-
gorithm, local-changes, that inserts a task into a schedule
by unscheduling enough tasks to clear a space, and then
rescheduling them, proceeding recursively on failure. The
approach presented has the desirable properties of being ap-
plicable in any anytime fashion, and of attempting to pre-
serve the stability of the existing schedule. This method

is very similar in spirit to ourMissionSwapprocedure, al-
though it is confined to operate on a unit-capacity, single-
resource problem.

A number of other efforts in the domain of space mis-
sion planning and scheduling have attacked the problem of
oversubscribed resources, for instance, (Mintonet al. 1992;
Johnston and Miller 1994). However these approaches, too,
focused on unit-capacity/single-resource domains. ASPEN
(Rabideauet al. 1999) does tackle resource de-confliction
across all resources on an Earth Orbiting Satellite (EOS).
Although as (Franket al. 2001) point out, the scheduling
problem that it is applied to is very small, involving up to
four observations a day.

Over the past several years, however, there has been
increasing interest in addressing scheduling problems for
space missions where pools of resources are available, and
these resources are oversubscribed at least locally, if not
globally. These applications include Air Force Satellite Con-
trol Network access scheduling (AFSCN) (Barbulescuet al.
2004b) and scheduling fleets of earth of observing satellites
(Franket al. 2001; Globuset al. 2003). Other applications,
such as schedulingindividual EOS satellites (Potter and
Gasch 1998) are multi-capacity, oversubscribed problems
when considering resources such as the solid state recorder
(SSR).

The approach of Frank et al. to the EOS fleet schedul-
ing problem is to apply a greedy constraint based schedul-
ing algorithm, varied stochastically for improvement using
Bresina’s HBSS algorithm (Bresina 1996). This method
employs a sophisticated contention heuristic, which encom-
passes both task priority and task contention, scheduling the
observation with the highest contention in the time slot with
the least contention. In an aggregate sense this approach
should be successful in allocating a good number of high pri-
ority missions. No guarantee is made, though, for maintain-
ing the state of scheduled missions as the HBSS algorithm
schedules and reschedules from scratch in order to improve
on the global objective.

(Khatib et al. 2003) explore a different facet of this
same (EOS) domain: schedule revision and repair to contend
with scheduling failures, changing viewing conditions, and
targets of opportunity. The authors present an interleaved
schedule execution and revision algorithm that dynamically
decides which observations of lower utility to bump from
the SSR in order to accommodate newer, high value obser-
vations. They consider lookahead techniques for bumping
wisely and efficiently, but don’t consider the possibility of
rescheduling bumped observations.

A strong case is made by Barbulescu et. al. (Barbulescu
et al. 2004a; 2004b) that a Genetic Algorithm solution
performs better than either constructive or repair-based ap-
proaches for the Air Force Satellite Control Network (AF-
SCN) scheduling problem. The experiments they present
focus on generating a maximally subscribed schedule from

scratch, though, and do not address issues of task addition
and schedule repair.

In (Kramer and Smith 2003; 2004) we specifically address
the issues of task addition and schedule repair as they per-
tain to the USAF Air Mobility Command (AMC) schedul-
ing problem (Becker and Smith 2000). We begin from the
perspective that schedules in an oversubscribed domain can
usually be generated efficiently to incorporate most of the
high priority tasks, and it is not that difficult to decide which
tasks to bump or which constraints to relax to incorporate
more tasks. The harder problem is inserting additional tasks
into an already oversubscribed schedule,without bumping
othersand while retaining the stability of the existing sched-
ule.

The techniques applied to the AMC problem are transfer-
able to problems in space mission scheduling with similar
characteristics: oversubscription, multi-capacity resources,
and some degree of flexibility in task placement (flexible
time windows or resource pools). Before looking at several
of these applications in more detail, we first summarize the
AMC problem and the MissionSwap procedure as applied
to it.

3 The AMC Scheduling Problem
Without loss of generality the AMC scheduling problem can
be characterized abstractly as follows:

• A setT of tasks (or missions) are submitted for execution.
Each taski ∈ T has an earliest pickup timeesti, a latest
delivery timelftt, a pickup locationorigi, a dropoff loca-
tion desti, a durationdi (determined byorigi anddesti)
and a prioritypri

• A setRes of resources (or air wings) are available for as-
signment to missions. Each resourcer ∈ Res has capac-
ity capr ≥ 1 (corresponding to the number of contracted
aircraft for that wing).

• Each taski has an associated setResi of feasible re-
sources (or air wings), any of which can be assigned to
carry outi. Any given taski requires1 unit of capac-
ity (i.e., one aircraft) of the resourcer that is assigned to
perform it.

• Each resourcer has a designated locationhomer. For
a given taski, each resourcer ∈ Resi requires a posi-
tioning timeposr,i to travel fromhomer to origi, and a
de-positioning timedeposr,i to travel fromdesti back to
homer.

