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Abstract.
Incomplete information and sensing are needed in or-
der to design agents that operate in domains where
their information acquisition capabilities are restricted
and the environment may evolve in unpredictable
ways. These representation issues, that have been
studied by the work on reasoning about actions, are
also being addressed from a planning perspective. The
aim of this paper is to present a languageKL for
expressing planning domains with incomplete knowl-
edge and sensing and by providing a new technique for
generating cyclic plans in such a framework. The ba-
sic feature of the representation is the notion of belief
state which is characterized in terms of epistemic for-
mulas, representing the knowledge of the agent about
the environment. The proposed planning method deals
with such belief states using propositional reasoning
as a building block.

1 Introduction
In many different domains and application scenarios
an autonomous reasoning agent must deal both with
incomplete informationabout the environment and
with partial observabilityi.e. limited capabilities to
gather information. In particular, these assumption
are required for robotic agents that must execute com-
plex tasks in hostile environments, for which human
control or supervision is either impossible or very ex-
pensive, as in space applications. Robots for space
applications need the ability of reasoning on the lim-
ited knowledge they have, accomplishing actions to
acquire new knowledge during task execution, and
devising conditional plans (or contingent plans), that
take into account the possibility of acquiring knowl-
edge during task execution.

The recent literature on planning shows several
contributions that aim at extending the classical plan-
ning domain by relaxing some of the underlying as-
sumptions, specifically:complete informationabout
the environment andfull observability. In this ex-
tended setting, actions may have non-deterministic
effects and it becomes possible to deal with sens-

ing, i.e. knowledge acquisition. To this end, a sub-
stantial amount of work has been accomplished in
order to develop models, languages and algorithms
for planning in the presence of incomplete informa-
tion and sensing (see for example (Weldet al. 1998;
Bonet and Geffner 2000; Bertoliet al. 2001)).

However, the problem of reasoning withincomplete
informationhas been also the subject of a large body
of research on reasoning about actions, that has de-
veloped several approaches to reconstruct the agent’s
world representation after the execution of actions:
Situation Calculus (Reiter 2001), A-languages (Gel-
fond and Lifschitz 1993), dynamic logics (Rosen-
schein 1981). In these formalisms, the representa-
tion of actions allows to specify not only the persis-
tence of properties, but also sensing actions (Scherl
and Levesque 1993; De Giacomoet al. 1997; Loboet
al. 1997; Iocchiet al. 2000; Thielscher 2000; Petrick
and Bacchus 2002). In particular, in (Levesque 1996)
sensing actions have been explicitly characterized as
knowledge-producing actions.

The ability of a reasoning agent to generate plans
in presence of incomplete knowledge and sensing re-
quires a common view of the problem. The basic idea
is to characterize the knowledge of the agent about the
situation and to distinguish it from the actual world
state, that cannot be completely perceived. However,
the two approaches differ in the representation: i) a
logic-based representation of the agent’s knowledge
in the first group (Scherl and Levesque 1993; De Gia-
comoet al. 1997; Loboet al. 1997; Iocchiet al. 2000;
Thielscher 2000; Petrick and Bacchus 2002); ii) spe-
cialized structures denoting sets of possible states (be-
lief states) in the second one (Weldet al. 1998;
Bonet and Geffner 2000; Bertoliet al. 2001).

On the basis of these two kinds of representations,
different algorithms have been proposed for plan gen-
eration and plan verification. In both cases, the pres-
ence of sensing actions, that have different outcomes



depending on the state of the world during their ex-
ecution, naturally gives rise to branches in the plan,
introducing the notion of conditional plans or contin-
gent plans.

The aim of this paper is to show that the use of a
logic-based approach to contingent planning is both
expressive from a representation viewpoint and may
gain computational leverage. Specifically, it allows
for considering more complex planning domains, in
which the solutions are given in terms ofstrong cyclic
plans, i.e. plans with loops whose termination con-
ditions are checked at run-time, and that thus may
not terminate. Notice that such a notion of plan
has been commonly addressed in domains with com-
plete knowledge (see for example (Giunchiglia and
Traverso 1999)), while we believe that it is very rele-
vant also in domains with incomplete knowledge and
sensing, since it allows for synthesizing plans con-
taining not onlyif-then-else structures, but also
while loops.

