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Abstract. This paper reports on the design and implemen-
tation of a real-time executive for a mobile rover that uses
a model-based, declarative approach. The control system is
based on the Intelligent Distributed Execution Architecture
(IDEA), an approach to planning and execution that provides
a unified representational and computational framework for
an autonomous agent. The basic hypothesis of IDEA is that a
large control system can be structured as a collection of inter-
acting agents, each with the same fundamental structure. We
show that planning and real-time response are compatible if
the executive minimizes the size of the planning problem. We
detail the implementation of this approach on an exploration
rover (Gromit, an RWI ATRV Junior at NASA Ames) pre-
senting different IDEA controllers of the same domain and
comparing them with more classical approaches. We demon-
strate that the approach is scalable to complex coordination
of functional modules needed for autonomous navigation and
exploration.

1 Introduction
As robotics research advances, planetary robotics is tackling
increasingly challenging mission scenarios. Rovers have
demonstrated autonomous traverse of several kilometers in
Mars-analogue terrains (Wettergreenet al. 2002) and sev-
eral field experiments are showing increasing effectiveness
in autonomously placing scientific instruments on observa-
tion targets (Pedersenet al. 2003; Lacroixet al. 2003). The
increased level of autonomy opens the possibility of much
more productive planetary science missions than present
ones (e.g., each of the Mars Exploration Rovers is expected
to perform close investigation of 6 to 12 targets in 90 days).
It also promises a reduction of workload and stress for the
ground crew, two factors that make it impossible to use the
traditional highly manual commanding process for the more
complex future rovers.

The increased mission and rover complexity requires
more capable on-board software. Not only individual mod-
ules must be more robust and capable, but there must be a
substantial increase in the ability to coordinate these mod-
ules. This is a significant problem since complexity in-
creases exponentially with the number of possible interac-
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tion among complex modules. In complex operational sce-
narios the interactions that need to be considered also in-
creases because of the number of concurrent anomalies that
must be handled robustly.

Several current approaches to autonomy tackle the co-
ordination problem by separating the control software into
multiple layers of increasing levels of abstraction and co-
ordination complexity (Muscettolaet al. 1998b; Bonasso
et al. 1997). For example, in a three-layered architec-
ture the low level constitutes afunctional layer, includ-
ing control modules such as platform mobility drivers and
more complex functionalities such as obstacle avoidance
and stereo-map construction. The middle layer is anex-
ecutive that can run a library of procedures that monitor
and activate lower level functional modules to achieve dif-
ferent types of mission goals (e.g., “go to location X” or
“take a image mosaic of rock Y”). Finally, at the high-
est level aplanner takes several mission goals and sched-
ules them for execution over an extended period of time,
determining which execution procedures need to be in-
voked to achieve the selected goals and which resources
can be allocated for their achievement at what time. Sev-
eral current approaches to rover autonomy essentially fol-
low the previously described structure (Volpeet al. 2001;
Chouinardet al. 2003).

The multi-layered approach has had some significant suc-
cesses (e.g., the implementation of a highly autonomous
spacecraft controller on DS1 (Muscettolaet al. 1998b)) but
integration and testing is difficult because of the technolog-
ical diversity of the different layers. Focusing on the rela-
tion between the planner and the executive, while the plan-
ner typically uses a declarative cause-effect model of the all
possible behavior of the system and of the external environ-
ment, the executive has only a compiled view of such mod-
els into its procedure library. Such procedures are optimized
to achieve the few behaviors that they encode. Exceptional
conditions outside the covered behaviors must be caught
by more drastic fault protection measures (e.g., putting the
rover in standby and waiting for external help from ground
operators). The manual encoding of control knowledge in



the procedures has also the undesirable effect of making the
executive’s logic much more opaque than that of the planner.
This makes more difficult the testing, verification and valida-
tion with formal methods such as model checking. Building
autonomy software that is easier to validate is essential for
its adoption as the on-board controller of a planetary mis-
sion.

