
Argumentation for Coordinating Shared Activities

Bradley J. Clement, Anthony C. Barrett, and Steven R. Schaffer
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, M/S 126-347

Pasadena, CA 91109-8099
fbclement, barrett, srschaffg@aig.jpl.nasa.gov

Abstract.
There is an increasing need for space missions to be able to
collaboratively (and competitively) develop plans both within
and across missions. In addition, interacting spacecraft that
interleave onboard planning and execution must reach con-
sensus on their commitments to each other prior to execution.
In domains where missions have varying degrees of interac-
tion and different constraints on communication and compu-
tation, the missions will require different coordination proto-
cols in order to efficiently reach consensus within their im-
posed deadlines. We describe a Shared Activity Coordination
(SHAC) framework that provides a decentralized algorithm
for negotiating the scheduling of shared activities over the
lifetimes of multiple agents and a foundation for customizing
protocols for negotiating planner interactions. We investigate
variations of a few simple protocols based on argumentation
and distributed constraint satisfaction techniques and evalu-
ate their abilities to reach consistent solutions according to
computation, time, and communication costs in an abstract
domain where spacecraft propose joint measurements.

1 Introduction

When interleaving planning and execution, an agent ad-
justs its planned activities as it gathers information about
the environment and encounters unexpected events. Inter-
acting agents coordinate these adjustments to manage com-
mitments with each other. Demand for this kind of au-
tonomous agent technology is growing for space applica-
tions. Autonomous spacecraft promise new capabilities and
cost improvements in exploring the solar system. Spacecraft
(and rovers) that explore other planets have intermittent, de-
layed communication with Earth, requiring that they be able
to manage their resources and operate for long periods in
isolation.

In addition, there is a growing trend toward multi-
spacecraft missions. These spacecraft will coordinate
measurements, share data, and route data to and form Earth.
Separate missions, such as those to Mars have their own
budgets, experiments, and operations teams. As such, the

The research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

spacecraft represent self-interested entities that benefit from
collaborative interactions.

But, even a single spacecraft has multiple science instru-
ments for executing different goals of different scientists,
and different operations groups will have different areas of
expertise over different subsystems for control. These differ-
ent groups negotiate over mission plans in the same way that
different Mars missions must collaborate over spacecraft in-
teractions. Whether this negotiation is done on-board or on
Earth, there is a distributed operations planning problem that
benefits from automation. Both also have real-time aspects.
On-board systems must plan safely over near- and long-term
horizons, and ground systems must also replan based on
changing contexts in daily, weekly, and lifelong mission ex-
ercises. Ground planning also suffers from communication
constraints. Scientists from different universities or oppo-
site sides of the globe will intermittently provide inputs and
respond on an irregular basis. A collaboration/negotiation
system must be built around communication constraints to
meet hard deadlines for coming to consensus on consistent
operations plans.

The field of multiagent planning has largely focused on
fully cooperative planning and execution (Decker 1995; des-
Jardins and Wolverton 1999; Tambe 1997; Grosz and Kraus
1996; Clement and Durfee 2000). Market-based agent sys-
tems address near-term resource negotiation but have rarely
addressed how near-term decisions affect longer-term goals.
Multiagent systems built for Robocup Soccer competitions
mainly address collaborative multiagent execution in an ad-
versarial environment and have limited planning capabili-
ties. These approaches do not adequately address real-time
planning for self-interested agents.

Argumentation is a technique for negotiating joint beliefs
or intentions (Kraus et al. 1998) among cooperative or self-
interested agents. Commonly, one agent makes a proposal to
others with justifications. The others evaluate the argument
and either accept it or counter-propose with added justifica-
tions. This technique has been applied to teamwork negoti-
ation to form teams, reorganize teams, and resolve conflicts
over members’ beliefs (Tambe and Jung 1999). It can also

execution execution execution

planner planner planner

agent agent agent

SHAC SHAC SHAC

==
=

activity
updates

activity
updates

activity &
constraint
updates

activity
updates

activity, constraint,
& role updates

activity, constraint,
& role updates

activity &
constraint
updates

activity &
constraint
updates

Figure 1: Shared activity coordination

be used to establish consensus on shared activities.
We present a framework for Shared Activity Coordination

