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Rebecca Castãno, and Robert C. Anderson

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Dr., Pasadena CA 91109
{firstname.lastname}@jpl.nasa.gov

Abstract.
The Mars Exploration Rover Spirit recently set a record for
the furthest distance traveled in a single sol on Mars. Fu-
ture planetary exploration missions are expected to use even
longer drives to position rovers in areas of high scientific in-
terest. This increase provides the potential for a large rise
in the number of new science collection opportunities as the
rover traverses the Martian surface. In this paper, we describe
the OASIS system, which provides autonomous capabilities
for dynamically identifying and pursuing these science op-
portunities during long-range traverses. OASIS uses machine
learning and planning and scheduling techniques to address
this goal. Machine learning techniques are applied to ana-
lyze data as it is collected and quickly determine new science
goals and priorities on these goals. Planning and scheduling
techniques are used to alter the rover’s behavior so that new
science measurements can be performed while still obeying
resource and other mission constraints. We will introduce
OASIS and describe how planning and scheduling algorithms
support opportunistic science.

1 Introduction
On Sol 36 of the Mars Exploration Rover mission, the Spirit
rover successfully performed its first autonomous traverse
using obstacle avoidance software. During these traverses,
the rover acquires hazard camera (a.k.a. hazcam) images to
look for obstacles and make decisions about the direction
to travel. While there is valuable engineering information
in these images, there is also a potential wealth of science
data. However, by the time these images are downlinked, the
rover may be far from the site of interest. In addition, future
missions may not downlink these images, in which case the
science data could be lost. As the length of autonomous
drives increases so does the possibility of passing over some
important scientific data. Furthermore, there are short-lived
events, such as dust devils, that cannot be adequately studied
if the rover must wait for instructions from Earth.

To avoid the potential loss of valuable science, we are de-
veloping onboard techniques to support opportunistic sci-
ence. We are creating a system called OASIS (Onboard
Autonomous Science Investigation System) that integrates
science analysis and planning to enable the rover to detect
potentially interesting science events and re-task the rover
to respond appropriately. OASIS includes a science analysis

unit that performs onboard processing of collected science
data. When a science opportunity is detected, one or more
requests are sent to the planning and execution system which
attempts to accomplish these additional objectives while still
achieving current mission goals.

Opportunistic science poses significant challenges for an
autonomous planning and execution system. In many ways,
the challenges of handling opportunistic science are simi-
lar to dealing with unexpected events and anomalies dur-
ing plan execution. When an autonomous system detects
an anomaly, such as a traverse taking longer than expected
or a science activity consuming more power than predicted,
the system must assess the impact this event will have on its
ability to complete other mission objectives. If necessary,
the system will revise the plan in an attempt to achieve as
many of the remaining mission objectives as possible, or en-
ter safe mode and wait for assistance from the ground team
on Earth. Similarly, when an opportunistic science event
arises, the autonomous system must assess the impact that
accomplishing these new objectives would have on its cur-
rent mission goals and, if feasible, alter its plan so that it can
achieve these new objectives while still accomplishing the
original mission goals.

As with anomalies, it is difficult to predict when a sci-
ence opportunity will arise and, hence, what the state of
the rover will be when the opportunity presents itself. As
a result, the specific state of the rover, including its loca-
tion, resource availability and resource constraints, will not
be known ahead of time. It can also be difficult to predict
what type of science operation will be called for ahead of
time. For example, depending on the type of event, the
science analysis software may request an additional image
or a spectrometer measurement. The different observations
types place different demands such as time, power and mem-
ory, on the rover. Because of these uncertainties, it is diffi-
cult to determine ahead of time which opportunities can be
achieved and what steps need to be taken to accomplish the
new science objectives.

Given the similarities between handling anomalous events
and opportunistic science, we were able to leverage our pre-
vious work with the Continuous Activity Scheduling, Plan-
ning and Re-Planning (CASPER) system as a basis for our



opportunistic science planning system within OASIS (Estlin
et al.(2002)).

