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Abstract.
A temporal reasoning problem can often be naturally char-
acterized as a collection of constraints with associated local
preferences for times that make up the admissible values for
those constraints. Globally preferred solutions to such prob-
lems emerge as a result of well-defined operations that com-
pose and order temporal assignments. The overall objective
of this work is a characterization of different notions of global
preference, and to identify tractable sub-classes of temporal
reasoning problems incorporating these notions. This paper
extends previous results by refining the class of useful notions
of global temporal preference that are associated with prob-
lems that admit of tractable solution techniques. This paper
also answers the hitherto open question of whether problems
that seek solutions that are globally preferred from a utilitar-
ian criterion for global preference can be found tractably.

1 Introduction
Many temporal reasoning problems can be naturally char-
acterized as collections of constraints with associated local
preferences for times that make up the admissible values for
those constraints. For example, one class of vehicle rout-
ing problems (Toth and Vigo 2001) consists of constraints
on requested service pick-up or delivery that allow flexibil-
ity in temporal assignments around a specified fixed time;
solutions with assignments that deviate from this time are
considered feasible, but may incur a penalty. Similarly, dy-
namic scheduling problems (El Sakkout et al. 1998), whose
constraints may change over time, thus potentially requiring
solution revision, often induce preferences for revised solu-
tions that deviate minimally from the original schedule.

To effectively solve such problems, it is necessary to be
able to order the space of assignments to times based on
some notion of global preference, and to have a mechanism
to guide the search for solutions that are globally preferred.
Such a framework arises as a simple generalization of the
Simple Temporal Problem (STP) (Dechter et al. 1991), in
which temporal constraints are associated with a local pref-
erence function that maps admissible times into values; the
result is called Simple Temporal Problem with Preferences

(STPP) (Khatib et al. 2001). Globally optimal solutions
to STPPs emerge as a result of well-defined operations that
compose and order partial solutions.

Different concepts of composition and comparison result
in different characterizations of global optimality. Past work
has introduced three notions of global preference: Weakest
Link (maximize the least preferred time), Pareto, and Utili-
tarian. Much of the work to date has been motivated by the
overall goal of finding tractable solutions to temporal opti-
mization problems with realistic global preference criteria.
In particular, NASA is motivated to create systems that will
automatically find optimally prefered solutions to problems
in the rover planning domain (Bresina et al. 1997), where
the goal is to devise plans for visiting a number of scientifi-
cally promising science targets.

In addition to reviewing the STPP framework (section 2),
this paper extends previous results motivated by the overall
goal of identifying useful notions of global preference that
correspond to problems that can be solved tractably. First,
we introduce a new category of global optimality called
stratified egalitarian optimality, and prove that it precisely
characterizes the subset of Pareto optimal solutions returned
by a tractable technique introduced previously (section 3).
Second, we provide an affirmative answer to the question of
whether utilitarian optimal solutions to temporal reasoning
problems can be also found tractably within this framework
(section 4). This paper closes with a discussion of future
work.

2 Simple Temporal Problems with Prefer-
ences

A temporal constraint depicts restrictions on the distance be-
tween arbitrary pairs of distinct events. In (Khatib et al.
2001), a soft temporal constraint between events � and �
is defined as a pair �
	��������� , where 	 is a set of intervals��� � ������� ��� ��� and ���� is a local preference function from� 	 to a set  of admissible preference values. For the pur-
poses of this paper, we assume the values in  are totally
ordered, and that  contains designated values for minimum
and maximum preference.



When 	 is a single interval, a set of soft constraints de-
fines a Simple Temporal Problem with Preferences (STPP),
a generalization of Simple Temporal Problems [Dechter, et
al., 1991]. An STPP can be depicted as a pair

��� ����� where�
is a set of variables standing for temporal distances, and

��� � � � � ��� ������� ���� ����� � is a set of soft constraints defined
over

�
. An STPP, like an STP, can be organized as a network

of variables representing events, and links labeled with con-
straint information. A solution to an STPP is a complete as-
signment to all the variables that satisfies the temporal con-
straints.