A schedule is afeasibleassignment of missions to wings.
To be feasible, each taski must be scheduled to execute
within its [esti, lfti] interval, and for each resourcer and
time pointt, assigned-capr,t ≤ capr. Typically, the problem
is over-subscribed and only a subset of tasks inT can be fea-
sibly accommodated. If all tasks cannot be scheduled, pref-
erence is given to higher priority tasks. Tasks that cannot be

placed in the schedule are designated asunassignable. For
each unassignable taski, pri ≤ prj , ∀j ∈ Scheduled(T) :
rj ∈ Resi ∧ [stj , etj] ∩ [esti, lfti] 6= ∅, whererj is the
assigned resource and[stj , etj] is the scheduled interval.

Both the scale and continuous, dynamic nature of the
AMC scheduling problem effectively preclude the use of
systematic solution procedures that can guarantee any sort
of maximal accommodation of the tasks inT . The approach
adopted within the AMC Allocator application instead fo-
cuses on quickly obtaining a good baseline solution via a
greedy priority-driven allocation procedure, and then pro-
viding a number of tools for selectively relaxing problem
constraints and incorporating as many additional tasks as
possible (Becker and Smith 2000). The task swapping pro-
cedure of (Kramer and Smith 2003) is one such schedule
improvement tool.

4 The Basic Task Swapping Procedure

The task swapping procedure summarized below takes the
solution improvement perspective of iterative repair meth-
ods (Mintonet al. 1992; Zwebenet al. 1994) as a start-
ing point, but manages solution change in a more system-
atic, globally constrained manner. Starting with an initial
baseline solution and a setU of unassignable tasks, the ba-
sic idea is to spend some amount of iterative repair search
around the “footprint” of each unassignable task’s feasible
execution window in the schedule. Within the repair search
for a givenu ∈ U , criteria other than task priority are used to
determine which task(s) to retract next, and higher priority
tasks can be displaced by a lower priority task. If the repair
search carried out for a given tasku can find a feasible re-
arrangement of currently scheduled tasks that allowsu to be
incorporated, then this solution is accepted, and we move on
to the next unconsidered tasku

′ ∈ U . If, alternatively, the
repair search for a given tasku is not able to feasibly reas-
sign all tasks displaced by the insertion ofu into the sched-
ule, then the state of the schedule prior to consideration ofu
is restored, andu remains unassignable. Conceptually, the
approach can be seen as successively relaxing and reassert-
ing the global constraint that higher priority missions must
take precedence over lower priority missions, temporarily
creating “infeasible” solutions in hopes of arriving at a bet-
ter feasible solution.

In the subsections below, we describe this task swapping
procedure, and the heuristics that drive it, in more detail.

4.1 Task Swapping

Figure 1 depicts a simple example of a tasku that is
unassignable due to prior scheduling commitments. In this
case,u requires capacity on a particular resourcer, and the
time intervalReqIntr,u = [estu− posr,u, lftu + deposr,u]
defines the “footprint” ofu’s allocation requirement. Within
ReqIntr,u, an allocation durationalloc-durr,u = posr,u +

taska taskc taske

taskb taskd
r

ConflictSetu = {{a,b}, {b,c}, {d,e}}

tasku

estu lftu

posr,u deposr,u

du

Figure 1: An unassignable tasku and the conflict set gener-
ated for all intervals on resource,r.

du+deposr,u is required. Thus, to accommodateu, a subin-
terval of capacity withinReqIntr,u of at leastalloc-durr,u

must be freed up.
To free up capacity foru, one or more currently scheduled

tasks must be retracted. We define a conflictConflictr,int

on a resourcer as a set of tasks of sizeCapr that simul-
taneously use capacity over intervalint. Intuitively, this is
an interval where resourcer is currently booked to capacity.
We define the conflict setConflictSetu of an unassignable
tasku to be the set of all distinct conflicts overReqIntr,u

on all r ∈ Ru. In Figure 1, for example,ConflictSetu =
{{a, b}, {b, c}, {d, e}}.

Given these preliminaries, the basic repair search proce-
dure for inserting an unassignable task, referred to asMis-
sionSwap, is outlined in Figure 2. It proceeds by computing
ConflictSettask (line 2), and then retracting one conflict-
ing task for eachConflictr,int ∈ ConflictSettask (line3).
This frees up capacity for insertingtask (line 5), and once
this is done, an attempt is made to feasibly reassign each re-
tracted task (line 6). For those retracted tasks that remain
unassignable,MissionSwap is recursively applied (lines 7-
10). As a given task is inserted byMissionSwap, it is
marked as protected, which prevents subsequent retraction
by any later calls toMissionSwap.

In Figure 3, the top-levelInsertUnassignableTaskspro-
cedure is shown. OnceMissionSwaphas been applied to
all unassignable tasks, one last attempt is made to schedule
any remaining tasks. This step attempts to capitalize on any
opportunities that have emerged as a side-effect ofMission-
Swap’sschedule re-arrangement.