(SHAC) based on argumentation techniques for negotiation.
SHAC consists of an algorithm for continually coordinat-
ing agents and a foundation for rapidly designing and imple-
menting coordination protocols based on a model of shared
activities. The treatment of reaching consensus in real-time
is discussed in (Clement and Barrett 2003) and explored
in coordinating medium fidelity simulations of Mars space-
craft and rovers. We describe distributed planning mecha-
nisms (protocols) built on ideas of argumentation and one
based on distributed constraint satisfaction techniques em-
ploying argumentation (Jung et al. 2001). We evaluate
them according to computation, time, and communication
costs in a distributed spacecraft domain where joint mea-
surements are proposed, and capabilities applied are nego-
tiated. Our ultimate goal is to create interacting agents that
autonomously adjust their coordination protocols with re-
spect to unexpected events and changes in communication
or computation constraints so that the agents can most effi-
ciently achieve their goals.

2 SHAC

Our approach, called Shared Activity Coordination (SHAC),
provides a general algorithm for interleaving planning and
the exchange of plan information based on shared activi-
ties. Agents coordinate their plans by establishing consen-
sus on the parameters of shared activities. Figure 1 illus-
trates this approach where three agents share one activity
and two share another. The constraints denote equality re-
quirements between shared activity parameters in different
agents. The left vertical box over each planner’s schedule
represents a commit window that moves along with the cur-
rent time. A consensus window is shown to the right of the
commit window, within which consensus must be quickly

established before committing. Since consensus is hard to
maintain when all agents can modify a shared activity’s pa-
rameters at the same time, agents must participate in differ-
ent coordination roles that specify which agent has control
of the activity. As shown in the figure, SHAC interacts with
the planning and execution by propagating changes to the
activities, including their parameters and constraints on the
values of those parameters.

2.1 Shared Activities

The model of a shared activity is meant to capture the
information that agents must share, including control
mechanisms for changing that information. A shared
activity is a tuple hparameters, agent roles, protocols,
decomposition, constraintsi. The parameters are the
shared variables and current values over which agents must
reach consensus by the time the activity executes. The agent
roles determine the local activity of each agent correspond-
ing to the joint action. To provide flexible coordination
relationships, the role activities of the shared activity can
have different conditions and effects as specified by the
local planning model. The shared parameters map to local
parameters in the role activity.

For example, a shared data communication activity can
map to a receive role activity for one agent and a send
role activity for another. Shared parameters could specify
the start time, duration, transfer rate, and data size of the
activity. The data size is depleted from the sender’s mem-
ory resource but added to the receiver’s memory. The agents
could have separate power usages for transmitting and re-
ceiving.

Protocols are the mechanisms assigned to each agent (or
role) that allow the agents to change constraints on the
shared activity, the set of agents assigned to the activity, and
their roles. Constraints will be described in the next sec-

tion, and example protocols will be defined in the Protocols
section.

The shared decomposition enables agents to select differ-
ent team methods for accomplishing a higher level shared
goal. Specifically, the decomposition is a set of shared
subactivities. The agents can choose the decomposition
from a pre-specified set of subactivity lists. For example,
a joint observation among orbiters could decompose into ei-
ther (measure, process image, downlink) or (mea-
sure, downlink).

2.2 Constraints

Constraints are created by agents’ protocols to restrict sets of
values for parameters (parameter constraints) and permis-
sions for manipulating the parameters, changing constraints
on the parameters, and scheduling shared activities (permis-
sion constraints). These constraints restrict the privileges
(or responsibilities) of agents in making coordinated plan-
ning decisions. By communicating constraints, protocols
can come to agreement on the scheduling of an activity with-
out sharing all details of their local plans.

A parameter constraint is a tuple hagent, parameter,
value seti. The agent denotes who created the constraint.
Some protocols differentiate their treatment of constraints
based on the agent that created them. For example, the asyn-
chronous weak commitment algorithm prioritizes agents so
that lower-priority agents only conform to higher-priority
agent constraints (Yokoo and Hirayama 1998). Agents can
add to their constraints on a parameter, replace constraints,
or cancel them. A string parameter constraint, for example,
can restrict a parameter to a specific set of strings. An integer
or floating point variable constraint is a set of disjoint ranges
of numbers. Scheduling constraints can be represented as
constraints on a start time integer parameter.