We define a preference vector of all the local preference
values associated with a set 	
� �  ��� � of local preference
functions and a solution � . Formally, let  ��� � ��� refer to the
preference value assigned by  ��� to the temporal value that
� assigns to the distance between events � and � , and

�������� � � ���� � ��� � ���� � ����������� ���� � �����
 ��� � �����������  ��� � �����

. . .
 �"!#�%$ � � ��� �

be the preference vector associated with 	 and � . In what
follows the context will permit writing

 �
instead of

��������
without ambiguity, and

'&�
will refer to the (")+* preference

value of
 �

.
For an example of an STPP, consider a simple Mars rover

planning problem, illustrated in Figure 1. The rover has a
sensing instrument and a CPU. There are two sensing events,
of durations 3 time units and 1 time unit (indicated in the
figure by the pairs of nodes labeled ins , � � ins - � and ins ,� � ins -�
respectively). The event . depicts a reference time point
(sometimes referred to as “the beginning of time”) that al-
lows for constraints to be specified on the start times for
events. There is a hard temporal constraint that the CPU
be on while the instrument is on, as well as a soft constraint
that the CPU should be on as little as possible, to conserve
power. This constraint is expressed in the STPP as a func-
tion from temporal values indicating the duration that the
CPU is on, to preference values. For simplicity, we assume
that the preference function / �10 on the CPU duration con-
straints is the negated identity function; i.e., / �10 ��� �+2 ���43 2

;
thus higher preference values, i.e. shorter durations, are pre-
ferred.

A solution to an STPP has a global preference value, ob-
tained by combining the local preference values using oper-
ations for composition and comparison. Optimal solutions
to a STPP are those solutions which have the best prefer-
ence value in terms of the ordering induced by the selected
comparison operator. Solving STPPs for globally preferred
assignments has been shown to be tractable, under certain
assumptions about the “shape” of the local preference func-
tions and about the operations used to compose and compare
solutions.

Figure 1: The STPP for a Rover Science Planning Problem
(T is any timepoint).

For example, first consider a class of local preference
functions that includes any function such that if one draws a
horizontal line anywhere in the Cartesian plane of the graph
of the function, the set of 5 such that  � 56� is not below the
line forms an interval. This class of semi-convex functions
includes linear, convex, and also some step functions.

Second, consider an STPP solver based on the notion of
Weakest Link Optimization (WLO). This framework con-
sists of an operator for composing preference values in  
based on the minimal value of the component values, and
an operator for comparing preference values in  which re-
turns the maximum of the two values. This framework in-
duces an evaluation of solutions based on a single, “weakest
link” value. Given preference vectors

 �
and

 ��7
corre-

sponding to distinct solutions � and ��8 , we will say that �
is Weakest-Link-Optimal (WLO) -preferred to ��8 , or �98 is
WLO-dominated by � , if / �10 �  � 7 �;:</ �=0 �  � � , where
/ �10 �  � returns the minimum value of vector


. WLO-

optimal solutions are those to which no other solutions are
WLO-preferred.

STPPs with semi-convex preference functions for WLO-
optimal solutions can be solved tractably by a process called
the chop method. This method is based on the act of “chop-
ping” a preference function (Figure 2). Semi-convexity im-
plies that the set of times for which the preference function
returns a value above a selected chop point forms a convex
interval; call this interval the chop-induced constraint. For
a set of preference functions in an STPP, chopping all of
them at the same preference value induces a Simple Tem-
poral Problem, namely, of finding a set of assignments that
satisfies all the chop-induced constraints. A binary search
will return the largest preference value >�?1@ ) for which a so-
lution to the induced STP exists; it can been shown that the
solutions at >�?A@ ) are WLO-optimal.

