
Is Planning Technology Fit for LISA’s Software?
Piergiorgio Bertoli and Pierluigi Roberti

ITC-IRST - Trento (IT)
{bertoli,roberti}@itc.it

Fabio Massacci and Marco Pistore
DIT - Università di Trento (IT)

{massacci,pistore}@dit.unitn.it

Abstract. Autonomous On-board Software (AOS) is
a complex, mission-critical component within all recent
space missions. The growth in the number and function-
alities delegated to the software, and the strict require-
ments on the robustness of the system, call for a step
ahead in the software process design. Standard software
design and testing have proved to be not enough in many
a case, causing either mission loss, or delayed/degraded
accomplishment of the mission tasks.
In this paper, we describe a challenging case study pro-
vided by the forthcoming LISA Pathfinder mission, a
technology demonstration of the joint ESA/NASA cor-
nerstone mission, highlighting the key issues in the soft-
ware process for this case study, and the contributions
that can be provided using state-of-the-art planning, syn-
thesis, and diagnosis techniques.

1 Introduction
The LISA mission is a joint NASA and ESA effort and
constitutes one of the most exciting and difficult space
missions ever attempted. This ambitious Cornerstone
mission is expected to make the first detection of gravi-
tational waves - ripples in space-time. To measure these
extremely weak waves, the LISA experiment will fly
three spacecrafts approximately five thousand kilome-
ters apart in an equilateral triangle formation, and ex-
ploit very fine laser interferometry instruments to mea-
sure relative distances between free-falling test masses
(TMs from now on) inside the spacecrafts.

Prior to LISA, the LISA Pathfinder mission is sched-
uled to provide in-flight demonstration of LISA’s tech-
nological aspects. One of these technologies is the in-
ertial sensor, that provides both measurement and actu-
ation of the free-falling test masses.

The precisions of these measurements must be ex-
treme and this requires the integration of a number of
technologies and expertise.

One of the toughest challenge is the development of
techniques for autonomous management of the space-
craft and the scientific experiments. The on-board sys-

tem must be able to schedule experiments, recover from
failures and unexpected events (e.g. a small meteorite
hitting the the spacecraft, an unexpected charging of the
free-floating masses etc.), and restart scheduling new
experiments.

This calls for Autonomous On-board Software
(AOS), able to operate in unmanned and unstructured
environments, and to flexibly carry out a wide spectrum
of complex functions; it is our plan to exploit planning
techniques to provide a significant support in the devel-
opment of reliable and robust AOS.

On-board autonomy is widely present in the NASA
Technology Plan (NASA 2001), and emerges from sev-
eral ESA documents (e.g., (ESA 2000)) and activi-
ties (see the On-Board Autonomy Workshop at ESTEC
(ESA 2001)). It is the technological solution adopted
by NASA for Deep Space missions, where the temporal
extent is long, and the unpredictability of outcomes at
payload exploitation time is quite high.

Yet, achieving on-board autonomy is far from triv-
ial. The reference experiment of on-board autonomy is
the NASA Remote Agent Experiment (RAX) (Muscet-
tola et al. 1998), which ended up in a two days experi-
ment in May 1999, when an Artificial Intelligence soft-
ware system completely controlled the Deep Space 1
space probe. During this experiment, a deadlock due to
a missing critical section in the code caused the ceasing
of the Remote Agent controlling activities. The ability
to quickly detecting and recovering from the problem
has been at the basis of the success of the experiment.
The RAX experience clearly highlighted that software
systems must be validated and verified at design time.

Thus we envisage a cautious software process, which
embeds a variety of techniques:

• Verification and Validation of Requirements and De-
signs. These requires algorithms for automatically
detecting inconsistencies, incompleteness and in-



teractions among the required functionalities, and
among their realization. For example, one may want
to show that, hiding the low level functionalities, the
plan for completing an experiment can still be com-
pleted jointly with the plan for coping with impacts
of small meteorites.

• Automated Support in AOS Design from Multi-level
Goal/Action Requirements. Requirements and func-
tionalities are often presented at different level of de-
tails. The means used to describe requirements may
be very different at the various levels, ranging from
logics to procedural descriptions. Yet, one would like
to have automated support in the synthesis of the con-
troller. Advanced planning techniques such as those
in (Bertoli and Pistore 2004) seem a promising candi-
date to automatically build complex looping, branch-
ing program-like plans starting from high-level goals;
these in fact correspond to the required controllers.