Permission constraints determine how an agent’s planner
is allowed to manipulate shared activities. Permissions can
be defined for adding, moving, deleting, choosing refine-
ments, or modifying parameters of a shared activity.

2.3 Coordination Algorithm

The purpose of the SHAC algorithm is to negotiate the
scheduling and parameters of shared activities until consen-
sus is reached. Figure 2 gives a general specification of the
algorithm. SHAC is implemented separate from the plan-
ner, so steps 1 through 3 are handled by the planner through
an interface to SHAC. Step 4 invokes the protocols that po-
tentially make changes to refocus coordination on resolving
shared activity conflicts and improving plan utility. SHAC
sends modifications of shared activities and constraints to
sharing agents in step 5. In step 6, shared activities and con-
straints are updated based on changes received from other
agents.

3 Protocols

In general, protocols determine when to communicate, what
to communicate, and how to process received communica-
tion. During each iteration of the loop of the coordination
algorithm (Figure 2), the protocol determines what to com-
municate and how to process communication. A protocol is
defined by how it implements the following procedures to
be called during step 4 of the SHAC coordination algorithm
for the shared activity to which it is assigned:

1. modify permissions of the sharing agents
2. modify locally generated parameter constraints
3. add/delete agents sharing the activity
4. change roles of sharing agents

The default protocol, representing a base class from which
other protocols inherit, does nothing for these methods.
However, even with this passive protocol, the SHAC algo-
rithm still provides several capabilities:

joint intention A shared activity by itself represents a joint
intention among the sharing agents.

mutual belief Parameters or state assertions of shared ac-
tivities can be updated by sharing agents to establish con-
sensus over shared information.

resource sharing Sharing agents can have identical con-
straints on shared states or resources.

active/passive roles Some sharing agents can have active
roles with execution primitives while others have passive
roles without execution primitives.

master/slave roles A master agent can have permission to
schedule/modify an activity that a slave (which has no
permissions) must plan around.

For convenience, we will refer to this abstract protocol as
chaos because it can allow multiple agents to make changes
to the same shared activity concurrently. This can lead to
thrashing if the agents undo each others contributions to
solving the problem. This can also lead to inconsistent in-
formation. For example, if agent A sends “x = 0” to B
and C, B gets A’s message and sends “x = 1” to A and
C, and C gets B’s message before A’s, then C will believe
x = 0 while A and B believe x = 1. If unchecked, the
agents may incorrectly believe consensus has been reached.
This is a violation of causal consistency (Mullender 1995).
An additional requirement is that messages from any one
agent are received in the order sent. This is atomic con-
sistency. For our experiments, we use TCP/IP communica-
tions, which only guarantee atomic consistency.

The following sections describe some subclasses of this
abstract protocol focusing on regulating control through
permissions. These protocols can be further adapted in
their handling of constraints and agent roles, as will be
discussed in Section 4. These are the basic ingredients of
argumentation-based negotiation.

Given: a plan with multiple activities including a set of shared activities with constraints and a projection of
plan into the future.

1. Revise projection using the currently perceived state and any newly added goal activities.
2. Alter plan and projection while honoring constraints.
3. Release relevant near-term activities of plan to the real-time execution system.
4. For each shared activity in shared activities,

� apply each associated protocol to modify the shared activity;

5. Communicate changes in shared activities.
6. Update shared activities based on received communications.
7. Go to 1.

Figure 2: Shared activity coordination algorithm

3.1 Master/Slave Protocol

While SHAC allows masters and slaves to be defined by ini-
tially specified permissions, we briefly describe a protocol
subclass from which others that we discuss inherit. This
master/slave protocol avoids the thrashing and consistency
problem of chaos by only giving one agent permission to
modify the activity. It simply assigns the creator of a shared
activity the master and all others slaves. Slaves sometimes
need basic permissions on a shared activity in order to add
them to the plan. For example, in interfacing to the ASPEN
planning system, we found that a “detail” permission was
needed to refine a goal into detailed activities. Master and
slave permissions are initialized for each shared activity type
and assigned to the agents at activity instantiation.