In the paper, we propose a logic-based language for
action representation, which is based on the represen-
tation of the knowledge of the agent through an epis-
temic logic. Moreover, we propose an algorithm for
the generation of cyclic plans given the action rep-
resentation. The formalization is illustrated through
a pedagogical example and some preliminary experi-
mental results of plan generation are discussed.

2 A Planning Language with Incomplete
Information and Sensing

Dealing with incomplete information about the envi-
ronment requires to distinguish the representation of
what is true in the world from what the agent knows
about the world. A common way to do this is to rep-
resent the agent’s knowledge in terms ofbelief states.
A belief state is a set of states that the agent considers
possible in a particular situation. The agent thus does
not have complete knowledge since it does not know
exactly which is the actual state of the world at each
moment.

Contingent planning can be modeled as a“non-
deterministic control problem over belief space”
(Bonet and Geffner 2000), as follows:

• A finite spaceB of belief statesb over the set of
statesS.

• An initial situation given a the belief stateb0.

• A goal situation being a set of belief statesBG.

• A set of actionsA.

• A subset of actionsA(b) ⊆ A for each belief state
b, denoting the actions that are executable inb.

• A set of observationsO(a, b) for each execution of
the actiona from the belief stateb.

• A transition functionfa(b) = boa that for every ac-
tion a ∈ A(b) non-deterministically maps a belief
stateb into a belief stateboa for each observation
o ∈ O(a, b).

• The observationoa(b) ∈ O(a, b) obtained after ex-
ecuting the actiona in the belief stateb.

• A cost functionc(a), expressing the cost of execut-
ing the actiona.

A plan is a solution of this planning problem and
can be represented as a graph, in which nodes are la-
beled with belief statesb, edges are labeled with ac-
tions executed in the outgoing belief statea(b), and
every nodeb has successor nodes corresponding toboa
for everyo ∈ O(a, b), that are defined by the tran-
sition functionfa(b). The graph has a single source
node, that corresponds to the initial belief stateb0, and
all the terminal nodes correspond to goal belief states,
i.e. they belong to the setBG.

Given this general framework that defines con-
tingent planning, authors have attacked the problem
from two different points of view: on the one end,
there have been solutions to the general problem for-
mulated as above, considering both acyclic and cyclic
plans (e.g. (Hansen and Zilberstein 1998)), on the
other hand, other authors focussed on defining lan-
guages for describing such problem in a more com-
pact (although also restricted) way, and on the def-
inition of efficient algorithms for solving a variant
of the general problem (e.g. (Weldet al. 1998;
Bonet and Geffner 2000; Bertoliet al. 2001; Petrick
and Bacchus 2002)).

The approach presented in this paper follows the
second line and it presents a language for represent-
ing the “non-deterministic control problem over belief
space” in a compact, but also restricted way and an al-
gorithm for efficient planning. With respect to other
related approaches we introduce two novel aspects: 1)
the representation is given in terms of the knowledge
of the agent, as in (Petrick and Bacchus 2002), and it
is significantly more efficient than the representation
given in terms of possible worlds; 2) the generation of
strong cyclic plans that allows for considering more
complex domains and plans.

In the following of this section we describe a lan-
guage for representing planning domains with incom-
plete knowledge and sensing (we call itKL1), that is
based on the ability to model the agent’s knowledge.

1We have also defined a PDDL-like syntax for the lan-
guageKL, see (Iocchiet al. 2003).



Then in the next sections we present the algorithm for
generating cyclic plans and experimental results.