• Automated Support for Monitoring and Diagnosabil-
ity. At run-time, the AOS must not only to reach
a state of the system, but also attain knowledge of
the situation (e.g. that a given procedure has com-
pleted but for whatever reason it did not achieve
the desired result). It is therefore important to sup-
port the designer in the synthesis of controllers that
achieve given knowledge-level requirements. This
is tantamount to synthesis of monitoring AOS (since
monitoring consists in reaching a certain knowledge).
Planning techniques similar to those in (Bertoli and
Pistore 2004; Pistore and Traverso 2001) seem very
close to this, since they allow synthesizing plans
whose execution achieves a given knowledge.

In the rest of the paper, we provide a high-level intro-
duction to the LISA mission (2), taken as a case-study;
we consider some specific procedure in the system to
show the issues in design and integration (§3), finally
we discuss planning challenges for the design of the
controller and diagnoser (§4) and we wrap up with some
conclusions.

2 A Primer on the LISA Mission
The objective of the Laser Interferometer Space An-
tenna (LISA) mission consists in the direct detection of
gravitational waves. These measurements of extremely
feeble forces can only be taken in space, where the sys-
tem is not affected by the environmental noise that af-
fects ground detectors on Earth’s surface.

The LISA mission will consist of three spacecrafts
floating in an equilateral triangle formation, approxi-
mately five thousand kilometers apart form each other;

Figure 1: LISA layout

each spacecraft will contain a pair of free-falling
masses, to form a triple of 5000Km-long interferome-
ters.

Far from Earth, other environmental factors will im-
pact LISA. Such factors include the drift of the space-
craft, charging of the test masses, and buffeting by the
solar wind. Making these small disturbances negligible
involves very advanced technologies to to be exploited,
and constitutes a major challenge for the success of the
mission.

The first definite proposal for a technology demon-
stration mission had been studied by the scientific com-
munity in 1998 and was known as ELITE. The final
demonstrator is the LISA Technology Package (LTP)
planned for flying on board LISA Pathfinder (Small
Mission for Advanced Research in Technology) in
2006.

The basic idea behind the LISA Pathfinder is that of
squeezing one LISA arm from 5106 km to a few cen-
timeters and in placing it on board a single Spacecraft.
Thus the key elements are two nominally free flying
TM and a laser interferometer whose purpose is to read
the distance between the TMs. The two TMs are sur-
rounded by position sensing electrodes. This position
sensing provides the information to a ”drag-free” con-
trol loop that, via a series of micro-Newton thrusters,
keeps the spacecraft centered with respect to some cho-
sen point. The ideal LTP test would include then two
TMs in pure free fall. Unfortunately, however, one can-
not have the spacecraft following simultaneously two

2



TMs along the same axis. Some actuation is needed and
different modes of operation are possible, e.g. using
micro-thrusters to move the spacecraft back into posi-
tion, avoiding contact with the undisturbed test masses.

On LISA Pathfinder the interferometer readout pro-
vides the measurement of relative displacement be-
tween the two test masses, which is meaningful of their
free-fall level. This forces one to develop an electro-
static suspension scheme that carries one or both test-
masses along with the spacecraft also along the mea-
surement axis, while still not spoiling the meaningful-
ness of the test. As in LISA, an independent laser
metrology system reads out the differential acceleration
of the two test-masses.

Both in LISA and in LISA Pathfinder, charging by
cosmic rays is a major source of disturbance, each test-
mass carries a non contacting charge measurement and
neutralization system based on UV photoelectron ex-
traction. An in-flight test of this device is then obvi-
ously a key element of the overall test.

The inertial sensor is the main subsystem of LISA
Pathfinder, responsible for commanding science oper-
ations, sensing and actuating the TMs, via the control
software. At the software level, from now on, we will
only focus on such LTP component.

3 AOS for the LISA Pathfinder
The LTP scientific goal and architecture definition is
set by the LISA Technology Package Architect (LTPA),
a team of Institutes (Univ. of Trento, A. Einstein Inst.
Hannover) and Industries (Carlo Gavazzi Space, AS-
TRIUM GmbH) lead by the Univ. of Trento. CGS is
responsible for the engineered software platform in the
LISA Pathfinder Inertial Sensor. In the analysis carried
on by CGS, a number of main modes have been identi-
fied (LISA 2002). A schematic abstraction for the sub-
modes of the nominal working mode is in Fig. 2.

Safe Mode. the system is required to put the TMs in
a “safe” situation, i.e. locked within the spacecraft.
It activates a caging subsystem to performs a locking
procedure and executes other hardware reset proce-
dures.