This paper describes the design and implementation of a
real-time executive for Gromit, a mobile robot with capa-
bilities equivalent to state-of-the-art field exploration rovers.
The executive is significantly different than traditional pro-
cedural executives since it uses a temporal reactive planning
as its only run-time reasoning engine. The executive has
the same capabilities of a procedural executive but uses a
fully declarative domain representation rather than a proce-
dural one. Our executive conforms to the Intelligent Dis-
tributed Execution Architecture (IDEA) for the development
of multi-agent systems (Muscettolaet al. 2002). An IDEA
control agent has a model based on temporal planning opera-
tors that describes its internal functioning and all of its com-
munications with other agents or with the controlled plant.
The model is interpreted at run time by a planner and the
next planned task is then executed. Our model of plan ex-
ecution is an extension of the one used in Remote Agent to
execute high-level plans (Muscettolaet al. 1998a). Reliance
on a planner for on-line decision making has been tradition-
ally excluded from consideration due to the apparent incom-
patibility of real-time responses with possibly exponential
computation. We show that temporal planning and real-time
response are not incompatible if the executive minimizes the
size of the planning problem solved at each execution cycle.
Previous work (Lemaiet al. 2003) demonstrated the feasi-
bility of the approach for a simple rover. In this paper we
demonstrates that the approach is scalable to the more com-
plex coordination of functional modules necessary for the
control of state-of-the-art rovers.

The paper is organized as follow: we first present the
rover experimental platform. We then present a traditional
procedural controller that has been used to control the rover.
Then we introduce the IDEA control architecture (Muscet-
tola et al. 2002; Lemaiet al. 2003) that provides the con-
troller template on which we implemented the planner-based
controller. Subsequent sections present the planner-based
executive, focusing on the planning model and on issues re-
lated to the minimization of the size of the planning prob-
lem. We conclude with a comparison of our approach and
the classical procedural executive approach, and a more gen-
eral discussion on the state of the art on planning and execu-
tion control.

2 The Gromit Domain
We shall illustrate our presentation with a simplified ver-
sion of a real world experiment, running on Gromit, an RWI
ATRV Jr at NASA Ames. The mission of the robot is to visit

a number of waypoints, into an initially unknown rough en-
vironment, while monitoring interesting targets on its path.
The robot uses stereo vision to continuously build a model of
the environment. Thus, considering the current position, the
targeted waypoints and the environment model, a 3D mo-
tion planner continuously produces an arc trajectory which
avoids obstacles, maximizes stability and tries to reach each
waypoint in turn. At the same time, a monitoring task senses
the surrounding environment and upon detecting an interest-
ing target, stops the robot and takes a picture of it, tagged
with its position for possible future study if the target is con-
sidered worth reexamining by scientists.

The functional layer of Gromit has been implemented us-
ing the functional modules of GenoM that is part of the
LAAS Architecture (Alamiet al. 1998). Modules are pro-
grams providing services to a client upon request and pro-
ducing data to fulfill the service. Each data production is
called a poster. For each module used in Gromit (Figure 1)
we briefly describe the functional capabilities of the mod-
ule, the request and the poster. For more information on
the implementation and algorithms used by each module see
(Lacroixet al. 2003).
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Figure 1: The functional modules of the example (arrows
represent the “use” of the pointed poster by the pointing
module).
• RFLEX is interfaced with the low-level speed controller

of the wheels, to which it passes the speed available from
a speed reference found in a poster (in our example, the
poster is produced by either P3D or Science) and provides
speed control (rflex speed track speed ref poster) on
the wheels of the robot on a speed reference found in a
poster (in our example produced by P3D or Science). It
also produces a poster containing the position of the robot
based on its odometryrobot pos. Both posters are pro-
duced/used at 25 Hz. To stop the robot one can set up a
poster with a null speed and instruct RFLEX to use it.

• Camera takes a pair of stereo calibrated images
upon thecamera shot request and save them in the
camera images poster. This takes between 1 and 7 tenth



of a second. These images are tagged with the current po-
sition of the robot available in therobot pos poster.

• SCorrel takes the stereo pair in thecamera images
poster, produces a stereo correlated image and stores it
in scorrel image upon receiving thescorrel scorrel re-
quest.scorrel image is tagged with therobot pos poster
value. SCorrel takes a few seconds (2-3) to complete.

• Lane builds a model of the environment by aggregat-
ing subsequent cloud of 3D points produced by SCor-
rel. It can service two requestslane read to read the
scorrel image in an internal buffer andlane fuse to
fuse the readscorrel image in its map which is avail-
able in the posterlane map. It takes a second or so to
complete.

• P3D is a rover navigation software using a method very
close to the GESTALT rover navigation software oper-
ating on the Mars Exploration Rovers (Goldberget al.
2002). It produces an arc trajectory in theP3D speed
poster, to try and reach a waypoint, still avoiding “obsta-
cles” by making a stability analysis in the environment
available in the posterlane map. As long as it has not
reached a particular waypoint, this module runs contin-
uously and periodically (0.5 Hz) reevaluates the position
and the environment to produce a new arc, which is trans-
lated in a speed reference poster:p3d speed. This is the
speed reference used by RFLEX to get the robot moving.

