
Towards a Method for the Construction of Robust, Compiled
Autonomous Spacecraft Executives

Mark S. Boddy Steven A. Harp Kyle S. Nelson∗

{ mark.boddy — steven.harp — kyle.nelson }@adventiumlabs.org
Adventium Labs, Minneapolis

1 Introduction

This paper summarizes the results of an inves-
tigation, funded by NASA’s Intelligent Systems
program, into methods and means for using com-
piled automation to speed the development and
deployment of increasingly autonomous space-
craft. The techniques most readily adaptable to
implementing a high-level “autonomous execu-
tive” are still close to research, hard to validate
in any rigorous sense, and new enough to have
little in the way of a track record on previous
missions. The fact that it may be much easier to
verify that an artifact has certain desired formal
properties than it is to generate an object with
those properties has been common knowledge for
a long time, and is a significant advantage for
compilation approaches.

2 Compiled Automation

Compilation as an abstract concept denotes the
transformation from one form of specification,
usually an abstract one, to another form that is
suitable for operational use. For space applica-
tions, on-line operations may be light-hours dis-
tant from the compiler. We do not, however,
equate “off-line” with terrestrial computing, and
in some cases it may be sensible for the spacecraft
to bring the compiler along. Among the benefits
of compilation for a wide variety of types of infer-
ence are predictability, specialization to a partic-
ular context, modularization, and improvements
in speed and space required.

3 Lessons from Galileo

Galileo was a highly successful mission that ex-
plored the Jovian system (Harland 2000). It

∗Supported by NASA Grant NAG-2-1634

was also a mission that faced numerous techni-
cal challenges. The most widely known of those
was the failure of the High Gain Antenna (HGA)
to deploy. Two other significant challenges in-
cluded reconfiguring the spacecraft to use the
low gain antenna (LGA) as the primary config-
uration channel, and the sheer quantity of effort
involved in planning close encounters on each
orbital tour. On each pass, Galileo was given
a sequence of commands that detailed what it
was supposed to do and when it should do it
during a given encounter. The Sequence Inte-
gration team, consisting of 25 engineers, started
with the activities necessary to keep the space-
craft healthy and then worked on the activities
necessary to meet the science objectives. Each
sequence took about 2 months to prepare, match-
ing the period of Galileo’s orbit. Once created,
this sequence was tested, then uploaded to the
spacecraft. This is exactly the process of compi-
lation as we have described it, but using a time-
intensive, highly manual process. The HGA de-
ployment efforts and LGA reconfiguration simi-
larly involved ground-based analysis that was re-
duced to code, tested and verified, and uploaded
to the spacecraft.

4 Scope of Study

The major functional requirements of spacecraft
determine the sorts of functions, or combina-
tions of functions, for which we are interested
in finding methods of compiled automation. The
functions of interest are indicated by the shaded
region in Figure 1. This shaded region sits on
top of spacecraft systems and functions that are
already substantially automated (and in many
cases compiled), but is still close enough to the
hardware to require guarantees on correctness,
coverage, and timely behavior.



Mission Goals and Management

Planning & Scheduling VHM & Reconfig Multi−Vehicle Coord.

Science and Data Exploitation

. . .Movement Environmental
Data/Resource
Management V1 Vn

Focus
Study

P
ro

pu
ls

io
n 

/ R
C

S

C
om

m
un

ic
at

io
ns

C
m

d 
&

 D
at

a 
H

an
dl

in
g

D
at

a 
S

to
ra

ge

E
le

ct
ric

al
 P

ow
er

A
tti

tu
de

 C
on

tr
ol

N
av

ig
at

io
n

Sequence Exec/Response (Spacecraft Control Language)

Environmental

Intermediate (Power & Thermal Mgt, ACS Subsystem)
PID Control

Physical Components

T
he

rm
al

R
ad

ia
tio

n

W
ea

th
er

 E
ffe

ct
s

F
D

IR

V
 &

 V

Figure 1: Functional mission architecture

5 Case Study: Jupiter Icy Moons
Orbiter

The Jupiter Icy Moons Orbiter (JIMO) is a pro-
posed mission to orbit three planet-sized moons
of Jupiter (Callisto, Ganymede and Europa)
(NASA JPL ). The round trip light time (RTLT)
to Jupiter and back is nearly two hours. Hence,
there cannot be any expectation of fine-grained
control of JIMO from Earth. The expected data
rates and data volume generated by the science
instruments together with the operational com-
plexity of the orbital passes will make business-
as-usual mission operations (e.g., coding detailed
timing instructions and uploading to the space-
craft as was done on Galileo) both extremely
difficult and detrimental to mission objectives.
Consequently, JIMO will require as much au-
tomation as possible to handle day to day tasks
(e.g., attitude control, backup power mainte-
nance, etc.). These tasks, however, are also mis-
sion critical and although automation is an at-
tractive option, that automation must be verified
to the level of other flight software.

According to current mission timelines, the time
en route to Jupiter will be approximately two
years longer than the time remaining before
launch of the spacecraft. This time can be ex-
ploited by making a deliberate decision to split
the JIMO development into two distinct phases.
The first phase, covering the period up to launch,
would concentrate on the hardware components
of the spacecraft and those software functions re-
quired for the launch and cruise phase of the mis-
sion. The second phase, covering the period after
launch up to arrival at Jupiter, would focus on
the additional software functions required for use
at Jupiter, for example software that processes

the science data. Compiled automation can sat-
isfy this approach through the generation of new
software as an artifact, or a set of artifacts, that
can be independently verified on the ground prior
to being uploaded to the spacecraft.

6 Summary

Moving from an opportunistic and ad hoc ap-
proach to compiled automation to an approach
that is principled, predictable, and verifiable
would be a huge win, whether or not the end
result was to put the underlying reasoning pro-
cesses on-board. The techniques required are
known, the methods of implementation are con-
sistent with current architectures, and their in-
troduction can be gradual so as to reduce risk
and ensure an incremental rather than a rad-
ical transition in operational practices. Con-
sidering the automation of individual functions,
rather than “compiled autonomy” as an indivis-
ible whole is driven from the underlying tech-
nology: it is difficult to talk about how to com-
pile something without being fairly precise about
what the “thing” is (in this case an algorithm, or
a form of inference).

This natural partitioning of functions is also very
appropriate, considering the current status of
spacecraft autonomy. At the current state of
the art, it is difficult to conceive of building
an on-board, automated reasoner that could be
counted on to respond appropriately to the fail-
ures dealt with during the Galileo mission, mak-
ing the full scope of operational and configura-
tion changes required.

Quite a bit more detail on this project is available
in the Final Report (Boddy, Harp, & Nelson ).

References

Boddy, M.; Harp, S.; and Nelson, K. Clockwork:
Requirements definition and technology evaluation
for robust, compiled autonomous spacecraft execu-
tives. www.adventiumlabs.org/publications.htm.

Harland, D. M. 2000. Jupiter Odyssey. Springer-
Praxis. About the Galileo mission.

NASA JPL. Jupiter icy moons orbiter home page.
http://www.jpl.nasa.gov/jimo/.