Positioning Mode. Once the TMs are released from
the stowed position, they have to be accurately po-
sitioned at the center of the sensor assembly, with the
specified values of linear and angular displacement,
linear and angular residual velocity.

Accelerometer Mode. It is active until the system rec-
ognizes that a control is necessary over the drifting
TMs to avoid that they crash over the spacecraft. This

is performed by activating a closed loop electrostatic
suspension.

Science Mode. The different experiment of measure-
ment are performed, generating scientific data. In
this mode the TM displacement and attitude angles
measurement shall be guaranteed to be within given
ranges, and the TM has to be stabilized against neg-
ative stiffness whenever the drag-free control loop
does not provide this function.

Discharge Mode. When electrical charge in excess is
present on (one of) the test masses, the system shall
perform both the discharge of the TM and the TM
charge level measurement, while keeping the TM dis-
placement and attitude measurement and control.

Non nominal Safe Mode. This is entered when the a
relevant anomaly has been detected in any other op-
erative mode (Operation Failure). The system should
guarantee the caging of the TM in the stowed position
and a limiting unwanted vibration of the TM within
the to avoid crash between TM and other subsystems.

These requirements are complemented by many
functional (and non-functional) requirements, described
either procedurally or as logical constraints. For in-
stance:

• During the Science mode, the degree of freedom of
the test masses and the magnetic fields generated by
the sources inside the spacecraft must remain within
a given range;

• During the Discharge mode, two procedures, one for
measuring the electrical charge, the other for activat-
ing a ionizing UV lamp to influence the charge, must
be active. This can be described as a composition of
two simple automata, depicted in Fig.2(b): one keeps
measuring the electrical charge over the test mass,
while the other activates a ionizing UV lamp to keep
discharging it.

Remark 1 Since requirements at different levels shall
be active together, this implies that the transitions be-
tween states (see Fig. 2(a)) are not atomic. In planning
terminology, the transition between modes is not an ac-
tion of the finite state system represented by the AOS but
rather a goal that the AOS must reach.

For instance, consider what happens when the dis-
charge mode has to be left because some operation fail-
ure has shown up (e.g. a meteorite has struck the space-
craft, so that the floating test mass is not under control).
In this case, leaving the mode abruptly is not correct,
since e.g. the lamp must be appropriately turned off
to avoid unwillingly charging the mass with a negative

3



Nominal
Safe

Positioning

Accelerometer Science

Discharge

Nominal
Safe

Non

(a) All Modes

TurnOn

MeasOn

Read

TurnOff

Start

Wait

End

Elapsed > T

Charge < VCharge >= V

Discharge Measure

(b) The Discharge Mode

Figure 2: LTP Inertial Sensor Nominal Sub-Modes

value. Thus the exit procedure from this mode is not
atomic, but consists (at least) of a discharge reset pro-
cedure which evolves through different states.

4 Synthesis and Monitoring of LTP AOS
via Planning

We now discuss the relationship between the above
requirements and planning. Consider the global goal
of achieving the computer aided construction of LISA
Pathfinder controller, and related diagnosing and mon-
itoring components, starting from its requirements, and
from the (formal) description of available subroutines.
Can we do so by exploiting, and possibly extending, the
more performant and expressive existing planning tech-
niques?

Planning is traditionally conceived as the problem of
identifying a sequence of actions that achieves a given
final result. Problems are usually specified at a uni-
form level of details with actions, pre-conditions and
post-conditions (Weld 1999). There might be some
complex action (e.g. non deterministic or concurrent
actions as in (Jensen and Veloso 2000; Weld et al.
1998; Pryor and Collins 1996; Bonet and Geffner 2000;
Cimatti et al. 2003)), we can include knowledge-
changing actions (such as sensing actions), or have
some nature-controlled actions but the framework is es-
sentially settled.