In contrast to anomalous events, CASPER has more con-
trol over opportunistic science. In particular, the system can
decide whether or not to pursue the opportunities that are
identified. Much of our work on extending CASPER to sup-
port opportunistic science has been in enabling the system to
make decisions about whether or not to pursue opportunis-
tic science and which opportunities to accomplish. Our ex-
tensions include a Science Alert protocol to enable the data
analysis algorithms to communicate new science goals to the
planner and a set of plan modification functions to assist the
planner in reasoning about these new objectives.

In the next section we provide an overview of our inte-
grated science analysis and planning system that supports
opportunistic science. We will then describe a series of sce-
narios that we have used to develop and test our system
in simulation and on rover prototype hardware in the Jet
Propulsion Laboratory Mars Yard. These scenarios demon-
strate our current capabilities in responding to opportunistic
science events.

2 OASIS
Our initial emphasis in OASIS has focused on image anal-
ysis and the characterization of surface rocks. Rocks are
among the primary features populating the Martian land-
scape and the understanding of rocks on the surface is a first
step leading to more complex regional geological assess-
ments. Figure 1 shows the main components of the OASIS
system and how they interact to analyze images of rocks and
re-task the rover to respond to opportunistic science events.
OASIS consists of:

Feature Extraction: detects rocks in images and extracts
rock properties (e.g. shape and texture).

Data Analysis: uses extracted features to assess the scien-
tific value of the planetary scene and to generate new sci-
ence objectives that will further contribute to this assess-
ment.

Planning and Scheduling: dynamically modifies plan in
response to new science requests.

The feature extraction and data analysis components
of OASIS have been described previously in (Castano et
al.(2004)). Here we will give a brief overview of these com-
ponents and concentrate on the planning and scheduling unit
and how it supports opportunistic science.

2.1 Feature Extraction
The first step in the OASIS system is analyzing rock features
from images taken by rover cameras as the rover traverses.
The image is segmented using a rock detection algorithm
based on edge detection and tracing. Next, a set of properties
is extracted from each rock. Our feature extraction priorities
are based upon our knowledge of how a geologist in the field
would extract information. Important features to look for

and categorize include albedo (an indicator of rock surface
reflectance properties), visual texture (which provides valu-
able clues to mineral composition and geological history),
shape, size, color and arrangement of rocks. Currently our
system identifies the first three of this set; future work will
expand this to cover additional features.

2.2 Data Analysis

After features have been extracted from each rock, OASIS
runs a set of data analysis algorithms to look for interesting
rocks. Two of these algorithms can result in the generation
of science alerts: key target signature and novelty detection.
Key Target Signature: enables scientists to efficiently and
easily stipulate the value and importance of certain features.
Scientists often have an idea of what they expect to find dur-
ing a rover mission and/or are looking for specific clues that
reflect signs of life or water (past or present). Using this
technique, target feature vectors can be pre-specified and an
importance value assigned to each of the features. Rocks
are then prioritized as a function of the weighted Euclidean
distance of their extracted features from the target feature
vector.
Novelty Detection: detects and prioritizes unusual rocks
that are dissimilar to previous rocks encountered. We
have looked at three different learning techniques for
novelty detection: distance-based using k-means cluster-
ing, probability-based using Gaussian mixture models and
discrimination-based using kernel one-class classifier.

2.3 Science Alert Protocol

Using the above algorithms, the data analysis software can
flag rocks that should be further analyzed and produce a new
set of measurement goals. We call this capability thesci-
ence alert, since it alerts other onboard software that new
and high priority science opportunities have been detected.

A science alert may involve several different levels of re-
action. The most basic reaction is to adjust the rover plan so
that the rover holds at the current position and the flagged
data is sent back to Earth at the next communication oppor-
tunity for further analysis. The next level of reaction would
likely be to collect additional data at the current site before
transmitting data to Earth. Further steps include having the
rover alter its path to get closer to objects of interest before
taking additional measurements. These operations would
provide new data that could not be obtained through image
analysis alone.