Because the chop method returns the solution to an STP,
its output is a flexible temporal plan, i.e., a set of solutions



time

preference

chop point

Figure 2: “Chopping” a semi-convex function.

that have the same WLO-optimal value. Flexibility is of-
ten considered important in ensuring robustness in an execu-
tion environment that is uncertain (Muscettola et al. 1998).
Nonetheless, the WLO criterion for globally preferred solu-
tions has the disadvantage of being “myopic”, in the sense
that it bases its evaluation on a single value. This feature
can be shown to limit its usefulness in solving real tempo-
ral planning problems. The rover example in Figure 1 can
be used to illustrate this myopia. Because the CPU must be
on at least as long as the sensing events, any globally pre-
ferred solution using WLO has preference value -3. The set
of solutions that have the WLO-optimal value includes so-
lutions in which the CPU duration for the second sensing
event varies from 1 to 3 time units (again, since WLO bases
its evaluation solely on the least preferrred value). The fact
that WLO is unable to discriminate between the global val-
ues of these solutions, despite the fact that the one with 1
time unit is obviously preferable to the others, can be clearly
viewed as a limitation.

Less myopic global preference criteria can be defined. For
example, we can say that � 8 Pareto-dominates � if for each
� ,

 �� �  �� 7
and for some ( ,

 &� : �&� 7
. The Pareto op-

timal set of solutions is the set of non-Pareto-dominated so-
lutions. Similarly, we can say that ��8 Utilitarian-dominates
� if

� �  �� � � �  �� 7
, and the Utilitarian optimal set of

solutions is the set of non-Utilitarian-dominated solutions.

In a previous result (Khatib et al. 2003), it was shown
that a restricted form of Pareto-optimality can be achieved
by an iterative application of the chop method. The intuition
is that if a constraint solver could “ignore” the weakest link
values (i.e. the values that determined the global solution
evaluation) then it could eventually recognize solutions that
dominate others in the Pareto sense. The links to be ignored
are called weakest link constraints: formally, they comprise
any link in which the optimal value for the preference func-
tion associated with the constraint is the same as the WLO
value for the global solution. Formalizing the process of “ig-
noring” weakest link values is a two-step process of commit-
ting the flexible solution to consist of the interval of optimal

Inputs: an STPP �4� �=� � ���
Output:
A STP

��� ������� whose solutions are Pareto optimal for � .
(1) ��� � �
(2) while there are weakest link soft constraints in ��� do
(3) Solve

��� ����� �
(4) Delete all weakest link soft constraints from � �
(5) For each deleted constraint � � � � ��� �  � ,
(6) add � � � ?A@ ) ��� ?A@ ) ������ -�, ) � to � �
(7) Return

�=� � � � �

Figure 3: STPP solver WLO+ returns a solution in the Pareto
optimal set of solutions.

temporal values, and reinforcing this commitment by reset-
ting their preferences to a single, “best” value. Formally, the
process consists of:
� Squeezing the temporal domain to include all and only

those values which are WLO-optimally preferred; and
� Replacing the preference function to one that assigns the

highest (most preferred) value to each element in the new
domain.

The first step ensures that only the best temporal values
are part of any solution, and the second step allows WLO
to be re-applied to eliminate Pareto-dominated solutions
from the remaining solution space. The resulting algorithm,
called WLO+ returns, in polynomial time, a Simple Tempo-
ral Problem (STP) whose solutions are a nonempty subset
of the WLO-optimal, Pareto-optimal solutions to a STPP.
The algorithm WLO+ from (Khatib et al. 2003) is repro-
duced in Figure 3 for completeness. Where � is a set of
soft constraints, the STPP

��� ��� � � is solved (step 3) using
the chop approach. In step 5, we depict the soft constraint
that results from the two-step process described above as
� � � ?1@ ) ����?1@ ) � �  � - , ) � , where

� � ?A@ ) � � ?1@ ) � is the interval of tem-
poral values that are optimally preferred, and  � -�, ) is the
preference function that returns the most preferred prefer-
ence value for any input value. Notice that the run time
of �
	��� is � ��� � � � times the time it takes to execute
����� >�� ��� ������� , which is a polynomial.