4.2 Retraction Heuristics

The driver of the above repair process is the retraction
heuristic ChooseTaskToRetract. In (Kramer and Smith
2003), three candidate retraction heuristics are defined and
analyzed, each motivated by the goal of retracting the task
assignment that possesses the greatest potential for reassign-
ment:

MissionSwap(task, Protected)
1. Protected ← Protected ∪ {task}
2. ConflictSet ← ComputeTaskConflicts (task)
3. Retracted ← RetractTasks (ConflictSet, Protected)
4. if Retracted = ∅ then Return(∅) ; failure
5. ScheduleTask(task)
6. ScheduleInPriorityOrder(Retracted, least-flexible-first)
7. loop for (i ∈ Retracted ∧ statusi = unassigned) do
8. Protected ← MissionSwap(i, Protected)
9. if Protected = ∅ then Return(∅) ; failure
10.end-loop
11.Return(Protected) ; success
12.end

RetractTasks(Conflicts, Protected)
1. Retracted ← ∅
2. loop for (OpSet ∈ Conflicts do
3. if (OpSet− Protected) = ∅ then Return(∅)
4. t ← ChooseTaskToRetract(OpSet− Protected)
5. UnscheduleTask(t)
6. Retracted ← Retracted ∪ {t}
7. end-loop
8. Return(Retracted)
9. end

Figure 2: Basic MissionSwap Search Procedure

• Max-Flexibility - One simple estimate of this potential
is the scheduling flexibility provided by a task’s feasi-
ble execution interval,ReqIntr,i, defined earlier. Let
feas-durr,i be the duration ofReqIntr,i. Then an over-
all measure of taski’s temporal flexibility is defined as1

Flexi =
∑

r∈Resi
alloc-durr,i

feas-durr,i

leading to the following retraction heuristic:

MaxFlex = i ∈ C : Flexi ≤ Flexj∀j 6= i

whereC ∈ ConflictSetu for some unassignable tasku.

• Min-Conflicts - Another measure of rescheduling poten-
tial of a taski is the number of conflicts within its feasible
execution interval, i.e.|ConflictSeti|. This gives the
following heuristic:

MinConf = i ∈ C : |ConflictSeti| ≤ |ConflictSetj |
∀j 6= i

whereC ∈ ConflictSetu for some unassignable tasku.

1This formulation varies from the one presented in our earlier
work (Kramer and Smith 2003; 2004) where we compute the de-
nominator ofFlexi aslfti− esti, which did not take into account
the duration of positioning and depositioning legs (setup duration).
Given that the positioning durations vary by resource, but are con-
stant per resource, a heuristic that takes them into account should
be more informed. Our latest experiments have borne this out.

InsertUnassignableTasks(Unassignables)
1. Protected ← ∅
2. loop for (task ∈ Unassignables) do
3. SaveScheduleState
4. Result ← MissionSwap(task, Protected)
5. if Result 6= ∅
6. then Protected ← Result
7. elseRestoreScheduleState
8. end-loop
9. loop for (i ∈ Unassignables ∧ statusi = unassigned) do
10. ScheduleTask(i)
11.end-loop
12.end

Figure 3: InsertUnassignableTasks procedure

• Min-Contention - A more informed, contention based
measure is one that consider’s the portion of a task’s ex-
ecution interval that is in conflict. Assuming thatdurC

designates the duration of conflictC, taski’s overall con-
tention level is defined as

Conti =
∑

C∈ConflictSeti
durC∑

r∈Resi
feas-durr,i

leading to the following heuristic:

MinContention = i ∈ C : Conti ≤ Contj ,∀j 6= i

4.3 Experimental results
The original experiments of (Kramer and Smith 2003) (car-
ried out on a suite of 100 problems) demonstrated the effi-
cacy of theMissionSwapprocedure in the target domain. In
this study, max-flexibility was shown to be the strongest per-
former; its application enabledMissionSwap to schedule,
on average, 42% of the initial set of unassignable missions.
Min-contention, scheduled 38%, but was almost three times
slower. Min-conflicts proved less effective, scheduling only
30% on average.

These results were expanded upon in later work (Kramer
and Smith 2004), where several search pruning techniques
were tested on a similar suite of 100 problems. These tech-
niques demonstrated that theMissionSwapalgorithm could
be sped up significantly without sacrificing solution quality.
With these pruning techniques in place, the min-contention
retraction heuristic outperforms max-flexibility in solution
quality, however the latter retained a significant runtime ad-
vantage.

Several iterated stochastic techniques were applied to the
best solutions found in the 100-problem set, and it was
shown that further modest gains in solution quality were
achievable given a reasonable amount of time.

5 How does MissionSwap work?
TheMissionSwaptask swapping procedure is clearly a gen-
eral mechanism for schedule repair in the presence of multi-

capacity resources. While the AMC Allocator performs
well employing a max-flexibility or min-contention heuris-
tic, even random choice can be used although with higher
cost and worse results. The max-flexibility heuristic, it
should be noted, turns out to be well informed because of
a reasonable variance in slack (more specifically the ratio of
runtime to feasible window) across the set of input tasks. In
domains where slack is not very variable, it is likely that a
contention-based heuristic would be the better informed.

The important thing to note is thatMissionSwap is not
designed to swap a task into the schedule at the expense of
other tasks. It is specifically designed to insert a task into the
schedule by shifting a limited number of contending tasks,
either to an alternative resource or to an alternate time in a
manner that satisfies all task and resource constraints.

The power ofMissionSwap, then, relies not so much on
deciding where to schedule an unassignable task, but on de-
ciding which tasks to unschedule, such that all will have op-
portunities to reschedule. If all do not reschedule, the algo-
rithm searches recursively, but eventually all retracted tasks
must schedule or the algorithm fails. Clearly, then, wise
choice a retraction heuristic is important to the procedure,
although construction of this heuristic is domain dependent
and may require some tuning.