• ScienceThis last module monitors a particular condition
of interest to scientist (such as a detecting rocks with a
particular features) using a particular instrument. In our
case, when such condition arises while the robot is mov-
ing toward a waypoint, it stops (by instructing RFLEX to
use aScience speed which is null) and takes a picture of
the rock.

In order for all of these module to correctly operate as
an integrated system, we need to specify how to coordinate
their concurrent execution. In particular we need to specify
which sequences of poster productions/consumptions per-
formed by which modules yield a correct overall rover be-
havior. The high-level description of rover operations is the
following. The robot continuously takes pictures of the ter-
rain in front of it, performs a stereo correlation to extract
cloud of 3D points, merges these points in its model of en-
vironment and starts this process again. In parallel, it con-
tinuously considers its current position, the next waypoint
to visit, the obstacles in the model of the environment built
and produces a piece of trajectory, which result in a speed
reference. These two interdependent cyclic processes need
to be synchronized. Last, a third process interrupts regu-
lar way point visiting whenever an interesting rock has been
detected.

Figure 2: Example of a PRS procedure.

3 A Procedural Controller
The aforementioned scenario was originally implemented
using a procedural executive (PRS : OpenPRS (Ingrandet
al. 1996)). Figure 2 shows the top level procedure used then
to properly sequence the calls to the functional modules to
perform this autonomous navigation.

PRS is composed of a set of tools and methods to rep-
resent and execute plans and procedures. Procedural rea-
soning differs from other commonly used knowledge repre-
sentations as it preserves the control information (i.e. the
sequence of actions and tests) embedded in procedures or
plans, while keeping some declarative aspects. OpenPRS is
composed of:

• A databasewhich contains facts representing the system
view of the world and which is constantly and automati-
cally updated as new events appear. In our robot architec-
ture, the database contains symbolic but also numerical
information such as the position of the robot, the status of
the various requests,etc.

• A library of procedures/plans, each describing a partic-
ular sequence of actions and tests that may be performed
to achieve given goals or to react to certain situations.
The content of this procedure library is application de-
pendent and it may include predefined plans to perform
robot tasks.

• A task graph which is a dynamic set of tasks currently
executing. Tasks are dynamic structures which execute
the “intended plans”, they keep track of the state of exe-
cution of the intended procedure and of the state of their
posted subgoals.

In PRS, each plan/procedure is self-contained: it de-
scribes in which conditions it is applicable and the goals it
achieves. This is particularly well adapted to context based
task refinement and to incremental robot tasks. In our ex-
ample, see Figure 2, the top level procedure describes the
proper sequencing to perform the navigation and the science
experiment. One can see on the left part the two synchro-
nized loops (camera/scorrel and lane read/fuse), while on



the right part, we have the loop which monitor “rocks” and
take picture of them.

Overall, the procedural approach does identify the con-
trol cycles but fails to tie them to the actual physics of the
controlled devices and thus to their states. This has nega-
tive effects on the ability to handle failures and analyze the
validity of the control loops under all possible execution cir-
cumstances.

4 IDEA Architecture
IDEA (Muscettolaet al. 2002) is a model-based autonomy
architecture that supports the development of large, multi-
agent control systems. Unlike three-layered architectures,
each IDEA agent strictly adheres to a single formal virtual
machine and uses a model-based reactive planner as its core
engine for reasoning.

The IDEA Virtual Machine Figure 3 gives an overview
of the components of an IDEA agent. The agent communi-
cates with other agents (either controlling or controlled by
the agent) using anAgent Relay. The function of the relay
is to maintain the context of execution in term of procedures
and their return values. The procedures are considered as ex-
ecuted on separate parallel threads. Each procedure invoca-
tion is handled by the relay analogously to CORBA’s Asyn-
chronous Method Invocation (Schmidt and Vinoski 1999)
with the possibility of each procedure to be aborted by the
invoking agent. The agent relay maintains the execution
context by sending or receiving message invocations (re-
spectively corresponding to goals sent to controlled agents
or received from controlling agents) and receiving or send-
ing method return values (corresponding to the achievement
of a goal at its status respectively by the controlled agent or
by the agent itself on behalf of a controlling agent). It is
assumed that each method is executed by a different thread.
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Figure 3: Structure of an IDEA Agent.

