
O-OSCAR: a Constraint-Based Architecture for
Activity Scheduling and Execution Monitoring

A. Cesta, G. Cortellessa, A. Oddi, F. Pecora, N. Policellaand R. Rasconi
Planning & Scheduling Team [PST]

ISTC-CNR - Italian National Research Council
Viale Marx 15, I-00137 Rome, Italy

{a.cesta, corte, a.oddi, pecora, policella, rasconi }@istc.cnr.it

1 Introduction

In several real application domains it is important that plan-
ning architectures support the user in all the phases a plan
may go through, e.g., planning problem definition, solution
synthesis, and execution monitoring. In this demo descrip-
tion we will present the main features of the software archi-
tecture O-OSCAR (Object-Oriented SCheduling ARchitec-
ture) (Cesta, Oddi, & Susi 1999), (Cestaet al. 2001), and
will underscore several of its recent developments aimed at
creating a more complete supporting environment.

A key aspect in O-OSCAR design is the constraint-based
reference model that we have intensively used to shape all
the services it is able to offer. We have targeted a class of
scheduling problems that involve quite complex time and re-
source constraints and applications domain related workflow
management as well as automated management of space
missions. Time constraints may for instance model set-up
times for instruments, target visibility windows, transmis-
sion times (e.g., to represent memory dump), deadline con-
straints, etc. Resource constraints can represent capacity of
on board memory (e.g., tape recorder or solid state recorder),
transmission channel capacity, and energy bounds (e.g., lim-
itation on the number of active instruments in a space probe).
In the design and development of O-OSCAR great attention
has been paid in order to provide the tool with a considerable
degree of versatility and configurability.

From the scheduling literature point of view, target prob-
lems have been the so-called Resource Constrained Project
Scheduling Problem (RCPSP) and its variants with Gener-
alized Precedence Relations (RCPSP/max) and with Inven-
tory Constraints. Such problems contain sophisticated con-
straints like maximum temporal separation between activi-
ties, and a variety of resource constraints. In addition, spe-
cific attention has been paid to the issue of user interaction
with the scheduling system. We have studied what kind of
interaction services may contribute to enhance acceptance of
the whole approach in real contexts. The idea is that users
be supported in the whole plan life-cycle, having special-
ized support for Domain and Problem Definition, Problem
Solving and Execution Monitoring. The current status of
the Interaction Module of O-OSCAR offers a first suite of

functionalities for interacting with the different aspects of
the systems. During each phase a set of specific supporting
tools helps the user perform basic tasks. We are evolving
from an interaction module aiming at showing smart prob-
lem solving features, towards a tool in which the Interaction
Module is a first citizen in the architecture adding value to
the system as a whole.

2 A CSP-Based Software Architecture
In developing a complete solution to a planning/scheduling
problem several basic aspects need to be integrated. First of
all we have to properly represent the “external environment”
that is the part of the real world that is relevant for the prob-
lem the software architecture is aimed at supporting. Such
an environment is modeled in the architecture according to
two distinct aspects:

• Domain Representation. The relevant features of the
world (the domain) and the rules that regulate its dynamic
evolution should be described in a symbolic language.
This is the basic knowledge that allows the system to offer
services.

• Problem Representation.A description of the goals of a
current problem is given to specify states of the real world
that are “desired” and to be achieved starting from the
current world state.

The core component of an architecture that uses a CSP
(constraint-based problem solving) approach is the:

• Constraint Data Base (CDB). This module offers an
active service that automatically takes care of check-
ing/maintaining the satisfaction of the set of constraints
representing the domain and the problem. It is in charge
of two strictly interconnected aspects:
Domain and Problem Representation. The Domain
Representation Language allows the representation of
classes of problems and the peculiar domain constraints
in the class. At present O-OSCAR is able to solve the
class of scheduling problems RCPSP and its variants men-
tioned before. The Problem Representation Language
consists of a set of constraints specifying the activities and
their constraint requirements specified in a RCPSP.



Solution Representation and Management.The CSP
approach to problem solving is centered on the represen-
tation, modification and maintenance of a solution. Such
solution in O-OSCAR consists of a representation de-
signed on top of specialized constraint reasoners. The
constraint model represents particular aspects of the do-
main (e.g., temporal features, resource availability) and is
called into play when changes are performed by a prob-
lem solver, the execution monitor, or a user. The solution
manager is usually endowed with a set of primitives to
communicate changes and to formulate queries.