6 Applying MissionSwap to Space domains
We feel thatMissionSwap is applicable generally to the
problem of scheduling tasks in oversubscribed, multi-
capacity and multi-resource space domains. Many of these
domains experience high volatility as viewing conditions
change and targets of opportunity make themselves known.
At the same time that new tasks need to be inserted in a
schedule, there is high value to maintaining as much stabil-
ity as possible in the existing schedule. Of prime importance
is not sacrificing high priority tasks at the expense of lower
priority ones. Many of the existing approaches that we dis-
cussed earlier are not appropriate as “anytime” techniques,
either rescheduling from scratch or making schedule repairs
that sacrifice one task for another.

We now consider a few space scheduling problems and
explore how theMissionSwapprocedure might be applied
in these contexts to handle oversubscription in a controlled
way.

6.1 EOS Fleet Scheduling
Scheduling observations on an Earth Orbiting Satellite is a
very challenging problem. There are often more observa-
tions to be allocated than can be accommodated by scientific
instruments or data storage capacity. The domain is subject
to many complex constraints and constant change due to lo-
cal weather patterns and unpredictable events such as vol-
canic eruptions.

(Pemberton 2000) tackles the complexity of the EOS fleet
domain by segmenting the scheduling problem into subsets

of tasks ordered by priority, scheduling the subsets individ-
ually and then combining the schedules. This technique is
not amenable to schedule repair, but Pemberton remarks that
it could be combined with local repair to improve subopti-
mal schedules. Both (Franket al. 2001) and (Globuset al.
2003) point out that scheduling the EOS fleet collectively
can mitigate problems of complexity by tackling local re-
source oversubscription by shifting tasks from a resource on
one satellite to a compatible resource on another. Frank et
al. present a constraint-based approach to the problem, in-
volving stochastic heuristic search.

Globus et al. compare the performance of a number of
techniques as applied to both the single and two-satellite
EOS scheduling problem including genetic algorithms, sim-
ulated annealing, squeaky wheel optimization, and stochas-
tic hill climbing. Their preliminary experimental results
point to simulated annealing as the most effective method,
and that scheduling two satellites as a combined resource en-
abled scheduling of 28% more images.(Globuset al. 2003)

All of the above efforts aim at satisfying the objective of
scheduling as many high priority observations as possible.
They are not geared, however, to the task of inserting addi-
tional tasks in an oversubscribed EOS fleet schedule.

6.2 Comparison of the AMC and EOS Fleet
Scheduling domains

The AMC and EOS Fleet Scheduling domains have both
similarities and differences.

• Task Priority. In both problems there is a high premium
placed on respecting task priority, however in the EOS
domain individual task priority can vary as viewing con-
ditions change.(Franket al. 2001)

• Task Flexibility.In the AMC domain there is a great vari-
ability in the amount of slack in which to schedule a given
task. Some very short duration missions can schedule fea-
sibly in a very large duration window. Conversely, some
long duration missions are highly constrained as to when
they can schedule. In the EOS domain, observations are
more discretely constrained as to when they can schedule.
That is, due to the nature of the EOS orbit, an image can
be acquired only during orbits when the satellite is posi-
tioned over the earth to capture the target or when the sci-
entific instrument can be pointed to take the image (given
that the instrument is pointable). This means that feasible
time slots for a given observation may be found in orbit
n, n + k, n + 2k, . . . , and there may be some latitude for
moving start times of observations within a given orbit.
When we consider a fleet of satellites, this same observa-
tion may also be schedulable on other satellites in orbits
m, m+j, m+2j, . . . , which could describe very different
intervals in time than the original satellite.

• Task Linking.One other aspect of the EOS problem that
contrasts with AMC pertains to the dependencies between

observations. An AMC mission is an ordered sequence of
individual legs, but the mission is scheduled as a whole.
Only the positioning and depositioning legs and alloca-
tion durations change as alternate resource assignments
(wings) are allocated.2 In the EOS domain, individual
images, or scenes, may be executed completely indepen-
dently of one another, however there is a strong benefit to
linking geographically contiguous scenes into a cluster.
This not only saves on header and trailer data overhead,
but may reduce the amount of warm-up time on the imag-
ing instrument.(Potter and Gasch 1998) In the discussion
that follows we ignore the benefit of clustering, and focus
on scheduling a single unassignable observation. Our ap-
proach is extensible to preserving and extending clusters
by allocating them as blocks of observations.

• Resource Capacity.Lastly, when a mission is assigned to
a wing in the AMC problem, there are typically a good
number of units of capacity allocated in the same time in-
terval (on the order of 5-50), whereas in EOS scheduling,
each instrument can execute one observation at a time,
but multiple satellites may be able to accommodate that
observation.

6.3 TaskSwap for schedule improvement in EOS
Fleet Scheduling

We can now describe a solution to the problem of inserting
additional observations in an existing EOS Fleet Schedule.
We take as input a feasible scheduleS of observationsO,
where eacho ∈ O is scheduled at timet on a unique satellite
σ ∈ F , an EOS Fleet. (Without loss of generality we assume
one scientific instrument per satellite.) Informally, we say
that an observationo is unassignableif there exists no time
t in its domain of feasible viewing windows such thato can
be assigned att and no domain constraints are violated.