At any point in time the execution context of the Agent
Relay is synchronized with the internal state of aReac-

tive Planner. The Reactive Planner has access to a do-
main model, maintained by theModel Managerthat spec-
ifies the state variables (i.e., threads) that are describe the
input/output state of the agent and also its internal control
state. For example, a rover model will contain a thread de-
scribing the camera and another describing the state of the
camera’s pan/tilt unit. The model also specifies the proce-
dures that can be executed on each different thread (e.g.,
a pan/tilt unit can either move to a pointing or maintain
a pointing), the sequence in which they can appear on a
thread (e.g., after the pan/tilt unit executes a procedure mov-
ing to a destination camera pointing, the next procedure is
one that maintain the destination pointing) and the neces-
sary synchronization between procedures occurring on par-
allel threads (e.g., while the camera is executing a procedure
acquiring an image with a certain pointing, the pan/tilt unit
must be executing a procedure maintaining that pointing).
The Reactive Planner is responsible for generating new pro-
cedure invocations to be maintained in the Agent Relay (and
therefore causing communication with external agents) that
are consistent with the model maintained by the Model Man-
ager.

The Plan Service Layeris the module that ensures com-
plete consistent synchronization of the execution context be-
tween the agent relay and the internal state of the Reactive
Planner. One of the services provided by the Plan Service
Layer is keeping track of which procedure parameters or re-
turn values have been communicated with other agents and
which have been only inferred by the internal reasoning of
the Reactive Planner. The parameters communicated exter-
nally, either incoming or outgoing with respect to the agent,
are assumed as fixed and cannot be modified by the reactive
planner for any of its current or future invocations.

Finally, the Plan Runnerexecutes a simple, finite state
machine that implements the sense/plan/act cycle of the
IDEA agent.

IDEA Execution Cycle The Plan Runner operates as fol-
lows:

1. The Plan Runner wakes up according to anagent clock
at the first time after a message has been received from
another agent or a wakeup timer maintained byTiming
Serviceshas gone off;

2. The state of the Agent Relay is updated with respect to
the information resulting from the wakeup event (e.g., a
procedure has received a return value);

3. The Reactive Planner is invoked and the planner synchro-
nizes its internal state with the agent relay through the
Plan Service layer compatibly with the planning method
used by the reactive planner;

4. When the Reactive Planner terminates the Agent Relay
loads the new context of execution and sends appropriate



messages to the external agents. For example, if a pro-
cedure has been terminated by the Reactive Planner, the
corresponding return value (determined by the Reactive
Planner) is sent to the controlling agent;

5. The Reactive Planner is invoked to determine what is the
next time at which execution is expected to occur (barred
any external communication). Such time for example
could be minimum of the earliest times for the start or end
of any current or future procedures in the plan. The time
is set in the Timing Services module as the next wakeup
time for the agent;

6. The Plan Runner goes to sleep and waits for an external
message or the expiration of a wakeup timer.

Attributes, Tokens and Compatibilities Although IDEA
does not prescribe the format of the internal organization
of the Reactive Planner, its model assumes a semantic that
is equivalent to that of the EUROPA planning technol-
ogy. (Jeremy Frank 2003). We will assume the existence
of a centralized Plan Database where the input/output and
internal state of an agent is represented as set ofattributes
(also referred to asstate variables) whose value (represent-
ing the constraint on a procedure invocation) changes over
time. Values of attributes corresponds to actions and state lit-
erals in the sense of classical AI planning. A value extended
over a period of time is also called atoken. The history of
states for a state variable over a period of time is called a
timeline. For example, given a rover domain,position is
a possible attribute;going(a, b) from time1 to 3 andat(b)
from time3 to 5 are intervals representing, respectively, an
activity and a state. The IDEA modeling language is also
compatible to the EUROPA planning technology and iden-
tical to the modeling language of the Remote Agent plan-
ner (Jonssonet al. 2000). The interval constraints among
all possible values that must occur among tokens for a plan
to be legal are organized in a setcompatibilitiesthat absolve
the same function than temporally scoped operators in tem-
poral planning. A compatibility is a conjunction of relations
each defined by: i. equality constraints between parameter
variables of different tokens; ii. simple temporal constraints
on the start and end variables. The latter are specified in
terms of metric version of temporal relations a la Allen
(Allen 1981): meets, met by, contained by, contains,
before[d, D], after[d, D], starts, ends, etc. For instance,
going(x, y) meets at(y), and going(x, y) met by at(x)
specifies that eachgoing interval is followed and preceded
by a stateat.