2.1 The languageKL

The languageKLmakes use of epistemic formulas of
the logicALCKNF (see (De Giacomoet al. 1997;
Iocchi et al. 2000) for details). More specifically, we
introduce a set of primitive properties (or fluents)P ,
that will be used to characterize the possible states of
the world. The primitive fluentsP may either be ei-
ther predicates or terms containing variables ranging
over finite domains, in such a way that the set of belief
statesB remains finite. Notice that these variables are
typically used only for describing domains in a more
compact way, but do not increase the representation
power of the language. For example, the termin(x, y)
with x ∈ {1, 2} andy ∈ {1, 2} can be replaced by
the four predicatesin11, in12, in21, in22. Also fluent
with multiple finite values can be treated in the same
way. Therefore, we can limit the description to the
use of propositional formulas, since its extension to
the case of terms with finite variables and fluents with
multiple finite values is quite straightforward.

In our framework, a belief stateb can be repre-
sented through an epistemic formulaKφb, such that
φb is a propositional formula, denoting the agent’s
knowledge about the world.

The language presented here allows for defining a
restricted domain, with respect to the general one pre-
sented before, in the sense that not every belief states
b ∈ B can be represented through epistemic formu-
las. In addition, as commonly done in reasoning about
action, we restrict the formulas that are used for ex-
pressing the effects of an action to be a conjunction
of literals, i.e. we do not allow epistemic disjunc-
tive formulas (except for the sensing effects of an ac-
tion) (De Giacomoet al. 1997; Iocchiet al. 2000).
In fact, epistemic disjunction is used to model that
after the execution of a sensing action a property is
either known to be true or known to be false. This
form of epistemic disjunction is specifically treated
in our algorithm (see (De Giacomoet al. 1997;
Iocchi et al. 2000)), while other forms of epistemic
disjunction are not allowed. Notice also that this no-
tion is different from that of noisy sensors that instead
model the possibility of having a different result with
respect to the actual state of the world. In this paper
we will not deal with noisy sensors.

More specifically, referring to the general definition
of the problem given above:

• The initial belief stateb0 ∈ B will be represented
by the epistemic formulaKφINIT .

• A goal BG is the set of belief states{b ∈ B |
Kφb ⇒ KψGOAL}.

• Given a set of precondition termsprea : Kα for
the actionsa ∈ A, the subset of actionsA(b) appli-
cable from the stateb isA(b) = {a ∈ A | Kφb ⇒
Kα}.

• The set of observationsO(a, b) are not modelled
explicitly within our logical framework, but are
considered as shown below.

• The transition functionfa(b) = boa is defined
through the combination of: 1) deterministic ef-
fects of the formposta : ∧i(Kαi → Kβi) (i.e.
a conjunction of generally conditional effects, in
which we often simplifyK> → Kβi with Kβi);
2) sensing effects of the forms:sensea : P , where
P is a fluent inP, that will be known after the
execution ofa; 3) forgetting effects of the forms:
posta : ¬KP , expressing that the fluentP will be
unknown after the execution of the actiona; 4) a set
of static axioms that describe domain constraints to
be applied in every belief state; 5) the default iner-
tial propagation of all the fluents that do not affect
consistency of the successor state. The resulting
belief stateboa is represented by an epistemic for-
mula that is build by appropriately computing the
above effects. In case the actiona has no sensing
effects, then the successor belief state is unique, i.e.
|O(a, b)| = 1, while in the case of a sensing ef-
fect on a fluentP we will have two successor belief
states according to the two possible values of the
observation ofP , i.e. |O(a, b)| = 2. Obviously,
this can be generalized to a combination of sensing
effects on different fluents.

• The observationoa(b) ∈ O(a, b) obtained after exe-
cuting the actiona will thus be given by the knowl-
edge of the value of a fluentP .

• In this paper we do not consider costs of the actions.

The above definition of the planning problem relies
on the ability of expressing the axioms for defining
the transition functionfa(b). While other choices are
possible, we present here a framework able to char-
acterize in a very compact and effective way the dy-
namics of a system. Moreover, the ability of com-
puting the successor belief state is a fundamental is-
sue in our approach and further details on computing
the epistemic formula characterizing such successor
belief state are given in (De Giacomoet al. 1997;
Iocchiet al. 2000).

3 Planning
In this section we address planning for theKL lan-
guage. In particular, we define a planning algorithm



that is able to generate strong cyclic plans in such do-
mains with incomplete knowledge and sensing. This
allows for considering a larger set of domain problems
for planning, namely all those problems for which a
conditional solution does not exist, but that admit a
strong cyclic plan.