This protocol is appropriate for centralizing decisions at
the level of a shared activity. Slave agents must trust the
master and are thus cooperative. A problem with this pro-
tocol is that the master may not receive enough information
about the local constraints of the other agents in order to find
a solution. Without feedback from the slaves, the master can
settle on a locally consistent solution and not know that its
choices cause irreparable flaws with the slaves. Thus, the
search space can be limited, sacrificing both completeness
and optimality.

3.2 Round Robin Protocol

A round-robin approach to establishing consensus on a
shared activity involves rotating a master role by changing
permission constraints. This protocol gets around the search
space limitation of master/slave by enabling all sharing
agents to contribute to the solution. Thus, this protocol is
applicable to self-interested agents. Only one agent may
modify the activity at a time and once finished, the agent can
turn off its own permissions and turn them on for another
agent (while sending out the update). The round robin
protocol can inherit from the master/slave protocol and can
be implemented by the following method. time elapsed

can be a parameter of the shared activity that is updated by
the current master agent.

Round-Robin modifyPermissions method
� if have master permissions

– update time elapsed

– if finished planning or time elapsed > threshold
� restrict self to slave permissions
� add master permissions for next agent
� set time elapsed to 0

3.3 Asynchronous Weak Commitment
Multi-asynchronous weak commitment is an algorithm for
solving distributed constraint satisfaction problems (DCSPs)
that enables agents, each with a set of variables, to sat-
isfy constraints between variables across and within agents
(Yokoo and Hirayama 1998). Agents are prioritized, and
their variables each initially have a zero priority. The values
of lower priority variables are modified to satisfy constraints
with values chosen for higher priority variables (with agent
priorities as a tie breaker). If there is no value that satisfies
the constraints, then the governing agent selects a value that
minimizes violations with lower priority variables and raises
the priority of the variable to one higher than the highest pri-
ority of the variables with which it has constraints, making
the variable the highest ranking with its neighbors. The fail-
ing agent also sends a no-good to its neighbors, communi-
cating the values of the subset of variables making the vari-
able unassignable. An improvement on this method involves
“propagating constraints” by sending valid values (Jung et
al. 2001).

This protocol is applicable to self-interested agents since
they each contribute decisions when the neediest. This pro-
tocol can be adapted for planning agents. The variables
are shared activity parameters. The DCSP constraints are
equals relations among agents sharing the activities. An
agent’s protocol must keep track of a priority it assigns the
shared activity, the priorities that the other sharing agents
assign to the activity, and separate priorities for the agents
themselves (for tie-breaking). These priorities can be pa-
rameters of the shared activity. A no-good message is a set
of parameter constraints. Below are the protocol methods
for updating permission constraints and rank and generating

no-goods.

Asynchronous Weak Commitment modifyPermissions
method
� if have highest priority

– give self master permissions
� else

– restrict self to slave permissions

Asynchronous Weak Commitment modifyConstraints
method
� if cannot resolve local conflicts and conflicts with con-

straints of higher ranking agents
– set rank parameter of self to highest rank of sharing

agents plus one
– generate no-good as a conjunction of other conflicting

shared parameter values

The asynchronous weak commitment algorithm for DC-
SPs is shown to be sound and complete–the agents are guar-
anteed to converge to valid assignments of values to vari-
ables if they exist. In SHAC there is no guarantee of com-
pleteness (convergence). This is because SHAC does not
restrict the planners to be complete. Since continual plan-
ning requires reactivity to state changes and failures, com-
pleteness is difficult to ensure in real-time. Future work is
needed to determine how AWC (and other protocols) can be
combined with complete planners to ensure convergence.

4 Protocol Evaluations
We evaluate four protocols (chaos, master/slave, round
robin, and AWC) in an abstract domain where spacecraft
propose joint measurements requiring specific capabilities.
Each of the protocols are varied according to their use
of constraints and the agents sharing the activities. The
motivation is to see how well different argumentation strate-
gies for cooperative and self-interested agents converge on
consistent solutions according to time and communication
overhead.