Reactive and Deliberative Planning In IDEA reactive
planning determines the next action on the basis of sensory
input and time lapse wakeups. Reactive planning may use a
standard planning engine but it is restricted to operate within
a maximum time limit, the agent’slatency(i.e. the time in-

terval between two ticks of the agent clock). More complex
problem solving (e.g., long-term task planning) typically re-
quires more time than the latency allows. IDEA provides a
rich environment for integrating any number of deliberative
planners within the core execution cycle (Figure 4). Dif-
ferent specialized planners can cooperate in building a sin-
gle plan coherently with the agent’s model. Also in IDEA
the activation for a deliberative planner is programmed in
the model. This can be obtained by modeling the planner
like any other subsystem, i.e., by specifying a timeline that
can take tokens whose execution explicitly invokes the plan-
ner. This makes it possible to appropriately plan the time at
which deliberate planning can occur compatibly with the in-
ternal and external state modeled by the agent. For example,
it is possible to determine that deliberative planning should
happen while a rover is either not moving or moving in a
predictable way that allows to accurately predict the initial
conditions assumed by the deliberative planner. We will dis-
cuss issues related to interaction between deliberative and
reactive planning for execution further in this paper.
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Figure 4: Reactive-Deliberative interaction.

5 A Model-based Controller for Gromit
The IDEA Gromit executive is a single IDEA agent that
operates as controlling agent for the functional modules of
Gromit. For each of them we shall consider the “visible”
state variables of interest and the associated compatibilities
(See Figure 5).

5.1 Attributes and Tokens
• RFLEX has a state variable for the position of the robot

position sv, with each token representing a specific robot
position, and another one for the speed control of the
robot speed sv, with each token representing the refer-
ence speed passed to the wheels controller.

• Camera has one state variable (camera sv) representing
the camera status (taking a picture, or idle).

• SCorrel has one state variable (scorrel sv) representing
the SCorrel process (performing the stereo correlation, or
idle)



• Lane has one state variable (lane sv) representing the
model building process (modeling or idle)

• P3D has one state variable (p3d sv) for its state (idle
or computing the speed of the robot) and one for the
way points to visit (wp sv).

• Science has one state variable (science sv) for its status
(monitoring interesting rocks or idle).

For now, one will assume that the data themselves (e.g.,
pictures, stereo correlated images, map) are available as a
result of the associated tokens on each state variable (e.g.,
the position value is available on the considered token on
robot position sv)
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lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle
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Figure 5: Partial Gromit model (timelines and compatibili-
ties).

5.2 First Principles in Gromit

Now that we have the state variables of interest, we can con-
sider the compatibilities which link them. If we express the
aforementioned problem using a first principle approach, we
will write constraints specifying things such as:

• The p3d token to reach a waypoints (on thewp sv) has
to end with a successful plan token onp3d sv. This plan
token needs the waypoint token (onwp sv), the current
position onposition sv and the model of the environment
on lane sv.

• lane sv fuse requires aread which requires a stereo
correlation onscorrel sv,

• scorrel sv requires a pair of picture taken by the camera
with a shot on thecamera sv timeline and requires that
no other pictures should be taken until it is done with the
scorrel.

• thescience sv is started with amonitor token which will
trigger whenever an interesting rock is seen. This will re-
quire stopping the robot (thus setting thespeed ref to
zero) and using thecamera sv to shot a picture (thus
interrupting the whole navigation/mapping process). Fol-
lowing thisshot, ascience token is performed (while the
camera isidle).

One can see that by expressing causal and temporal re-
lationships between these tokens/timelines we describe how
the overall experiment may run. It is still up to the reactive
planner to produce on each timeline the proper flexible se-
quence of tokens resulting in internal calls in the modules.
One of the interesting part in this problem is the handling of
the science activities which tightly interact with the naviga-
tion activity. Such interaction, when dealt with the classical
procedural approach, is the potential source of many prob-
lems and pitfalls (deadlocks, corrupted data, etc).

6 Modeling with a Planning Horizon
The core of and IDEA control agent is the reactive planner.
All IDEA agents implemented so far in this and other ap-
plications (e.g., for the Personal Satellite Assistant at NASA
Ames) use the EUROPA planning technology as its base,
with a simple heuristic-guided chronological backtracking
engine as the search mechanism used by the planner. The
key control parameter on the speed of the reactive planner
is the length of the horizon over which the reactive plan-
ner is requested to build a consistent plan. As the horizon
becomes shorter, the size of the reactive planning problem
becomes smaller and, consequently, the size of the plan-
ning search space and the maximum latency also become
smaller. In other words, the smaller the planning horizon is,
the more reactive the IDEA control agent becomes. How-
ever, the horizon reduction has a complementary effect on
the complexity of the domain model required to achieve cor-
rect reactive execution. During execution the agent could be
required to achieve a goal (e.g., a standby state) that can
only be achieved over multiple reactive planning horizons.
Since the reactive planner has only visibility on subgoals
and tokens that occur during one planning horizon, the plan-
ning model will have to incorporate enough contextual in-
formation to “look ahead” to decisions that may be crucial
to build a correct plan in future horizons and to achieve the
future goal. Therefore, the shorter the planning horizon, the
more contextual information each subgoal must contain on
future goals and, ultimately, the more complex the declara-
tive model becomes. This increase in complexity makes the
modeling task more difficult and reduces the effectiveness
of the model-based approach in capturing the structure of
the domain when compared to encoding a number of pre-
scripted control procedures.