The data analysis unit uses thescience alert protocol
shown in Figure 2 to communicate opportunistic science re-
quests to the planner. The protocol consists of two message
types. When the rover receives aStop and Call Homemes-
sage, it responds by altering its plan so that it remains near
the target location (tx, ty, tz) until the next communication
opportunity. TheData Sample Requestmessage represents
a request for an additional science measurement. In addi-
tion to the target location, this message includes a priority.
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Figure 1: OASIS architecture.

If multiple data sample requests are received, the priority is
used to decide which alerts to give preference to in the case
that they cannot all be achieved within the current time and
resource constraints. In future work, we will also use prior-
ities to compare the value of new science opportunities with
objectives already in the plan. Data Sample Requests also
specify the type of measurement (e.g. image, spectrometer,
. . . ) that should be collected.

stop and call home
tx = real; ty = real; tz = real;

(a) Stop and Call Home

data sample request
priority = int;
datatype ={image, spectra, panorama, libs, . . .};
tx = real; ty = real; tz = real; heading =real;

(b) Data Sample Request

Figure 2: The science alert protocol.

2.4 Planning and Execution
The new science targets are passed to onboard planning and
scheduling software that can dynamically modify the current
rover plan in order to collect the new science data. This com-
ponent takes as input the new science requests, the current
rover command sequence (or plan), and a model of rover op-
erations and constraints. It then evaluates what new science
tasks could be added to the current plan while ensuring other
critical activities are preserved and no operation or resource
constraints are violated.

Planning and scheduling capabilities in OASIS are pro-
vided by CASPER (Estlin et al.(2002); Chien et al.(2000)),
which employs a continuous planning technique where the
planner continually evaluates the current plan and modifies
it when necessary based on new state and resource informa-
tion. Rather than consider planning a batch process, where
planning is performed once for a certain time period and set
of goals, the planner has a current goal set, a current rover
state, and state projections into the future for that plan. At
any time an incremental update to the goals or current state
may update the current plan. This update may be an unex-
pected event (such as a new science opportunity) or a current
reading for a particular resource level (such as power). The
planner is then responsible for maintaining a plan consistent
with the most current information.

A plan consists of a set of grounded (i.e., time-tagged)
activities that represent different rover actions and behav-
iors. Rover state in CASPER is modeled by a set of plan
timelines, which contain information on states, such as rover
position, and resources, such as power. Timelines are calcu-
lated by reasoning about activity effects and represent the
past, current and expected state of the rover over time. As
time progresses, the actual state of the rover drifts from the
state expected by the timelines, reflecting changes in the
world. If an update results in a problem, such as an ac-
tivity consuming more memory than expected and thereby
over-subscribing RAM, CASPER re-plans, using iterative
repair (Zweben et al.(1994)), to address conflict.

Plan optimization: CASPER includes an optimization
framework for reasoning about soft constraints. User-
defined preferences are used to compute plan quality based
on how well the plan satisfies these constraints. Optimiza-
tion proceeds similar to iterative repair. For each preference,
an optimization heuristic generates modifications that could
potentially improve the plan score.

OASIS uses this optimization framework to decide how
to respond to science alerts. A science alert comes into the



system as anoptional goals, which is a soft constraint indi-
cating that the plan’s quality will be improved if the goal is
achieved. Because it may not be possible to accomplish op-
tional goals, CASPER protects the plan from corruption by
saving a copy of the plan before optimizing. If the quality
has not increased after a pre-defined number of iterations,
the previous plan is restored, and CASPER tries optimizing
again. To prevent CASPER from churning away endlessly
on the same optional goal, we keep track of the number of
times optimize attempts to satisfy it. After a certain number
of times, CASPER gives up on the goal and throws it out.
Responding to science alerts:We created a set of plan
modification functions that are invoked when the optimizer
attempts to satisfy a science alert. How the plan is modified
depends on the type of alert that is considered. When a Stop
and Call Home alert is received, the planner alters the plan
to remove any non-engineering critical activities. If the ac-
tivities are already executing, the planner requests that the
executive abort them. If the activities are scheduled in the
future, the planner deletes them and resolves any inconsis-
tencies created by these deletions.