As we have seen from the LISA Pathfinder descrip-
tion this is not sufficient. Often the goal is to maintain
some state, or to continuously return to a state. In the
last years advanced planning techniques have stretched
to express more complex goals, expressed e.g. with
some temporal logics (Pistore and Traverso 2001). This
has made it possible to obtain plans (in fact full-fledged
system controllers) that exploit complex branching and
looping structure to achieve a desired behavior (rather
than just final state) from a system (Dal Lago et al.
2002; Pistore and Traverso 2001). However, such plan-
ning algorithms have only been deployed for easy test
cases and thus we state the first volley of challenge.
Challenge 1 Is there a suitable extension of the stan-
dard planning language for planning competitions that
can capture the continuous operation, maintainability,
continuous possibility of returning to safe mode, and in
general the high level goal-based (and not transition-
based) based view of LISA Pathfinder main modes?
Challenge 2 Given a reasonably detailed description
of lower level functionalities in LISA Pathfinder as
atomic actions, can planning techniques be used to syn-
thesize automatically the maintainability requirement
for science mode and the continuous possibility of re-
turning to non-nominal safe mode state from any state?
Challenge 3 Given a reasonably detailed description
of lower level functionalities in LISA Pathfinder as

4



atomic actions, and the high-level system goal in terms
of goals sequences, can planning techniques be used to
synthesize automatically the entire controller?

The temporal logic-based planning systems (Pistore and
Traverso 2001; Bacchus and Kabanza 2000; Doherty
and Kvarnström 2001) can of course meet this chal-
lenge from a theoretical viewpoint. Indeed, our research
group has obtained preliminary results in evolving to-
wards requirement languages that describe intentional-
ity, represented by means of control automata (Dal Lago
et al. 2002). However, it is still not clear whether
the practical implementation based on generic model
checking engines such as (Cimatti et al. 2000) can meet
LISA’s challenge.

Looking more carefully at requirements for the LISA
Pathfinder case study we find out that we have complex
requirements at various levels, described at various de-
grees of abstraction, using a variety of means that can
be mapped in (at least) two major categories: descrip-
tive logic requirements (the one we considered so far),
and procedural requirements.

Logic requirements provide a high-level description
of mode transitions, and often refer to the notions of
requirement failure and preference (or intentions). Pro-
cedural requirements often map to existing standalone
procedures, thoroughly tested and validated in previ-
ous space missions; reuse and integration of these pro-
cedures is highly desirable. Furthermore, any of the
requirements depend on external environment-driven
events.

The intentional nature of logic requirements, and the
notion of failure, pose a problem at the level or require-
ment languages. Temporal logics commonly used in
the formal methods and planning community (Doherty
and Kvarnström 2001; Bacchus and Kabanza 2000;
Pistore and Traverso 2001) cannot represent intention-
ality aspects and failure, nor efficiently deal with en-
vironment events. We can then refine Challenge 3 as
follows.

Challenge 4 Find a suitable language for describing
planning problems in which one can express (i) inten-
tionality, (ii) failure, (iii) external events

Challenge 5 Solve challenge 3 where functionalities
are described in the new language.

Things are further complicated by procedural re-
quirements. These can be due to ease of specification
(saying what to do is simpler sometimes than declaring
why), or directly derived from the description of pieces
of the system that have to be integrated/adapted within

given requirements, such as the above discharge proce-
dure integrated with the failure handling.

Notice that, while procedure reuse is a must, it raises
relevant integration/adaptation issues in the planning
environment. Indeed, the careful reader might have
noticed that the above challenges comes with a big
simplifying clause: the functionalities are described as
atomic actions. This is definitely not the case for LISA
Pathfinder. As we have sketched in the previous sec-
tions, some functionalities cannot be seen as atomic
ones: they have a minimal duration, a number of con-
ditions to be satisfied before and during their execution
and whose failure may compromise or delay the dura-
tion of the task.

Obviously these functionalities can be decomposed
into lower level ones but — besides being undesir-
able from a software engineering perspective, the higher
level planner cannot simply do it: in practice function-
alities are outsourced to different (and possibly com-
peting) companies and must be taken on a “as is” ba-
sis. They only (should) guarantee the fulfillment of
functional and non-functional requirements as specified
in the outsourcing contract. For example in the LISA
Pathfinder mission, Astrium Ltd is responsible for the
overall software controller of the S/C and CGS is re-
sponsible for the controller of the inertial sensors.

Here we are venturing a “terra incognita”: what
are the features for a planning description language in
which the basic components are themselves plans?

Challenge 6 Find a suitable language for describing
planning problems in which the available operators are
plans that therefore have at least (i) duration, (ii) ini-
tial preconditions, (iii) operating conditions, (iv) post
conditions in case of successful completion and (v) mid-
operation failure post conditions. Possibly try an easier
sub-case in which the functionality is represented di-
rectly by its control automaton.

Challenge 7 Identify the computational complexity of
the new framework and in particular tractable cases
by language restriction so that the more expressive and
practical language does not substantially worsen the
planning task.