For aMissionSwap-like procedure in the EOS domain to
be effective, it is not sufficient to retract one task from a
Conflict, since aConflict as defined earlier will trivially
always be a set of exactly one task, thus leaving no choice
for a retraction heuristic. In the AMC domain, there will in
general be more than one unit of capacity assigned at a given
time, whereas in the EOS domain this is not the case, so in
order for a retraction heuristic to be effective, we redefine
the notions ofConflict andConflictSet.

To define a larger set of possibilities for the retraction
heuristic to consider, we focus on identifying alternative sets
of tasks that must be retracted to place a new task in a given
EOS observation interval. In Figure 4 one conflicted tasko
is depicted. In this illustration we consider one unassignable
interval i on a satelliteσ. In general there will be other
conflicted intervals on the satellite’s timeline. Fortasko

2Merging of missions – linking the end of one mission with the
beginning of another – is allowed in the AMC domain, but this
practice does not take place during routine scheduling, but can be
initiated by the user as a post-processing phase.

to be able to schedule in the interval bounded by its earli-
est and latest start times,esto and lfto, either taska and
taskb or taskb and taskc must be retracted. This leads

taska taskb taskc
�

i

tasko

esto lfto do

ConflictSet� ,o,i = {{{a,b},{b,c}}}

Figure 4: An unassignable observationo and the structured
conflict set generated for one intervali on satelliteσ.

us to a definition of aRetractionSet, the set of minimal
critical sets (MCSs) (Laborie and Ghallab 1995) associated
with the conflict. Letint be a conflicted interval for an
unassignable observationo, if given an empty schedule,o
is assignable inint, but given the current state of the sched-
ule there is no subinterval inint of sufficient duration such
thato can feasibly be assigned. LetO

′
be the set of obser-

vations that consume capacity over the intervalint. Then
the RetractionSet for observationo over int is the set of
all distinct subsets ofO

′
such that unscheduling the obser-

vations in a subset would free up enough duration foro to
schedule, and each subset is minimal. I.e., it is necessary to
unschedule all observations in a subset to allowo to sched-
ule.

We define a conflict,Conflictσ,int, for a satellite
σ in one interval int, as the RetractionSet for int,
and aConflictSetσ,o,int as the set of distinct conflicts
for o in int. Then ConflictSeto is the collection of
ConflictSetσ,o,int over all conflicted intervals and satel-
lites foro.

We can now define a procedureTaskSwap (Figure 5),
which generalizes theMissionSwap procedure defined in
Figure 2. The key difference between theTaskSwapand the
MissionSwapprocedures is that in the former the second ar-
gument to the procedure,ProtectedSets, tracks sets of ob-
servations (corresponding to MCSs) rather than individual
observations. To protect a single observation rather than sets
of observations would rule out that observation from being
considered byTaskSwapas member of a different MCS. In
addition, the call toComputeTaskConflicts in line 2 now
returns a set ofRetractionSets.

To add an unassignable EOS observationo
′

to the sched-
ule S, we callTaskSwap(o

′
, ∅) which will either fail to in-

corporateo
′

in S or generate a new feasible scheduleS
′
.

We must also redefine the functionRetractTasks (See
Figure 5). The main difference betweenRetractTasksand
our earlier definition ofRetractTasks in Figure 2 is line
4, where a call is made to ChooseTasksToRetract (plural)

TaskSwap(task, ProtectedSets)
1. ProtectedSets ← ProtectedSets ∪ {{task}}
2. ConflictSet ← ComputeTaskConflicts (task)
3. Retracted ← RetractTasks (ConflictSet, ProtectedSets)
4. if Retracted = ∅ then Return(∅) ; failure
5. ScheduleTask(task)
6. ScheduleInPriorityOrder(Retracted, least-flexible-first)
7. loop for (i ∈ Retracted ∧ statusi = unassigned) do
8. ProtectedSets ← TaskSwap(i, ProtectedSets)
9. if ProtectedSets = ∅ then Return(∅) ; failure
10.end-loop
11.Return(ProtectedSets) ; success
12.end

RetractTasks(ConflictSet, ProtectedSets)
1. Retracted ← ∅
2. loop for (Conflict ∈ ConflictSet do
3. if (Conflict− ProtectedSets) = ∅ then Return(∅)
4. T ← ChooseTasksToRetract(Conflict− ProtectedSets)
5. UnscheduleAll(T)
6. Retracted ← Retracted ∪ {T}
7. end-loop
8. Return(Retracted)
9. end

Figure 5: A Generalized Task Swapping Procedure

instead of ChooseTaskToRetract (singular). The heuristic
ChooseTasksToRetract should select the subset of obser-
vations to unschedule that has the best chance of reschedul-
ing. One such implementation is theContentiono heuristic
– the contention for an observationo over all time slots –
defined in (Franket al. 2001). The computation would need
to be aggregated over all observations in the conflict sub-
set, and the subset of tasks with the minimumContentiono

would be selected.