WLO+, applied to the rover example in Figure 1, finds a
Pareto optimal solution in two iterations of the while loop.
In the first iteration, the weakest link is that between the
start and end of the first CPU event. WLO+ deletes this link
and replaces it with one with the interval

� � � � � and the local
preference function �� -�, ) . This new STPP is then solved
on the second iteration, whereby the WLO-optimal solution
with the CPU duration of 1 is generated. The solution to this
STPP is a Pareto-optimal solution to the original problem.

WLO+ was a positive result in the search for tractable
methods for finding globally preferred solutions based



on less myopic criteria for global preference than WLO-
optimality. We now proceed to refine and expand these re-
sults in two ways: first by offering a more concise charac-
terization of the class of solution returned by WLO+, and
secondly, by showing how restricted classes of STPP with
a Utilitarian criterion for global preference can be solved
tractably.

3 WLO+ and Stratified Egalitarianism
As noted in the previous section, the minimal network re-
turned by running WLO+ on a STPP is a subset of the set of
Pareto Optimal Solutions for that problem. In this section,
we present a concise description of this set. By doing so, it
is revealed that WLO+ is based on a useful concept of global
preference.

We introduce a concept of global preference called Strati-
fied Egalitarianism (SE). Consider again two preference vec-
tors

 �
and

 � 7
associated with solutions � and ��8 . We will

say ��8 SE-dominates � at preference level � if:
�  �� : � implies

 �� 7��  �� .
� There exists an � such that

 �� : � and
 �� 7��  �� .

�  ���� � implies
 �� 7 � � .

We say that ��8 SE-dominates � (without further qualifi-
cation) if there is any level � such that ��8 dominates � at � .
It is not hard to see that the SE-dominance relation is anti-
symmetric and transitive1, thus inducing a partial ordering
of solutions. A solution ��8 will be said to be SE-optimal if
it is not SE-dominated. Note that if a solution ��8 Pareto-
dominates � , then ��8 SE-dominates � at the “highest” level
of the � 8 vector. Thus, SE-optimality implies Pareto opti-
mality. Furthermore, if ��8 is superior to � in the WLO or-
dering, then ��8 SE-dominates � at the “lowest” level of the
��8 vector. Thus, SE-optimality also implies WLO optimal-
ity.

Using an economic metaphor to ground intuition, � rep-
resents a sort of poverty line, and a “policy” ��8 has a better
overall quality than � if some members below the poverty
line in � are improved in � 8 , even if some of those above the
poverty line in � are made worse off in ��8 (as long as they
do not drop below the poverty line). This metaphor suggests
that SE-optimality could be a reasonable criterion for spec-
ifying globally prefered solutions. We now prove that the
WLO+ algorithm finds exactly the SE-optimal solutions.

Theorem 1 The set of solutions returned by WLO+ is pre-
cisely the set of SE-optimal solutions.

Proof:
Consider a solution � not returned by WLO+, i.e., one

that is eliminated at some iteration of the WLO+ algorithm;
let the optimal value (i.e., value of the weakest link) of the
set of solutions be > at that iteration. Let � 8 be any survivor

1This requires that the preference values be totally ordered

at that iteration. There must be some link � such that
 �� :;>

(otherwise � wouldn’t be eliminated). But
 �� 7�� > since ��8

survives. Thus,
 �� 7 �  �� . Note also that

 �� 7 � > for all
links � . Thus, for any value ( such that

'&� � > , we have�&� 7 �  &�
. It follows that � is dominated at stratum > .