Challenge 8 Solve challenge 3 where functionalities
are described in the new language.

This means that we have to provide a mean to combine
descriptive and prescriptive requirements, including in-
tentionality, failure and event handling. The simple so-
lution to this consists in the extension of the extended
EaGLe language with sets of modalities and with the
possibility of describing (portions of) the requirement

5



directly in the form of a control automaton. On our side
this is part of the ongoing work and preliminary results
show the feasibility of the approach (Mattioli 2004).

Sometimes, this is not sufficient. For instance,
reusing the existing discharge procedure is a strong
desiderata by the LISA Pathfinder designers. However,
its standalone design does not take into account the pe-
culiar fall-back procedures, so it has to be appropriately
integrated (adapted) to the LTP environment. We do no
list this as a challenge: it is still unclear how can one
even specify “wrappers” for procedure to make them
fit.

So far we have worked only with fully observable
and fully controllable systems. Unfortunately LISA
Pathfinder is not such a system. We must be able to deal
with a partially controllable and observable system.

Challenge 9 Solve challenges 3, 4, 5 under the partial
observability and partial controllability hypotheses.

Synthesis of plans (programs) for this kind of systems
together with temporal goals is an extremely challeng-
ing task. We are pursuing this objective by exploiting
model-checking techniques to efficiently tackle the fact
that the controller status must embed a notion of uncer-
tainty w.r.t. the current domain status. That is, con-
troller are synthesized on the basis of a visit of a space
of belief states, where a belief is a set of equally plau-
sible states given current and past sensing. The synthe-
sis takes place by constructing a control automata that
corresponds to the temporal goal under exam, which is
used to drive the search in the belief space.

Moreover, we are currently pursuing the possibility to
express explicit run-time knowledge conditions within
the (temporal) logics used to specify planning goals.

Solving this problem would lead us to solve also the
next challenge:

Challenge 10 For each of the language and planning
algorithm devised for challenges 3, 5, 9 define a mon-
itoring algorithm that checks whether assumptions are
true.

Indeed, we remark that synthesis of controllers that
achieve given knowledge-level requirements is tan-
tamount to synthesis of monitoring (since monitor-
ing consists in insuring that a certain knowledge is
achieved). More precisely, diagnosis and monitoring
both rely on the identification of the possible set of cur-
rent states, and past behaviours, of the system, in order
to list all the valid hypothesis on the system behaviour,
and identify whether some malfunctioning of the sys-
tem may be taking place.

Substantial complications stem at the algorithmic

level. The problem of synthesizing a controller realiz-
ing a CTL requirement in a partially controllable envi-
ronment has been tackled in (Bertoli and Pistore 2004),
and already provides a witness to the theoretical com-
plexity and practical hardness of the problem. At that
level, the exploitation of symbolic representation tech-
niques, the adoption of aggressive search heuristics, and
the possibility of adding user-driven search strategies,
are all in order to pursue an effective realization of this
concept. (The design of automated heuristics in this
framework is a challenging and relevant problem alto-
gether, since it requires smart ways of detecting inter-
mediate sub-requirements that can be solved, and effec-
tive ways to exploit the available sensing by triggering
appropriate knowledge-gathering actions.)

The synthesis of controllers for a full-fledged be-
havioural requirement language handling failure, inten-
tionality, and events for general (partially controllable
and observable) systems is far from trivial and a main
activity in our research line. This will again revolve
around the encoding of requirements into (an extended
form of) control automata, and on associating beliefs to
states of the control automata.

The above issues also reflect on the automated syn-
thesis of requirement monitoring components. We re-
mark that monitors can be perceived as controllers that
trace at the knowledge level, and that as such they can
be synthesized (and verified) similarly to controllers,
proviso that the requirement language allows for a
knowledge modality.

As a final remark, notice that, for complex, partially
controllable (and observable) systems such as the LTP,
the monitoring and control aspects are closely related .
Indeed, the actions taken by a controller may ease or in-
hibit the monitoring of the system by the diagnoser. For
this reason, the design of the controller has to be tied
with a notion of diagnosability of the controller itself.
The automated synthesis of diagnosable controllers is
being currently investigated, initially considering the
monitoring of simple propositions. The full-fledged in-
vestigation of synthesis of diagnosable controllers for
complex requirements is in order and will naturally rely
on and extend the approach to the synthesis of con-
trollers for complex goals.