In this section we present three different IDEA controllers
for Gromit that illustrate the tradeoff between horizon dura-
tion, planner performance and model complexity.

6.1 Minimal horizon model
To minimize the size of the reactive planner’s search space,
it is necessary to expand as little as possible of the plan in
one execution cycle. One way to obtain this is to reduce the
planning horizon to its minimum possible length, i.e., the
granularity of the agent clock or one execution latency. This



granularity guarantees that during reactive planning at most
one token will be expanded after a token that must be termi-
nated during an execution cycle. This is the minimal amount
of information to maintain an adequate execution context in
the Agent Relay. We now describe a Gromit model for a re-
active planner operating over a one-latency planning horizon
that fully duplicates the PRS controller in Figure 2. Figure 5
shows the timelines, tokens and some temporal relations rep-
resenting a simplified version of this model.

Given the one-latency horizon, the planner can only ex-
pand tokens to cover the next execution cycle by exploiting
the model to select tokens and to decide about their consis-
tency. Since no backward search can be employed, subgoals
can be interpreted as commands and the temporal model
must provide a complete description of the control informa-
tion: for each execution context the set of available com-
mands must be explicitly specified. It is easy to see that the
one-latency representation can become very complex. For
instances, Figure 6 depicts a possible execution context in
the Gromit model:scorrel ends while the firstlane fuse
is still processing. In the same figure we can find another
context:scorrel ended duringlane idle. Each of these con-
texts must be associated with a suitable control rule, e.g., in
the previous case we havescorrel(s) meets scorrel wait
and scorrel(s) meets lane read(s′). Such conditional
constraints ramification is a typical phenomenon in the one-
latency model: all the possible choices a long horizon plan-
ner could explore, need to be folded back into the next agent
clock tick.

LANE

read fuseidle idle

CAMERA
shot shotidle idle idle

Current
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Figure 6: Scorrel-fuse interaction.

6.2 Reactive Long Horizon

The increase of model complexity due to one-latency “my-
opia” can be mitigated by having the reactive planner oper-
ate over a longer horizon. If the horizon is long enough a
simpler model of the domain can be coded. In this context,
the control information is much simpler since the context
needed to achieve long term goals can be reconstructed on
the fly during the planning search. This allows the model to
be devoid of practically all search control information and
to adhere more thoroughly to the principles of model-based
declarative design.
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Figure 7: Gromit model: long horizon.

Figure 7 depicts the timelines involved in the mapping and
observing processes for a long horizon model for Gromit.
Each mapping process is started once a goal, e.g.map(2)
(here the activities are indexed by the cycle), is posted on
thegoal map timeline and the reactive planner has to pro-
vide a plan for it within a latency. At the end of the latency, if
the planner is successful, a control sequence for a mapping
cycle is generated and the reactive planner can play in the
role of an execution monitor checking for the consistency
of the plan database. While the mapping activities are run-
ning, the next mapping cycle can be generated (e.g. Figure 7
showsmap(3) posted aftercamera(2)). Note here that the
long horizon ensures a reactive goal-driven behavior, and,
since the plan database stores a temporally flexible plan, also
event reactivity is ensured. Figure 7 illustrates also the mon-
itor token (seescience timeline) triggering and posting the
goalobserve on thegoal observe timeline. Once the goal is
posted, the reactive planner has to find a consistent solution
where the activities involved in both mapping and science
are coordinated. Note that the observing and the mapping
processes can be easily integrated in the long horizon model
since their coordination is managed by the reactive planner,
instead, in the one-latency model, the same integration de-
termines a multiplicative effects on the number of execution
contexts.

The reactive long horizon controller is based on a simple
and natural domain representation and allows for a smooth
and robust behavior. The main drawback is performance
because plan generation is more complex and the latency,
driven by the worst case cost of plan generation, is higher.

6.3 Deliberative and Reactive Interaction

One way to address the dualism between performance and
ease of representation is to exploit “dead time” to look ahead
while retaining the capability to react immediately if an
event signals an exceptional situation. This approach was



adopted by the Remote Agent Experiment (Muscettolaet al.
1998b). In that case the deliberative planning horizon cov-
ered an entire day since the goal was to trade off between
the achievement of several conflicting goals over a long pe-
riod of time. A very similar approach can be used for short
term execution, appropriately augmenting the long-horizon
model described above with the information needed to trig-
ger and execute long-horizon planning in a deliberative man-
ner.