The CDB is the key part of the approach and should be de-
signed taking efficiency into account. Special functionali-
ties built on it allow to obtain a complete support to plan
life-cycle.

2.1 Automated Problem Solving Module
The first part of the demonstration will focus upon the
scheduling and user-interaction features of our tool. The
scheduling capabilities are provided by the Problem Solv-
ing Module. This module guides the search for a solution
and is currently based upon theISES algorithm (Iterative
Sampling Earliest Solutions) (Cesta, Oddi, & Smith 2002).
The module is endowed with two main features: (a) an open
framework to perform the search for a solution; (b) heuristic
knowledge used to guide the search and lower the computa-
tional effort. ISES is defined as aprofile basedprocedure: it
relies on a core greedy algorithm which operates on a tempo-
rally consistent solution, detects the resource conflicts using
the information stored in the Resource Profiles data struc-
tures, and finally attempts to find a new solution that isre-
source consistent, by imposing some additional precedence
constraints between the activity pairs which are deemed re-
sponsible for the conflicts, thus flattening the resource con-
tention peaks below the maximum capacity level. This al-
gorithm is iterated until either a resource consistent solution
is found or a dead-end is encountered. The greedy algo-
rithm is usually run according to some optimization crite-
ria so to eventually obtain multiple, increasingly better so-
lutions. Some degree of randomization is finally injected in
the sampling loop to retain the ability to restart the search in
the event that an unresolvable conflict is encountered, with-
out incurring the combinatorial overhead of a conventional
backtracking search.

2.2 Execution Monitoring
The second part of the demonstration will be centered on
simulating of the execution of a pre-determined schedule.
Once an initial solution to a given problem is obtained, the
Execution Control module is responsible for dispatching
the activities of the plan for execution and detecting the sta-
tus of both the execution and of the relevant aspects of the
world.

The detected information is used to update the CDB in or-
der to maintain the world representation perfectly consistent

with the evolution of the real environment; the main issue
is that updating the data stored in the Representation Mod-
ule in accordance to the information gathered from the envi-
ronment may introduce some inconsistency in the schedule
representation.

We have implemented an Execution Monitor which re-
acts to these inconsistencies as they are detected, namely at-
tempting to take the schedule back to a consistent state, so as
to keeping it executable. A number of exogenous events (i.e.
sudden delays on some activities) are simulated and injected
in the schedule execution phase, and the system is required
to re-gain schedule consistency, should this be lost, through
a proper re-scheduling of the involved activities.

The repair action is performed by exploiting the capabili-
ties of the ISES algorithm, which is used as a “black box”; in
other words, schedule revisions are approached as aglobal
re-scheduling actions, without focusing on a particular area
of the solution, as realized with different approaches, e.g.,
(Smith 1994).

The flexibility of the O-OSCAR open structure has been
succesfully integrated in different application prototypes
by properly studying the interface with the other modules.
To mention one, the DRS (Data Relay Satellite) System
scheduling problem (Cesta, Bazzica, & Casonato 1997), re-
garding the proper scheduling of communication activities
of the Artemis satellite system (for more details, see the ad-
dress http://oscar.istc.cnr.it/).

Acknowledgments
This research is partially supported by ASI (Italian Space
Agency) under project ARISCOM (Contract I/R/215/02).

References
Cesta, A.; Bazzica, P.; and Casonato, G. 1997. An object-
oriented scheduling architecture for managing the data re-
lay satellite requests. InProceedings of the International
Workshop on Planning and Scheduling for Space Explo-
ration and Science.

Cesta, A.; Cortellessa, G.; Oddi, A.; Policella, N.; and Susi,
A. 2001. A constraint-based architecture for flexible sup-
port to activity scheduling. InLecture Notes in Artificial
Intelligence, N.2175. Springer.

Cesta, A.; Oddi, A.; and Smith, S. F. 2002. A Constrained-
Based Method for Project Scheduling with Time Windows.
Journal of Heuristics8(1):109–135.

Cesta, A.; Oddi, A.; and Susi, A. 1999. O-OSCAR: A
Flexible Object-Oriented Architecture for Schedule Man-
agement in Space Applications. InProceedings of 5th In-
ternational Symposium on Artificial Intelligence, Robotics
and Automation in Space.

Smith, S. F. 1994. OPIS: A Methodology and Architecture
for Reactive Scheduling. In Zweben, M., and Fox, S. M.,
eds.,Intelligent Scheduling. Morgan Kaufmann.