The construction of the plan can be decomposed
into two basic tasks: (i) the generation of successor
belief states and (ii) the search for the plan in the be-
lief state space. With respect to the first task, we can
further decompose the problem into: verification of
the precondition for action execution and computation
of the effects, i.e. construction of the successor belief
state.

In (De Giacomoet al. 1997; Iocchiet al. 2000)
a solution to the problem of generating the successor
belief (or epistemic) state is provided, by presenting
an algorithm for constructing a complete representa-
tion of the belief states reachable from a given ini-
tial belief state. Such a representation is called First-
Order Extension (FOE) and implements the epistemic
reasoning that allows for dealing with transition be-
tween belief states, without considering explicitly the
possible states included in these belief states. More-
over, the FOE is shown to provide a correct and com-
plete representation of the set of belief states for the
purpose of finding the plans for the given goal.

The algorithm for strong cyclic plan generation pre-
sented in this paper exploits our previous work on rea-
soning with epistemic states (De Giacomoet al. 1997;
Iocchi et al. 2000), adding the ability of dealing
with cyclic plans and to integrate heuristics in the
search space that can significantly improve the com-
putational performance of the planner.

The algorithm shown in Figure 1 takes as input a
KL domain descriptionΣ, an initial belief stateb0
and a description of the goalψGOAL, and returns a
plan (possibly cyclic) that is a solution of the planning
problem as defined in Section 2. The plan is a graph
represented by a set of tuples< bi, ai, bj >, whose
meaning is that from the belief statebi it is possible
to execute the actionai leading to the successor belief
statebj . The actionai can be either an action with-
out sensing effects, in which casebj is unique, or an
action with sensing effects, in which the observation
setO(ai, bi) is given by two belief states{bj , b′j}, and
thus both the tuples< bi, ai, bj > and< bi, ai, b

′
j >

must be present in the plan.
The Plan Generation algorithm reported above uses

the functionfindLinearPath(Σ, b, ψGOAL) that re-
turns a linear path (a sequence of actions without
cycles and branches) from the belief stateb to a
goal belief state in whichψGOAL holds. Since

Algorithm 1 Plan Generation
Procedure PLANGENERATION
Input: DomainΣ, initial belief stateb0, goal de-
scriptionψGOAL

Output: PlanΠ = {< bi, ai, bj >}

Π = findLinearPath(Σ, b0, ψGOAL)
while Π 6= ∅ and∃ < bi, ai, bj > ∈ Π, such that
O(ai, bi) = {bj , b′j} and< bi, ai, b

′
j >6∈ Π do

Π′ = PLAN GENERATION(Σ, b′j , ψGOAL)
if Π′ 6= ∅ then

Π = Π ∪ {< bi, ai, b
′
j >} ∪Π′

else
Π = findLinearPath(Σ, b0, ψGOAL)

end if
end while
return Π

a linear path is a sequence of actions, in this
function only one outcome of a sensing action is
considered, and thus the returned path may have
states that must be further expanded. The function
findLinearPath(Σ, b, ψGOAL) “marks” those lin-
ear paths for which it was not possible a complete
expansion, to avoid reconsidering them in the future.
In other words, the function returns different paths if
called multiple times with the same parameters.

The ability to verify the equivalence of be-
lief states through epistemic formulas is essential
in the algorithm: 1) during the execution of the
findLinearPath function in order to guarantee that
the returned path does not contain cycles; 2) in com-
bining two plans in order to build graphs from the
paths extracted, and thus introducing loops; 3) in de-
termining that there are no solutions to the planning
problem, when all the belief states have been exam-
ined.

As a difference with previous work done in this di-
rection in (Petrick and Bacchus 2002), our formalism
exploits this capability to provide asound and com-
pletemethod for generation of both conditional plans
and strong cyclic plans.

Finally, the termination of the algorithm is a con-
sequence of the following observations: i) the com-
plete expansion of a single path initially generated by
findLinearPath terminates since the algorithm ex-
pands each state only once for every graph generated
during the process; ii) the number of paths generated
by the different calls offindLinearPath is finite.



