
Commentary on:
Mission Planning and Execution Within the Mission Data System

by A. Barrett, R. Knight, R. Morris and R. Rasmussen

Maria Fox
University of Strathclyde

Glasgow, UK

The agenda of this work is to manage the uncertainty in-
herent in the execution environment of an autonomous robot
system such as a Mars rover. The approach moves away
from a model in which action sequences are constructed and
then executed, towards one in which reasoning and execu-
tion are seamlessly interleaved to support online integration
of planning, scheduling and control. To achieve this in-
tegration the authors abandon the traditional use of differ-
ent representation languages for reasoning and for execu-
tion. Instead, they adopt a uniform language for expressing
state variables and their interactions. All conceptual objects
(goals, constraints, actions etc) are then expressed in terms
of temporally constrained state variables. The argument is
that within this uniform framework control can be naturally
interleaved with the satisfaction of constraints, allowing the
system to perform locally fault-tolerant behaviours within
the broader context of achieving its overall goals.

The main representation component of the MPE system
is a task network. It consists of inter-dependent state vari-
ables, and constraints on their interactions over time. Goals
are interpreted as requirements to have certain variables con-
strained in certain ways over certain time intervals. Actions
correspond to sending constraints to the controllers associ-
ated with the relevant state variables. A task network can be
incomplete in that the variable constraints involved in a par-
ticular goal are unsupported and require elaboration. Also
a task network can be partially executed, since when a goal
is fully elaborated the part of the network that enforces it
can be scheduled for execution. In this framework, planning
corresponds to the task of goal elaboration. Scheduling cor-
responds to the addition of temporal constraints to the net-
work. Execution corresponds to the interpretation of part of
a complete task network by the state variable controllers.

The language chosen for implementing this uniform rep-
resentation is C++. The MPE system is implemented using
base classes to represent the fundamental ideas of state vari-
ables, goals and other network structures, and inheritance to
enable the specification of particular types of state variables.
The reasoning components of the MPE are implemented as
functions of these classes. Thus, the uniform representation

formalism translates into a single, purpose built program for
implementing the MPE.

The architecture proposed in this paper is extremely ele-
gantly conceived. Of the many interesting and controversial
issues it raises there are four which I will address in this
commentary:

1. The idea of a uniform representation language in prefer-
ence to languages purpose-built for particular reasoning
tasks;

2. The use of C++ (or an equivalent) language for imple-
menting the MPE + domain as a single program;

3. The focus on locally fault-tolerant behaviours as a way to
direct the achievement of a complex global goal;

4. The likely utility of the proposed architecture in terms of
the originally stated agenda of the paper.

The argument that one gets increased flexibility and/or in-
creased efficiency when different problems are flattened into
the same representation formalism is not immediately con-
vincing. As an illustration, it is known that the Bin-Packing
problem can be expressed in the language of Satisfiability
(and vice versa) since they are both NP-complete, but it is
also known that good approximate solutions to Bin-Packing
instances can be found by exploiting the inherent structure
of the Bin-Packing problem. There seems no good reason to
believe that losing the structure that distinguishes the plan-
ning part of a problem from the scheduling part, or from
other (possibly combinatorial) sub-problems is likely to in-
crease efficiency in the solution of the overall problem. In-
deed, flattening several structurally different problems into
one formalism can result in a significantly larger problem
representation, and a correspondingly larger search problem.
Whilst theoretically the complexity of the search problem
does not increase it might become less practical to solve.

Indeed, an orthogonal approach to this one is to de-
compose a problem around the structurally different sub-
problems it contains and to integrate specialised solvers for
these sub-problems. Each solver solves its own sub-problem
within the global context and their solutions must be com-
bined into a solution to the global problem. There are many



difficulties involved in communicating constraints between
the sub-solvers and in ensuring the coherence of the global
solution. Here the emphasis is on exploiting structure rather
than flattening it, in the recognition that generic techniques
are rarely as efficient as special purpose ones. After all,
years of research have been invested in the solution of cer-
tain combinatorial problems and it seems unnecessarily re-
ductionist to tackle such problems with brute force search.