To achieve a Data Sample Request, the system must gen-
erate a plan that achieves the new goal without deleting ex-
isting activities. It adds the new goal to the plan and attempts
to resolve any conflicts that might arise. For example, the
planner might need to add a traverse activity to get to the
location of interest. As with a Stop and Call Home request,
the planner must abort currently executing activities, but it
does not delete activities that are scheduled to be executed
in the future.

3 Testing and Evaluation
We created several scenarios to develop and test OASIS op-
portunistic science capabilities. We will use four scenarios
to highlight the system’s current abilities. All scenarios be-
gin with the map show in Figure 3 (a). Here, the rover
must take an image of the rock at the far right of the map
and downlink the data to Earth. Figure 3 (b) shows an ex-
cerpt from the plan to accomplish this goal. The rover will
traverse to the rock, take an image and perform the down-
link. To facilitate testing, we created a science alert gener-
ator that sends science alerts at pre-determined times. We
used this capability with the following scenarios to send dif-
ferent alerts as the planner executes the plan.
Scenario 1: Stop and Call HomeIn the first scenario, the
planner receives a Stop and Call Home alert in the middle
of the traverse. Figure 4 shows the results. The traverse is
aborted and the image is deleted. The downlink is tagged as
being engineering-critical, so it is preserved in the plan. It
is not moved up in time as it is temporally constrained at a
specific time.
Scenario 2: Data Sample RequestThis time the planner
receives a Data Sample Request in the middle of the traverse.
After the traverse is aborted, it is able to insert a new traverse
to the new science target along with an image activity and a

traverse to get back to the original goal.
In order to complete opportunistic science, the planner

must be able to find sufficient time in the schedule to per-
form these extra activities. Extra time might be put into the
schedule specifically to allow for opportunistic science. Al-
ternatively, the rover may be able to take advantage of ex-
tra time put in the schedule due to conservative estimates
of activity durations. This extra time is commonly added to
mission schedules to help increase robustness. Often, tem-
poral padding is added between activities in case it takes
the rover longer than expected to complete tasks. The plan-
ner may also use over-estimates of how long activities take
to perform. If, for example, the rover traverses faster than
expected, the planner can make use of this spare time for
opportunistic science. We have tested with both possibili-
ties. The planner can move activities around, if permitted by
temporal constraints, to take advantage of extra time in the
schedule. We also experimented with traverses going bet-
ter than expected by having the rover (either simulated or
real) drive faster than the planner predicted. In this case, the
planner takes advantage of the extra time gained during the
traverse to insert opportunistic science activities. Figure 5
illustrates the latter approach in which extra time is gained
because the rover traversed faster than expected.

It should be noted that a third possibility of extra time is
to delete other activities in the schedule to make room for
opportunistic science. We will explore this option in future
work.
Scenario 3: Data Sample Request that cannot be
achievedThis scenario is identical to the previous except
that the system begins in a slightly different state. In this
case, the system has additional data in RAM. When the sci-
ence alert is received, the planner finds that it cannot collect
the extra data without over-subscribing RAM. Figure 6 il-
lustrates the problem found by the planner. As a result, the
planner gives up on the alert and continues on to the original
goal.
Scenario 4: Multiple Data Sample RequestsThis scenario
demonstrates the use of priorities when multiple alerts are
received. The rover begins with an empty RAM buffer and
receives three Data Sample Requests. Only two of these re-
quests can be accomplished without exhausting memory. As
seen in Figure 7 the two alerts with highest priority are in-
cluded in the plan.
Testing environments: We have successfully tested the
planning system’s response to opportunistic science with
real, prototype rover hardware. These hardware tests were
performed in the JPL Mars Yard using the Fido rover.