4 Example and Experimental Results
In this section, we describe an example domain with
the aim of highlighting the features of the proposed
language and of the planning algorithm. Some ex-
perimental results also show the feasibility of the ap-
proach and a preliminary comparison with related ap-
proaches.

4.1 Mars Rock Analysis Example

The following example describes a domain in the lan-
guageKL, that models the high-level activities of a
rock analysis task for a Mars Exploration Rover Mis-
sion (see for example (Washingtonet al. 1999)).
Since we are mainly concerned in the high-level con-
trol of the rover, this domain does not consider some
important characteristics of a real domain, such as
temporal duration of actions, resource availability,
etc. Moreover, in several domains the control of an
autonomous vehicle is very complex and it is usually
preferred to design an architecture that provides dif-
ferent levels of controls, rather then integrating all of
them in a single framework. Furthermore, high-level
planning is also very useful during the development
stage, in which it is important to devise and test the
basic functionalities that must be implemented in an
autonomous vehicle in order to accomplish its tasks.

To this end, we suppose that the Mars Rover has the
following basic capabilities:

• localization and navigation ability that allows for
reliably mapping the area to explore, representing
it through a rectangularn×m grid;

• the ability of safely move through the grid: this will
be modeled by the high-level actionsup , down,
left , andright ;

• a sensing ability for detecting if, in the cell of the
grid where the rover is located, there is a new rock
to be analyzed: this is modeled through the high-
level actionsearch new rock ;

• the ability of getting close to the discovered rock,
and of collecting data from it, labeling this rock
in such a way that a subsequent execution of the
search new rock action will not find it again:
we express this ability through the high-level action
analyze rock .

The description of this domain in the languageKL
is reported in Table 1. Given such a description, we
may specify a planning problem whose goal is to ex-
plore all the mapped area in order to analyze all the
detected rocks. Thus, starting from an initial state in
which only the starting position of the rover in the
grid is known, denoted for example byKφINIT =
Kin(1, 1), we may define the goal expressing that in

every cell of the grid there must be no rocks to be an-
alyzed. In the defined language the goal is expressed
by the formulaKψGOAL = K∧i,j ¬new rock(i, j),
where(i, j) denotes a cell of the grid.

The plan extracted by the planner for this problem
is the one that allows the rover to reach all the cells in
the grid (through the motion actions) and to execute
there a loop for analyzing all the detected rocks one
after the other (see Figure 1 in which the grid size is
2× 2).

Notice that, there are severalwhile loops in the
plan (one for each cell of the grid), in which the
rover performs a number of analysis actions until the
condition checking for new rocks to be analyzed be-
comes false. As already mentioned, the presence
of loops in the plan is due to the capability of our
representation language to establish when two belief
states are equivalent. In fact, after executing an action
analyze rock , the belief successor state is iden-
tical to the one before performing the sensing action
search new rock , since the status of the agent’s
knowledge is that it does not know whether there are
rocks to be analyzed.

4.2 Experimental results

We have performed some tests to evaluate the be-
haviour of our planner both on the example reported
above and on a few other examples taken from the
literature. In particular, we have integrated within
thefindLinearPath function a heuristic depth-first
search. The experimental results for this example
have shown that the implemented heuristic depth-
first search allows for a linear computational cost for
generating linear-sized plans, even though the search
space is obviously exponential in the size of the do-
main description.

We have compared the implementation of our plan-
ner,K-Planner, with related planners that have sim-
ilar functionalities and representation capabilities:
PKS (Petrick and Bacchus 2002), that makes use
of a modal logic based representation of the agent’s
knowledge, and MBP (Bertoliet al. 2001), that in-
stead represent knowledge in terms of sets of possible
states. For this comparison we have chosen domains
(e.g. Medical (Weldet al. 1998), Ring (Bertoliet
al. 2001), etc.) that do not contain cyclic solutions,
since the mentioned planners cannot deal with cyclic
plans. From the analysis on the performance of our
algorithm in such problems, we found out that the
HDF search in our algorithm is very efficient when
the structure of the solution comprises a linear con-
catenation of similar blocks, as in the reported cases.
In other words, when a linear path is initially found