Whilst it might be true that the use of a uniform repre-
sentation makes it straightforward to communicate between
execution and elaboration, the complexity of the manage-
ment of this communication – the need to maintain the exe-
cuting network, the copy, the links from the copied goals to
the elaborators of the corresponding original goals and the
need to manage the search problem that results – all suggest
that in practice this management, though ingenious, is no
less complex than the integration of different formalisms in
a traditional multi-layered architecture.

The paper proposes the implementation of the MPE sub-
system of the MDS, together with a domain specification,
as a single C++ program. On one hand one can argue that
C++ provides all of the benefits of encapsulation, modular-
ity and abstraction available to the engineering of a large
and complex software system, and that a complex plan-
ning/scheduling domain requires these tools for efficient
representation. These are tools which are not yet available
in the languages commonly used for building planning do-
mains. Thus, C++ can provide a powerful modelling lan-
guage as well as an expressive means of articulating the
complexities of the domain. Furthermore, by providing a
core set of base classes and requiring subclasses and in-
stances to be defined as part of an explicit specification of
a domain, the representation of the domain can, in principle,
be kept separate from the algorithms used to reason about
specific state variable types and constraints. This means that
the generic components of the system can be reused.

On the other hand one can argue for the decomposition of
a search problem into the domain file and the problem solver,
on the basis that this allows for independent validation of the
domain specification as well as independent debugging and
optimization of the generic components. Strong coupling
of components is always a structural weakness in software
engineering designs. When domains are very complex the
need for abstraction to facilitate the modelling and commu-
nication of domain behaviours, and of independent valida-
tion to confirm that the model is correct, become important.
There is no guarantee that authors of C++ programs will use
the facilities of abstraction in a way that usefully achieves
abstraction, or that the resulting program will be modular or
amenable to separate domain validation.

But this is to some extent a religious debate: researchers
have been arguing for a long time about what kind of lan-
guage and architecture is most appropriate for the modelling
of complex planning and scheduling problems (and prob-

lems in general). Given the agenda specified at the begin-
ning of this paper, the real question is: how likely is the
proposed MPE architecture to increase the efficiency and re-
liability of spacecraft operations?

The key argument presented by the authors in support
of their claim is that because control and reasoning can be
integrated online the system can behave in a locally fault-
tolerant way to achieve its global goals. Although this might
be the case when the system can manage the complexity of
its search problem (ie: for small problem instances in which
the goals are not very complex) in general I doubt that a
complex collection of interacting global goals is likely to
be achieved on the basis of local behaviours. The greedy
approach that is taken to alleviate the complexity of the inte-
gration between execution and elaboration means that there
will sometimes be no local solution to the execution prob-
lems that arise and the system must enter a safe state. Of
course, this would also be the case for an action-based sys-
tem using a greedy search technique. It is known that greedy
local search is not sufficient for solving arbitrary search
problems, so why should flattening the representation make
it easier to intelligently prune the search involved in integrat-
ing planning and execution?

Several themes are indicated by the authors as requiring
further work. One of these is the management of continuous
resources. In order to reason about how the achievement of
particular goals can affect other aspects of system state it
will be necessary to reason about continuous change. For
example, if the consumption of power by the heater affects
the ability of a transmitter to send data, then the system will
need to be able to calculate the exact time at which the power
level has fallen too low for the data to be transmitted and it
will need to schedule the warming and transmitting actions
accordingly. This becomes very complicated when there are
multiple (non linear) interactions. In the context of a single
C++ program implementing MPE + domain, problem spe-
cific hacks can be implemented to resolve specific continu-
ous interactions. However, this approach would undermine
the generality of the system so it remains to be seen whether
such interactions can be managed in a satisfactory way.

This paper describes an elegant and appealing approach to
the integration of planning, scheduling and execution. The
search control mechanisms proposed are interesting solu-
tions to the management of open search paths in the context
of a partially executed task network. If rather controversial
in it philosophy, the work makes an undeniably interesting
contribution to research in plan execution in dynamic en-
vironments. What this paper lacks is evidence that local
fault tolerant behaviour, made possible by means of a uni-
form representation enabling the direct integration of plan-
ning, scheduling and control, can be coupled with improve-
ments in reliability and consequently, as the authors claim
at the outset, a less stressful approach to the management of
execution-time uncertainty.