Protocols are varied to generate constraints or not. The
protocols are further varied to update constraints every 1, 2,
5, or 10 SHAC cycles. In addition, they are alternatively
updated only when the current plan is in conflict with con-
straints. The set of sharing agents alternatively includes all
agents or just the originating agent and the agent providing
the requested capability. We will refer to the former as a
broadcast protocol since shared activity updates are broad-
cast to all others.

A joint measurement activity in our experimental domain
requires some number of each type of capability and refines
into concurrent activities, each consuming an agent’s capa-
bility. The agents’ capabilities each can only be used once at
a time. A variation of the domain also restricts the agents to
only be able to provide one capability at a time. The problem
is to assign agents’ capabilities to requested joint measure-
ments while meeting these constraints. Solvable problems

are randomly generated with 3 to 9 agents, 1 to 7 capability
types, and 1 to 9 joint measurements, each requiring 1 to 4
of each capability type. This can result in a maximum of
252 shared activities.

SHAC interfaces with the ASPEN planning system
(Chien et al. 2000). ASPEN is a heuristic iterative repair
planner that repeatedly chooses a flaw (or optimization
criterion), chooses a repair method (such as add, move, or
delete), chooses an activity, and applies the repair method
to the activity to resolve the flaw (or improve utility). The
choices are governed by built-in or user-defined heuristics.
Because this local search approach keeps no backtracking
states, the no-goods employed by AWC are not critical to
solving problems. We implement AWC without no-goods,
but our future work will evaluate strategies for managing
them.

ASPEN’s heuristics randomly choose agents to fulfill ca-
pabilities according to the agent’s local restrictions and also
in accordance with any SHAC constraints collected from
other agents. If there are no valid agent assignments, an
new agent will be chosen randomly with 10% probability.
In another domain variation, an agent can reason about the
local constraints on capabilities of other agents based on the
activities visible to it.

Figure 3 shows the number of problems each solved
within the time limit indicated on the x-axis for each
protocol. For all protocol and domain variations, AWC
outperforms the others with respect to CPU and actual clock
time in converging on valid solutions. Chaos performs
worse because it often returns inconsistent solutions due
to the lack of causal consistency in message passing.
Master/slave fails to perform as well because of its inability
to explore the full search space. Figure 4 shows that
master/slave has the lowest communication overhead. This
is not surprising since only one agent can send updates for
any shared activity. Round robin has significantly higher
overhead for its 400 easiest problems but is almost an
order-of-magnitude less costly than chaos and AWC for
problems of medium difficulty. This abrupt swing is due to
its large performance difference when broadcasting and not.

In Figure 5 we compare the protocols when all agents
share the activities and when only those directly involved
share. Here, we see that round robin outperforms all oth-
ers when not broadcasting although similar to AWC. It is
unclear why round robin performs so poorly when broad-
casting. We speculate that the constant flood of incoming
messages interferes with conflict resolution. AWC is also
degraded by broadcasting, but chaos improves greatly be-
cause the inconsistencies are stamped out by the increased
number of updates caused by broadcasting.

The incorporation of constraints has mixed results for
the protocols as shown in Figure 6. The protocols com-
pared here each use the sharing strategy that works best
for it. Round robin and chaos perform better without con-