Conversely, suppose � is dominated at some stratum >
but, for the sake of contradiction, suppose � is not excluded
from the set of solutions returned by WLO+. From the as-
sumption that � is dominated at stratum > , there exists an
� 8 and � such that > �  �� and

 �� 7 �  �� , and for any � , �� 7 � > implies
 �� 7 �  ��

. During the execution of the
WLO+ algorithm, an increasing sequence of preference val-
ues

� � > � � > � ������� ��>�� ��� (where 1 is the “best” prefer-
ence value) is created, representing the WLO optimal values
at each iteration. Clearly,

 �� :	� (where 1 is the “best”
preference value), so one of the

�
s must exceed

 �� . Sup-
pose >�
 is the smallest element in

�
such that >�
 �  �� .

Note that � would be removed at this iteration, as a result
of its being not WLO optimal, unless the preference func-
tion for link � had been reset at an iteration  :�� . But
that function would get reset only if � was a weakest link at
 . Then >�� �  �� since  :�� , and > 
 is the smallest

�
such that > 
 �  �� . Note however, that for all links � , either ���7 � > � >�� or

 ���7 �  �� . Thus, �98 would have survived
to this iteration if � had. However,

 �� 7 �  �� � >�� , which
contradicts the fact that � is a weakest link. �

4 Utilitarian Optimality
Perhaps the most natural criterion for global optimality is
utilitarian, where the global value of a solution is the sum of
the local values. In this section, we consider applying a util-
itarian global optimality criterion to the temporal preference
problem. We show that finding a utilitarian optimal solu-
tion is tractable in the case where all the preference func-
tions are convex and piecewise linear. Piecewise linear pref-
erence functions characterize soft constraints in many real
scheduling problems; for example, in vehicle routing (where
the best solutions are close to desired start times) and in dy-
namic rescheduling (where the goal is to find solutions that
minimally perturb the original schedule).

Consider an STPP with preferences 	 � �  ��� � , and as-
sume that the goal is to find a utilitarian optimal solution � ,
i.e. where

� ���  ��� � ��� is optimal. Suppose each  ��� is con-
vex and piecewise linear. Thus, there is a sequence of inter-
secting line segments that make up  ��� . We will denote the
individual linear functions corresponding to the segments by
 ���� �� ���� ������� � ��������� , as illustrated in figure 4.

In this case, we will show that the utilitarian optimization
problem can be reduced to a Linear Programming Problem
(LPP), which is known to be solvable in polynomial time
by Karmarkar’s Algorithm (Cormen et al. 1990). This re-
sult generalizes the observation in (Khatib et al. 2001) that
STPPs with linear preference functions can be mapped into
an LPP.



Figure 4: Convex Piecewise Linear Function.

Since the  ’s are convex, notice that � �  ��� � � � if and
only if � �  ���� � � ��� � �  ���� � � ��� ����� � � �� � ���� � � � . (See
figure 4.) For the LPP, we introduce an auxiliary variable� ��� , together with / ��� additional linear constraints of the
form � ��� �  &��� � ���
for each  ��� . We also introduce a set of variables 5 �� 5 � ��5 � ��������5 � � where 5 � and 5 � represent, respectively,
the start and end points  ��� . An interval

� � ��� ��� ��� � denotes the
domain of ���� .

The complete LPP can now be formulated as follows.
The indices are assumed to range over their available val-
ues, which should be clear from the above discussion. Note
that � � in

�  ��� � and
� � ��� � range over the edges associated

with preferences. This could be a small subset of the entire
edges in real applications. Finally, we introduce a variable
� ��� for each temporal distance assignment in a solution.
� Variables:

� 5 � � ,
� � ��� � , and

� � ��� � .
� Constraints (conjunctive over all values of the indices):

1. � ��� � 5 � 3 5 �
2.
� ��� � � ��� � � ���

3.
� ��� �  &��� � ���

� Objective Function:
� ��� � ���

Theorem 2 The solution to the LPP as formulated above
provides a utilitarian optimal solution to the STPP.