4 Related Work
The idea of having a scientific discovery system direct future
experiments is present in a number of other systems. Work
on learning by experimentation, such as IDS (Nordhausen
& Langley(1993)) and ADEPT (Rajamoney(1990)), varied
certain quantitative and qualitative values in the domain and
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Figure 3: Initial plan for scenarios.
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Figure 4: Results for scenario 1: stop and call home.

then measured the effects of these changes. OASIS differs
from these systems in that it interacts with the environment
to perform experimentation, and it is specialized to address
particular problems and scenarios in planetary science. OA-
SIS is also integrated with a planning system, which con-
structs the detailed activity sequence needed to perform new
science experiments.

Several researchers have addressed methods for extract-
ing features from data with the intention of performing the
operations onboard a spacecraft. (Gulick et al.(2001)) pre-
sented methods for locating rocks in an image using infor-
mation about the sun angle, identifying the horizon and rec-
ognizing layers. There has also been work on developing
a framework for feature extraction and event detection for
use onboard Earth orbiting satellites (Tanner et al.(2001)).
Our work has specifically focused on identifying and ana-
lyzing rocks in grayscale images thus far and, in contrast to
the work mentioned here, takes the next step of using the
feature extraction to determine desirable additional actions
a rover could autonomously take.

The objectives of OASIS are similar to those of the
Autonomous Sciencecraft Experiment (ASE) (Sherwood et

al.(2003)) which also uses science analysis to generate ad-
ditional goals for a planner. OASIS differs from ASE in
the types of feature extraction and data analysis that are per-
formed. In addition, while ASE has focused on planning for
orbiter missions, the focus for OASIS has been on ground
operations. To support this type of planning OASIS must
deal with the high degree of uncertainty inherent in ground
operations and integrate path planning into the planning and
scheduling process. Finally, in OASIS it is often necessary
to temporarily halt currently executing activities, such as a
traverse, in order to accomplish new science goals.

A number of other systems have used planning meth-
ods to coordinate robot behavior (e.g. (Bonasso et al.(1997);
Alami et al.(1998))). However, these systems generate plans
with a batch approach where plans are generated for a cer-
tain time period and if re-planning is required, an entire new
plan must be produced. In OASIS, plans are continuously
modified in response to changing conditions and goals. The
CPS planner generates contingent plans which are then exe-
cuted onboard a rover and can be modified at certain points
if failures occur (Bresina et al.(1999)). Since only a limited
number of contingencies can be anticipated, our approach
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Figure 5: Results for scenario 2: data sample request.
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Figure 6: Reason for not performing opportunistic science in scenario 3: cannot achieve request due to RAM over-subscription.

provides more onboard flexibility to new situations. If a sit-
uation occurs onboard for which there is not a pre-planned
contingency, the rover must be halted to wait for communi-
cation with ground.

5 Conclusions
OASIS supports opportunistic science by integrating data
analysis algorithms, which identifies potentially interesting
science measurements, with planning and scheduling algo-
rithms, which enables the rover to respond to these new re-
quests. Our current system has been tested with several sce-
narios in simulation and on prototype rover hardware. In
these scenarios we demonstrate a spectrum of responses to
opportunistic science from halting activity and waiting for
communication with Earth, to acquiring additional measure-
ments and proceeding with the original mission objectives.

We are still developing OASIS and there are several ca-
pabilities we will be adding. One of the challenges in plan-
ning for opportunistic science is finding “spare” time in the
schedule in which new activities can be inserted. Currently,
we either have the planner add slack time to the schedule
during initial plan creation or we allow the rover to make up

time by traversing faster than expected. In future work we
will consider allowing the system to plan ahead for oppor-
tunistic science so that it can decide to schedule extra time
in some situations but not in others. This will have the ben-
efit of allowing ground personnel to control when and how
much opportunistic science is permitted.

Currently, the planner preserves the original mission goals
when attempting to perform opportunistic science. We will
relax this constraint and allow the system to use priorities
to determine when it is appropriate to achieve opportunistic
science at the cost of existing goals. There are significant
challenges with introducing autonomous techniques into the
mission operations culture. We are taking steps to address
this by introducing MER scientists to off-line versions of
our software.
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