Besides the reactive planner, several other processes can
manipulate theplan database. Some of these, calleddelib-
erative planners, are allowed to build long term plans over
extended periods of time (see Figure 8). As we have previ-
ously illustrated, reactive and deliberative planners are fully
integrated as they share the same domain representation and
operate on the same data structures. Such uniformity allows
for a tight interaction.
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We experimented with a rover model exploiting the coop-

eration between the declarative and the reactive planner, and
we tested it in simulation. Our goal was to exploit the de-
liberative planner to pipeline the reactive activities and thus
reduce the long horizon latency. This new model is obtained
as a very simple extension of the long-horizon one. The
deliberative planner is associated with a long horizon while
the reactive planner works with a one-latency horizon so that
some control rules are visible to the deliberative planner, but
not to the reactive. In this setting the two planners can con-
currently work at different tasks. Figure 8 depicts again the
observe-mapping cycle in the new setting. In this case map-
ping map(2) is treated as a long term goal, whileobserve
is a short term one. In this scenario, the reactive planner can
provide a final plan forobserve while the deliberative plan-
ner is still working atmap(2), and the experiment can be
executed without waiting for the camera.

Reactive execution with deliberative pipelining can
speed-up execution in nominal conditions, when the predic-

tions of the deliberative planner are not invalidated by ex-
ceptional execution events. If a fault occurs, then it has to
be guaranteed that the system can remain in the off-nominal
state during deliberative planning without endangering the
safety of the rover. This requires the identification ofim-
mediate standby statesthat can be reached in at most one
step and can persist for at least the duration of a deliberative
planner. This is similar to what was done in the Remote
Agent Experiment where the response to a fault required
the execution of a standby script and the planner was acti-
vated only while the spacecraft was in standby. In the con-
text of reactive, real-time execution using on-line planning
as its sole reasoning method, the time to come up with the
standby script is reduced to a single latency horizon. To keep
modeling as simple as in the long horizon case therefore we
have two possible ways. The first is to identify immediate
standby states and model the requirement that the deliber-
ative planner be invoked only if the standby state has been
achieved. The second, in case that an immediate standby
cannot be achieved for some fault conditions, is to resort to
cached standby plans. The reactive planner would then load
the cached plan and start immediately executing its first step
after a failure. Clearly, cached plans are analogous to proce-
dural scripts but, in this approach, they will be only need to
achieve standby. Therefore, it is expected that their number
will be limited and their encoding will not require caching
a large number of conditional information in the plan. The
explosion of conditional information is a major limitation in
achieving fully robust reactive scripts.

Our work so far has identified a framework on which to
conduct quantitative studies of the tradeoff between ease of
programming, encoding of search control and caching of
limited standby plans. A full examination of these issues
will be conducted in future work.

7 Results
The previously presented example has been implemented
using a procedural executive, as well as the various IDEA
models (one-latency and long horizon), and deployed on
Gromit. Gromit has a dual Pentium III 1.3 Ghz CPU run-
ning Linux. As stated before, the real experiment was more
complex than the one presented here and involved three oth-
ers modules we did not describe in this paper (STEO, for
stereo odometry,POM for position management to com-
bine the classical and the stereo odometry andPlatine to
handle the pan and tilt unit.). All the programs (i.e. func-
tional modules, OpenPRS1 or IDEA) are running onboard.

We started the experiment using procedural reasoning,
and by using all available computational power, we were
able to run the robot at roughly 10cm/s (the two most com-
putationally intensive processing are the stereo correlation,
and the stereo odometry) and to perform a “complete” cycle

1OpenPRS is an open source version of PRS.



(i.e. the time between two subsequent camera shot) in about
one second. The monitor activity of thescience module
would trigger the stop in a tenth of a second.

The same experiment was then programmed in IDEA us-
ing a one-latency reactive model and, despite the difficulty
of correctly implementing the model, we were able to run
with a latency of 0.3 seconds. The measurable reactivity of
the system to new events (such as ascience monitor trig-
gering) was on the order of one second. Using a long horizon
model and a reactive planner, able to produce a plan for the
next cycle and change it whenscience monitor requires it,
we ran at latency 1.5 seconds. The reactivity was then in the
order of 3 seconds. Note that the plan produced by the IDEA
model presented a better flexibility than the one produced by
PRS (in particular, in the complete example, we were getting
a better sequence leading to a camerashot while laneread
was still executing). Moreover, although a subtle race con-
dition in the PRS procedure could lead to a situation where
one could take a science picture while the navigation stereo
correlation is still running, the IDEA based experiment did
not have such problem.