Action a prea posta sensea

up ∧jK¬in(n, j) Kin(i, j) → Kin(i + 1, j)
down ∧jK¬in(1, j) Kin(i, j) → Kin(i− 1, j)
left ∧iK¬in(i, 1) Kin(i, j) → Kin(i, j − 1)

right ∧iK¬in(i, m) Kin(i, j) → Kin(i, j + 1)
search new rock Kin(i, j) new rock(i, j)

analyze rock Kin(i, j) ∧Knew rock(i, j) ¬Knew rock(i, j)

Table 1: Rock Analysis domain description

Figure 1: MER rock analysis plan



to reach the goal (here the one in which all the sens-
ing actions will return false, i.e. no rocks are found in
the cell), then the completion of this partial solution is
achieved very quickly.

This behaviour confirms the results reported in
(Petrick and Bacchus 2002), showing that the ability
of explicitly representing the knowledge of the agent
allows for a more efficient implementation of a plan-
ner, with respect to those implementations that model
the knowledge in terms of sets of possible states
(e.g. (Weldet al. 1998; Bonet and Geffner 2000;
Bertoli et al. 2001)) In fact, in the considered prob-
lems, planners based on the explicit representation of
the agent’s knowledge (K-Planner and PKS) can eas-
ily deal with larger domains as opposed to those plan-
ners (e.g. MBP) that use sets of possible states (see
(Bertoli et al. 2001) for a comparison among these
planners). As an example, we report in Table 2 the
performance in the medical domain (we have obtained
similar data for the ring domain) of the three planners
considered. The numerical data for PKS are taken by
their paper (Petrick and Bacchus 2002), while data for
K-Planner and MBP are taken by running them on
the same 2.5 GHz CPU. The data reported here are
not meant to be an efficiency comparison between our
planner and PKS, but rather to confirm that the use of
explicit representation of knowledge of the agent in
planning domains with sensing and incomplete infor-
mation is significantly more efficient than approaches
based on possible worlds.

Finally, as already mentioned, our language allows
for a more compact representation of a domain, but is
not able to deal with some specific representation of
planning domains (namely the ones that require rea-
soning by cases). However, this limitation in the rep-
resentation power is not very restrictive from a rep-
resentational viewpoint (in fact, we can represent all
the example domains given in (Weldet al. 1998;
Bonet and Geffner 2000; Bertoliet al. 2001; Petrick
and Bacchus 2002)), while providing substantial com-
putational advantages, by ruling out some forms of
reasoning by cases.

5 Conclusions
In this paper, we have proposedKL, a logic-based
language for action representation, which allows for
considering complex planning domains with incom-
plete knowledge and sensing actions. In such sce-
narios, we have discussed the need of cyclic plans in
order to solve the contingent planning problem, and
we have presented an algorithm for the generation of
cyclic plans for a given domain specification. More-
over, some preliminary experimental results of plan

generation have been discussed.
In KL one can express the most important forms of

sensing actions and incomplete information proposed
in the recent planning literature: e.g., (Weldet al.
1998; Bertoliet al. 2001; Petrick and Bacchus 2002).
Furthermore, (Petrick and Bacchus 2002) presents an
approach to planning in the presence of sensing based
on the explicit representation of the epistemic state of
the agent, through the use of a very expressive first-
order modal epistemic formalism. Epistemic states
are logically formalized by knowledge bases (i.e., sets
of formulas) in such a logic, actions are specified
by means of updates (deletions and insertions) over
such knowledge bases, hence the semantics of transi-
tions between epistemic states is expressed at a meta-
logical level. However, the main difference between
their method and the one proposed in this paper, is
that we provide asound and completeplanning al-
gorithm, able to generate both conditional plans and
strong cyclic plans.

The present work can be extended in several direc-
tions. In particular, we are currently working on ex-
tending our framework in order to allow for the rep-
resentation of both qualitative and quantitative uncer-
tainty in the effects of actions.
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