6.4 SSR Resource Allocation Problem

Data capacity on a satellite’s Solid State Recorder (SSR) can
often be the limiting factor in scheduling observations on an
EOS. It is often possible to take more images than can be
stored in the SSR before the next opportunity to downlink
data occurs and the SSR capacity is replenished. (Potter and
Gasch 1998) solve this with a multi-pass scheduling algo-
rithm, which schedules first without regard to priority and
on a second pass preempts lower priority tasks if resource
capacities are overallocated. (Khatibet al. 2003) study the
problem of incorporating new SSR tasks interleaved with
execution in an onboard scheduler on an EOS satellite. Their
method revises the schedule dynamically by sacrificing the
task or tasks with lowest utility value to incorporate a new
task of expected high utility value. Neither of these ap-
proaches considers the possibility of reallocating tasks on

another SSR time block in order to incorporate new ones
in an existing SSR schedule, however theTaskSwapPro-
cedure we have just outlined for EOS Fleet Schedulingis
applicable to SSR Resource Allocation.

6.5 Features of the SSR Capacity Model

The SSR is a multi-capacity resource, as its data volume is
available for a number of observations to share at the same
time. At certain intervals, the SSR capacity is freed up by
downlinking observation data to ground stations. The SSR
capacity model differs from the AMC model in that one con-
flicted observation may require that more than one observa-
tion be de-allocated from the SSR to free up necessary ca-
pacity.3 In this sense, the SSR model is similar ”vertically”
in time as the EOS model is ”horizontally.” Figure 6 illus-
trates this.

�

do

ConflictSet �
 = {{{b},{a,c}}, {{d,e},{d,f},{d,g},{e,f},{e,g},{f,g}}, {{h},{i}}}

tasko

SSR1

taskd

taske

taskg

taska

taskb

taskc

SSR2 SSR3

taskf

taskh

taski

Figure 6: An unassignable observationo and the structured
conflict set generated for several intervals of SSR capacity
on satelliteσ.

In this figure we havetasko which requiresdo units of
SSR data capacity. On satelliteσ there are three periods of
almost fully subscribed SSR usage, and we assume that the
SSR data is downlinked in between these periods. (For now,
we consider the one-satellite problem, but this discussion
generalizes to multiple satellites.) Fortasko to schedule on
σ, one of theSSRi periods must free up at least enough ca-
pacity equal todo−FreeSSRi, the free capacity onSSRi.
In this example, then, we define theConflictSetσ to be
the set of conflicts in Figure 6, the set of minimal subsets
of tasks such that retracting one subset will allowtasko to

3Technically speaking, the AMC model may require that more
than one mission be freed up in any one time interval if, for in-
stance, an unassignable mission requires three planes, while the
scheduled missions only require one each. This differs from the
SSR model in that chunks of SSR memory do not come in such
discrete quanta, so that two observations using more capacity than
minimally required may need to be re-allocated to schedule an-
other.

schedule. I.e., the set ofRetractionSets, similarly defined
as in the EOS Fleet problem.

It should be noted that in the worst case the number of
task combinations making upConflictSetσ in this context
can be exponential. In practice, this can be mitigated by
using the pruning techniques that (Cestaet al. 2002) apply
in sampling minimal critical sets.

6.6 TaskSwap for schedule improvement in SSR
Scheduling

With this informal treatment of aConflictSetσ, and
ConflictSeto applied for allσ ∈ F , it is not hard to see
that the definition ofTaskSwapfor EOS scheduling applies
as well to SSR scheduling. What is needed is an appropriate
retraction heuristic forChooseTasksToRetract, and again
we find one in (Franket al. 2001),Contentionr,o, which
computes the contention for an observationo requiring an
SSR resourcer. This computation is aggregated over all ob-
servations in the conflict subset, and the subset of tasks with
the minimumContentionr,o would be selected for retrac-
tion.

In actuality the SSR problem may be even more suited
to the TaskSwap procedure than Figure 6 suggests. We
have portrayed the SSR as only accommodating a few ob-
servations at a time, but on Landsat 7, for instance, typi-
cal usage is more like 90 observations (scenes).(Potter and
Gasch 1998). This large number of observations to choose
from could actually make the problem easier, particularly if
there is a large variance in heuristic values. A small num-
ber of observations per SSR would mean a smaller search
space, but it could be difficult to find large enough ”holes”
in the SSR schedule to fit one in, whereas a larger number
of much smaller observations would generally provide can-
didates that could fit somewhere into SSR underutilization.
Empirically this has been our experience in the AMC do-
main, where it is almost always possible to make space for a
mission by rescheduling several smaller ones.

The SSR scheduling problem is, of course, intimately
linked with the EOS observation scheduling problem de-
scribed earlier, in that the observations are the same in
both cases, only we consider their contention on different
resources, the science instrument (or satellite, as we have
couched it) and the SSR. De-conflicting an observation that
is unassignable on one resource or the other we would at-
tack the conflicted resource, while taking into account con-
tention on other resources given the contention measure
Contentionr,o for that resource.