5 Discussion
A key issue in the practical exploitation of the planning
techniques relies in the fine tuning of the languages and
technologies taken into considerations, w.r.t. the spe-
cific domain being tackled. While a variety of require-
ment languages , and tools that handle them, are avail-

6



able, LTP constitutes a very challenging case study in
this respect.

First, LTP is developed via a structured software de-
sign approach that involves semi-formal system and re-
quirement specifications. This provides a direction for
the integration of fully formal specification, synthesis
and validation technologies, but requires a “semi-formal
to formal” gap to be filled. This in turn entails the de-
sign and extension of currently available languages and
tools.

Second, LISA and LTP involves a major degree of
components reuse from previous missions; LTP com-
ponents will be purposely reused for LISA. While reuse
is a recommendable practice, critical adaptation issues
may be overlooked by non-formal analysis and synthe-
sis. Formal synthesis of correct software from existing
components is not yet (efficiently) tackled by current
synthesis tools.

Finally, the design of monitoring components is left
implicit to the specification of requirements. Automat-
ing this activity can provide a major added value to the
reliability of the LTP system, and ultimately to the suc-
cess of the mission.

Acknowledgements
We would like to thank Carlo Gavazzi Spazio, responsi-
ble for the engineering and development of the Inertial
Sensor software platform, for giving support on the en-
gineering details of the Inertial Sensor software. We
would like to thank Mauro Da Lio, Daniele Bortoluzzi
and Michele Armano (members of the LISA Technol-
ogy Package Architect team at the University of Trento)
for introducing us to LISA, and for many useful discus-
sions that have substantially improved our understand-
ing of the LISA mission requirements. This work has
been partly supported by the ASI-DOVES Project.

References
F. Bacchus and F. Kabanza. Using Temporal Logics to
express Search Control Knowledge for Planning. Ar-
tificial Intelligence, 116(1-2):123–191, 2000.
P. Bertoli and M. Pistore. Planning with Extended
Goals and Partial Observability. In Proceedings of
ICAPS’04, 2004. To be published.
B. Bonet and H. Geffner. Planning with Incomplete
Information as Heuristic Search in Belief Space. In
Proc. AIPS 2000, pages 52–61, 2000.
A. Cimatti, E.M. Clarke, F.Giunchiglia, and M.Roveri.
NUSMV: A New Symbolic Model Checker. Inter-
national Journal on Software Tools for Technology
Transfer, 2(4):410–425, 2000.

A. Cimatti, M. Pistore, M. Roveri, and P. Traverso.
Weak, Strong, and Strong Cyclic Planning via
Symbolic Model Checking. Artificial Intelligence,
147(1):35–84, July 2003.
U. Dal Lago, M. Pistore, and P. Traverso. Plan-
ning with a Language for Extended Goals. In Proc.
AAAI’02, 2002.
P. Doherty and J. Kvarnström. TALplanner: A Tempo-
ral Logic-Based Planner. The AI Magazine, 22(1):95–
102, 2001.
ESA-EUROSPACE Workshop on European Strategy,
Seville, May 2000.
ESA Workshop on On-Board Autonomy, volume WPP-
191, Noordwijk, The Netherlands, October 2001.
R.M. Jensen and M. M. Veloso. OBDD-based Uni-
versal Planning for Synchronized Agents in Non-
Deterministic Domains. Journal of Artificial Intelli-
gence Research, 13:189–226, 2000.
LISA Technology Package Architect - Science Re-
quirements, October 2002.
A. Mattioli. Pianificazione con Goal Estesi per la Sin-
tesi di Software caratterizzati da Multiple Modalità.
Master’s thesis, Università di Trento, 2004. To be Pub-
lished.
N. Muscettola, P. Nayak, B. Pell, and B. Williams. Re-
mote Agent: To Boldly Go Where No AI System Has
Gone Before. Artificial Intelligence, 103(102):5–48,
August 1998.
The NASA Technology Plan, 2001.
M. Pistore and P. Traverso. Planning as Model Check-
ing for Extended Goals in Non-deterministic Domains.
In Proc. IJCAI’01, 2001.
L. Pryor and G. Collins. Planning for Contingency: a
Decision Based Approach. J. of Artificial Intelligence
Research, 4:81–120, 1996.
D. Weld, C. Anderson, and D. Smith. Extending
Graphplan to Handle Uncertainty and Sensing Ac-
tions. In Proc. AAAI’98, pages 897–904, 1998.
D. Weld. Recent Advances in AI Planning. AI Maga-
zine, 20(2):93–123, 1999.

7