Proof:
Consider the candidate STPP solution � obtained from

the values of the
� 5 � � variables in an optimal solution of

the LPP. Clearly, the constraints (items 1 and 2) guarantee
that � satisfies the STP underlying the STPP. It only re-
mains to show that it is optimal in the utilitarian ordering
for the STPP. From the constraints in item 3, we see that� ��� �  &��� � ��� for each linear component ( and hence

� ��� �
 ��� � ��� . We claim that

� ��� �  ��� � ��� . To see this, note that

the
� ��� variables can be varied independently without affect-

ing the constraints in items 1 and 2. If
� ��� :� ��� � ��� , then the

objective function can be increased, without violating any
constraints, by increasing

� ��� to  ��� � ��� , which contradicts
the assumption that the solution is already optimal. Thus,� ��� �  ��� � ��� for each � � , and so

� ��� � ��� � � ���  ��� � ���
Suppose now there was a better solution ��8 for the STPP

in terms of the utilitarian ordering. Then
� ���  ��� � �98 � �� ���  ��� � ��� � � ��� � ��� . Observe that we can now formu-

late a better solution to the LPP based on ��8 (where we set� 8��� �  ��� � �98 � ), which is a contradiction. Thus, the � ob-
tained from the LPP is also optimal for the STPP. �

Example The rover STPP, shown in Figure 1, maps into
the following LPP:
� Variables�	�
��� , � � �
�� - � � �=0�� , � � �10�� - � � �
��� ,� � �
��� -� � �10�� ,� � �10�� -� � . � ,�	��� @����� $ � @������� ��� @�����%$ � � , � � ������� � , and

�	� � � � � �
� Constraints

�10�� , � 3 . ����� �10�� ,� 36. �! ��"�� - � 3 �
��� , � �$# � �10�� , � 3 �"�� , � �%# ��
��� - � 3 �10�� - � �&# � �10�� - � 3 �=0�� , � � � ��"�� -� 3 �
��� ,� �$# � �10�� ,� 3 �"�� ,� �%# ��
��� -� 3 �10�� -� �$# � �10�� -� 3 �10�� ,� ���'�
� � � 3 ��� @������$ � @�����(� � � � 3 ��� @��(�) $ � @����) ;

� Objective

maximize(
� � � � � )

The rover example introduces only linear preference con-
straints, a special case of piece-wise linear functions. Notice
that the

� � stand for preference values, defined as the nega-
tion of the duration assigned to the link.

5 Discussion and Conclusion
A potential for tradeoff emerges in the fact that WLO+
generates flexible temporal plans that are guaranteed SE-
optimal but not necessarily Utilitarian optimal with respect
to preferences, whereas an LPP solver of the same problem
generates a fixed plan that is guaranteed to be utilitarian op-
timal. But if WLO+ tends to generate solutions that are al-
ways either utilitarian or “nearly” utilitarian optimal, then it
may be considered a better choice for solving many prob-
lems due to its robustness in generating flexible plans. Ex-
periments are currently underway evaluating the utilitarian
quality of WLO+ solutions over a diverse set of problems,
as well as to compare the run-time performance of the two
formulations. The results of these experiments are too pre-
liminary to summarize here, and will be the subject of a fu-
ture report.

Another long range goal of this work is to integrate prob-
abilities with preferences in temporal constraint reasoning,



incorporating the results of (Tsamardinos et al. 2003). This
integration will allow for a formulation of the expected
utility paradigm of classical decision theory (Savage 1954)
within a constraint-based setting.

The work reported here contributes to the overall goal
of increasing the adeptness of automated systems for plan-
ning and scheduling. The objectives of this work overlap
with those of a number of diverse research efforts. First,
this work offers an alternative approach for reasoning about
preferences to approaches based on multi-objective decision
theory (Bacchus and Grove 1995). This work also con-
tributes to, and builds upon, the on-going effort to extend
CSP algorithms and representations to solve optimization
problems or problems where knowledge is uncertain (for ex-
ample, (Dubois et al. 1996)). Finally, the focus on solving
problems involving linear piece-wise constraints has sim-
ilarities to other efforts more grounded in Operations Re-
search (Ajili et al. 2003).
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