6.7 AFSCN scheduling

The AFSCN scheduling problem involves assigning user
requests for communication from one of over 100 satel-
lites to 16 antennas located on 9 ground stations around the
Earth.(Barbulescuet al. 2004b) This problem has many of
the same attributes as the AMC scheduling problem: multi-

ple resources, multi-capacity resources, and oversubscribed
resources. The approach that Barbulescu et al. take to
managing oversubscription, though is very different. They
have found that for a problem suite using actual AFSCN
data, a genetic algorithm outperforms both constructive,
repair-based, and local search in generating a schedule with
the fewest unassigned tasks.(Barbulescuet al. 2004a) The
strength of this approach is that there are some very striking
characteristics of the problem domain, all of which would
be difficult to encode in a heuristic function, but which the
genetic algorithm is able to learn over many iterations. For
instance, it is the case that simple one-for-one task swaps are
usually not sufficient to resolve a conflict, whereas multiple
moves must be made.(Barbulescuet al. 2004a)

This approach to managing oversubscription in a large
problem in the presence of multiple, multi-capacity re-
sources is clearly very exciting, as it is able to generate a
highly allocated schedule in a short period of time – on the
order of a few seconds for approximately 500 requests.4 Fur-
thermore, it holds out the promise of transferring to some of
the other domains we have discussed, without the need for
specially crafted domain heuristics.

On the other hand, it is not clear whether this approach
is applicable to the problem of incorporating new requests
into an existing schedule without disrupting good portions
of that schedule. While this may not be a requirement of the
AFSCN domain, itis a requirement of some of the other do-
mains that we have studied, so it remains to be seen whether
the genetic algorithm technique of Barbulescu et al. trans-
fers to the problem of schedule improvement and schedule
repair in those domains. It seems clear, though, that the
TaskSwap procedure that we have explored for the EOS
Fleet scheduling and SSR allocation domainsis transferrable
to the AFSCN problem.

6.8 Features of the AFSCN scheduling Capacity
Model

The AFSCN capacity model is interesting in that it can be
considered a hybrid between the AMC, EOS, and SSR mod-
els that we have studied. Typically an AFSCN request to
schedule involves a particular antenna at a ground station
during a visibility interval of the satellite to that ground
station. However, alternate intervals at different groundsta-
tions, may also be requested.(Barbulescuet al. 2004b)

Given the math of 9 ground stations and 16 antennas, it is
clear that some groundstations have more than one antenna,
but others have only one. Those ground stations with more
than one antenna can be considered as a multi-capacity re-
source somewhat analogous to an AMC wing (with much
less capacity). A request on one antenna should be schedu-
lable on another antenna at the same station during the same
time interval. Ground stations with one antenna behave like

4Personal communication from L. Barbulescu.

a unit-capacity EOS satellite, as there are multiple discrete
time windows per antenna in which to schedule. Finally,
capacity usage on a given antenna is comparable to that on
a single EOS solid state recorder in that the amount of ca-
pacity requested varies in proportion to the quantity of data
downlinked.

6.9 TaskSwap for schedule improvement in
AFSCN scheduling

Without getting into the details, then, it should be clear that
a ConflictSet can be defined utilizing the concept of a
RetractionSet in terms of requests, ground stations, anten-
nas, and intervals, and that theTaskSwapprocedure defined
in Figure 5 is applicable to adding an unassignable commu-
nications request to an oversubscribed AFSCN schedule. An
appropriate flexibility heuristic for requests suitable as a re-
traction heuristic forRetractTasks is cited in(Barbulescuet
al. 2004a) based on the work of Gooley.(Gooley 1993) This
heuristic encompasses some of the same features as the max-
flexibility and min-contention heuristics employed byMis-
sionSwapin the AMC domain.

7 Conclusions
There has been increasing interest in addressing multi-
capacity and multi-resource problem domains in space. Ex-
isting techniques are often capable of doing a good job at
generating a schedule in the face of oversubscription, how-
ever most techniques are not suited to the problem of task
addition and schedule repair. Those techniques that do ad-
dress schedule repair generally rely on bumping of lower pri-
ority tasks. We have presented a general purpose TaskSwap
procedure and shown its applicability to adding tasks in an
anytime fashion in three multi-capacity and multi-resource
space scheduling domains.

The merit (or inapplicability) ofTaskSwap to domains
other than AMC will only be demonstrated with experi-
ments in those domains. However, testing out new tech-
niques in a domain as complex as EOS fleet scheduling, for
instance, is difficult when not involved in that domain on a
day-to-day basis. It is possible to abstract out the important
characteristics of the domain to create a suite of problems
for experimental purposes, but these abstract models often
miss an important domain feature that could make the re-
sults of those experiments unreliable. Nevertheless, we are
currently working on abstracting out the essential features
of the AMC domain with a test data set to make it avail-
able to other researchers. We encourage others in the field
to make problem instances and data available, and encour-
age them to experiment with applyingTaskSwap to their
domains. One such problem set that has recently come to
our attention is the 2003 challenge problem of the French
OR Society (ROADEF) on the Management of Missions of
Earth Observing Satellites.5

5http://www.prism.uvsq.fr/˜vdc/ROADEF/CHALLENGES/

There is certainly a good deal left to explore in this area.
In the AMC domain itself, there are a number of variants
to TaskSwap that we have tried, but which are outside the
scope of this paper. Other techniques remain to be explored.
In (Kramer and Smith 2004) we tested a number of prun-
ing techniques to improve the performance of the algorithm,
but one pruning method we have not yet experimented with
is ”resource pruning.” Looking closely at the description
of MissionSwap (Figure 2),RetractTasks is called onall
alternate resources. The reason for this is thatMission-
Swap is agnostic as to which resource the unassignable task
should be allocated to, so all resources are de-conflicted even
though only one will actually be used. This has the synergis-
tic effect of creating more flexibility for the retracted tasks to
schedule. It is possible, though, that by selecting only ”the
best” resource to de-conflict (the one whose tasks are most
likely to be able to reschedule), better quality solutions will
be returned more quickly.