8 Discussion: Model-based vs. Procedural
Executive

We have demonstrated that flexible temporal planning can
be deployed at the executive level using a temporal model
of some fairly low level rover control primitives. Still, be-
yond pure numerical results, we need to analyze how our
approach compares and scales with classical approaches, in
particular procedural executives.

Let consider a number of properties and see how these
two approaches compare:

• Validation and Verification The IDEA approach has a
clear advantage on this issue. Indeed, using formal mod-
els to generate plans at run time is a guarantee that the
model will always be satisfied. Compared to procedural
executives which only provide a threaded control struc-
ture, this is clearly an advantage.

• Performance Doing a temporal model consistency
checking has a high tag price, compared to a simple next
step execution in a procedure. Still, performing such
checking on a limited horizon provides some acceptable
performance. The problem is how to guarantee that such
checking can be done in a time frame compatible with the
given horizon.

• Flexibility On this aspect, a temporal model-based ap-
proach should behave better than a procedural one. In-
deed, procedure are usually hardcoding the execution
paths, while the control sequence generated by the IDEA
reactive (long horizon) planner is context dependent and
temporally flexible, hence we have a robust behavior as-
sociated with high parallelism.

• Error Detection/Recovery In IDEA the declarative
model implicitly defines both nominal and non-nominal
scenarios, thus is more robust than a procedural repre-
sentation centered on a nominal scenario. In the proce-
dural controller, each exceptional situations must be ex-
plicitly captured in some particular decision points dur-
ing the course of execution. For example, the PRS con-
troller depicted in Figure 2 is not robust: a camera shot
belonging to the science cycle could be allowed during
the stereo correlation. In the IDEA context, instead, this
behavior violates some explicit constraints for the nomi-
nal execution, hence the planner has to react to keep the
plan database consistent. The planner activity enables
for smooth recoveries reducing the need for entering a
standby state.

• Ease of programmingThe relative success of procedu-
ral executives comes in part from the ease they offer at
the first level to express procedures, plans, scripts. This
is a very natural way to encode a process which is usu-
ally thought in the same way by engineers and program-
mers. Meanwhile expressing planning and execution con-
trol logic using a temporal model can be difficult, in par-
ticular because of the limited horizon effects discussed in
this paper.

• Expandability/Composability The experimental devel-
opment of robust rover execution scenarios often requires
adding new capabilities or processing on an existing sys-
tem. Thus the need to complete or compose a new func-
tionality in an existing execution control system. On this
aspect, the procedural executive performs poorly, as one
needs to reassess the consequences of the possible inter-
actions between the new functionality and the preexisting
system. IDEA in such situation can focus on the state
variables and the related compatibilities which interact
between the new added functionality and the system.

9 Conclusion
We have presented a rover executive that uses IDEA, a novel
architecture paradigm which proposes a model based multi-
agent organization to deploy embedded autonomous systems
such as mobile robots. Such approach is quite different
from the execution layer of traditional three-layer architec-
tures (Gat 1997) and even goes beyond recent architecture
such as CLARAty (Volpeet al. 2001) which aim at bridg-
ing the gap between the traditional decisional and functional
layers. Still in CLARAty, one can end up with different
components for planning (CASPER) and execution control
(TDL), while in IDEA, the use of the same modeling frame-
work provides a seamless transition from planning to execu-
tion control. The RMPL (Reactive Model Based Program-
ming) approach by (Williamset al. 2003), is another in-
teresting framework suitable for Reactive Model-based con-
trol. RMPL is similar to reactive embedded languages such



as Esterel, with the added ability of directly interacting with
the plant state by reading and writing hidden state variables.
Here it is the responsibility of the language execution ker-
nel to map between hidden states and the plan variables.
In IDEA, instead, the model is directly integrated with the
functional level (drivers and sensors). Moreover, RMPL re-
lies on HMM for mode estimation and uses abstract scripts
which are to be instantiated by a model-based executive en-
gine (Titan). In this way the control system design is sim-
plified, but it is not clear how the cost of diagnosis/planning
underneath can be controlled by the script.

A model-based approach, such as IDEA, presents a num-
ber of advantages with respect to the ambitious goal of de-
signing an architecture and systems supporting the deploy-
ment of autonomous systems. Compared to procedural ex-
ecutive, it offers a more flexible execution path and has a
more robust behavior for non nominal situations. Validation
and verification capabilities of such approach are superior
to those intrinsic in procedural execution. Integration with
a high-level temporal planner is also eased by the common
modeling language.
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