Acknowledgements
The authors would like to thank Robert Morris of NASA
Ames Research Center and Laura Barbulescu of Colorado
State University for discussions which helped us better un-
derstand the EOS and AFSCN scheduling domains and
scheduling techniques. The work reported in this paper
was sponsored in part by the Department of Defense Ad-
vanced Research Projects Agency (DARPA) and the US
Air Force Research Laboratory under contracts F30602-
00-2-0503 and F30602-02-2-0149, by the USAF Air Mo-
bility Command under subcontract 10382000 to Northrop-
Grumman Corporation, and by the CMU Robotics Institute.

References
L. Barbulescu, A. E. Howe, L.D. Whitley, and M. Roberts.
Trading places: How to schedule more in a multi-resource
oversubscribed scheduling problem. InProc. 14th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-04), to appear, Whistler BC, June 2004.

L. Barbulescu, J. P. Watson, L. D. Whitley, and A. E. Howe.
Scheduling space-ground communications for the airforce
satellite control network.Journal of Scheduling, to appear,
2004.

M. A. Becker and S. F. Smith. Mixed-initiative resource
management: The amc barrel allocator. InProc. 5th Int.
Conf. on AI Planning and Scheduling, pages 32–41, Breck-
enridge CO, April 2000.

J. Bresina. Heuristic-baised stochastic sampling. InPro-
ceedings 13th national Conference on AI, pages 271–278,
Portland OR, 1996. AAAI Press.

A. Cesta, A. Oddi, and S. F. Smith. A constraint-based
method for project scheduling with time windows.Journal
of Heuristics, 8:109–136, 2002.

2003/challenge2003en.html#sujet

J. Frank, A. J́onsson, R. Morris, and D. E. Smith. Planning
and scheduling for fleets of earth observing satellites. In
Proc. 6th Int. Symposium on AI, Robotics and Automation
for Space, 2001.

A. Globus, J. Crawford, J. Lohn, and A. Pryor. Scheduling
earth observing satellites with evolutionary algorithms. In
International Conference on Space Mission Challenges for
Information Technology, 2003.

T. Gooley. Automating the satellite range scheduling pro-
cess. Master’s thesis, Air Force Institute of Technology,
1993.

M. D. Johnston and G. Miller. Spike: Intelligent scheduling
of hubble space telescope observations. In M. Zweben and
M. Fox, editors,Intelligent Scheduling. Morgan Kaufmann
Publishers, 1994.

L. Khatib, J. Frank, D.E. Smith, R. Morris, and J. Dun-
gan. Interleaved observation execution and rescheduling
on earth observing systems. InICAPS-03 Workshop on
Plan Execution), Trento Italy, June 2003.

L. A. Kramer and S. F. Smith. Maximizing flexibility: A re-
traction heuristic for oversubscribed scheduling problems.
In Proceedings 18th International Joint Conference on Ar-
tificial Intelligence, Acapulco Mexico, August 2003.

L. A. Kramer and S. F. Smith. Task swapping for schedule
improvement, a broader analysis. InProc. 14th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-04), to appear, Whistler BC, June 2004.

P. Laborie and M. Ghallab. Planning with sharable resource
constraints. InProceedings 14th International Joint Con-
ference on Artificial Intelligence, Montreal, August 1995.

S. Minton, M. D. Johnston, A. B. Philips, and P. Laird.
Minimizing conflicts: A heuristic repair method for con-
straint satisfaction and scheduling problems.Artificial In-
telligence, 58(1):161–205, 1992.

J. C. Pemberton. Toward scheduling over-constrained
remote-sensing satellites. InProceedings 2nd Int. NASA
Workshop on Planning and Scheduling for Space, San
Francisco, CA, March 2000.

W. Potter and J. Gasch. A photo album of earth: Schedul-
ing landsat 7 mission daily activities. InProc. of the
International Symposium Space Mission Operations and
Ground Data Systems, 1998.

G. Rabideau, R. Knight, S. Chien, A. Fukanaga, and
A. Govindjee. Iterative planning for spacecraft operations
using the aspen system. InProcedings 5th International
Symposium on AI, Robotics and Automation for Space,
1999.

G. Verfaillie and T. Schiex. Solution reuse in dynamic con-
straint satisfaction problems. InProc. 12th National Conf.
on AI, Seattle WA, Aug 1994.

M. Zweben, B. Daun, E. Davis, and M. Deale. Scheduling

and rescheduling with iterative repair. In M. Zweben and
M. Fox, editors,Intelligent Scheduling. Morgan Kaufmann
Publishers, 1994.