1 0
− 2

1 0
− 1

1 0
0

1 0
1

1 0
2

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0
nu

m
be

r
of

 p
ro

bl
em

s

m a x c p u t i m e

C h a o s
M a s t e r S l a v e
R o u n d R o b i n
A W C

1 0
0

1 0
1

1 0
2

1 0
3

1 5 0 0

1 6 0 0

1 7 0 0

1 8 0 0

1 9 0 0

2 0 0 0

2 1 0 0

2 2 0 0

2 3 0 0

2 4 0 0

nu
m

be
r

of
 p

ro
bl

em
s

m a x r e a l t i m e

C h a o s
M a s t e r S l a v e
R o u n d R o b i n
A W C

Figure 3: The overall number of problems solved for each protocol vs. time

1 0
0

1 0
1

1 0
2

1 0
3

1 0
4

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

nu
m

be
r

of
 p

ro
bl

em
s

m a x m e s s a g e s s e n t

C h a o s
M a s t e r S l a v e
R o u n d R o b i n
A W C

1 0
3

1 0
4

1 0
5

1 0
6

1 0
7

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

nu
m

be
r

of
 p

ro
bl

em
s

m a x s i z e d a t a s e n t

C h a o s
M a s t e r S l a v e
R o u n d R o b i n
A W C

Figure 4: Problems solved for each protocol vs. communication overhead

straints. This could again be caused by additional commu-
nication overwhelming conflict resolution. For chaos, the
propagation of constraints actually hurts its ability to re-
turn consistent solutions. Master/slave benefits from con-
straints because they allow the master to see the local con-
straints of slaves and cooperatively explore the global search
space. AWC performs better on easier problems without
constraints likely for the same reasons as round robin. How-
ever, for harder problems, constraints help AWC converge
to solutions more quickly. This is consistent with DCSP re-
sults where propagating constraints improves performance
because the agents are able to choose values that are more
flexible with others. Thus, constraints enable more coopera-
tive behavior, benefiting master/slave and AWC.

5 Discussion and Related Work

Conflicts among a group of agents can be avoided by reduc-
ing or eliminating interactions by localizing plan effects to
particular agents (Lansky 1990), and by merging the individ-
ual plans of agents by introducing synchronization actions
(Georgeff 1983). In fact, planning and merging can be inter-
leaved (Ephrati and Rosenschein 1994). Earlier work stud-
ied interleaved planning and merging and decomposition in
a distributed version of the NOAH planner (Corkill 1979)
that focused on distributed problem solving. Other work
merges plans in a decentralized manner but adaptively cen-
tralizes computation as needed (Alami et al. 1998). More
recent research builds on plan merging by formalizing and
reasoning about the plans of multiple agents at multiple lev-

1 0
− 2

1 0
− 1

1 0
0

1 0
1

1 0
2

1 0
3

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0
nu

m
be

r
of

 p
ro

bl
em

s

m a x c p u t i m e

C h a o s b r o a d c a s t
M S b r o a d c a s t
R R b r o a d c a s t
A W C b r o a d c a s t
C h a o s n o b r o a d c a s t
M S n o b r o a d c a s t
R R n o b r o a d c a s t
A W C n o b r o a d c a s t

1 0
0

1 0
1

1 0
2

1 0
3

1 3 0 0

1 4 0 0

1 5 0 0

1 6 0 0

1 7 0 0

1 8 0 0

1 9 0 0

2 0 0 0

2 1 0 0

2 2 0 0

2 3 0 0

nu
m

be
r

of
 p

ro
bl

em
s

m a x r e a l t i m e

C h a o s b r o a d c a s t
M S b r o a d c a s t
R R b r o a d c a s t
A W C b r o a d c a s t
C h a o s n o b r o a d c a s t
M S n o b r o a d c a s t
R R n o b r o a d c a s t
A W C n o b r o a d c a s t

Figure 5: Problems solved for broadcast and limiting sharing protocol versions

1 0
− 2

1 0
− 1

1 0
0

1 0
1

1 0
2

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

nu
m

be
r

of
 p

ro
bl

em
s

m a x c p u t i m e

C h a o s c o n s t r s
M S c o n s t r s
R R c o n s t r s
A W C c o n s t r s
C h a o s n o c o n s t r s
M S n o c o n s t r s
R R n o c o n s t r s
A W C n o c o n s t r s

1 0
0

1 0
1

1 0
2

1 0
3

8 0

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

1 6 0

nu
m

be
r

of
 p

ro
bl

em
s

m a x r e a l t i m e

C h a o s c o n s t r s
M S c o n s t r s
R R c o n s t r s
A W C c o n s t r s
C h a o s n o c o n s t r s
M S n o c o n s t r s
R R n o c o n s t r s
A W C n o c o n s t r s

Figure 6: Problems solved with and without constraint propagation

els of abstraction to localize interactions and prune unfruit-
ful spaces during the search for coordinated global plans
(Clement and Durfee 2000). These plan merging approaches
assume fully cooperative environments but address mechan-
ics needed for competitive agent negotiations. Our work
builds on these mechanics.

DSIPE (desJardins and Wolverton 1999) employs a cen-
tralized plan merging strategy for distributed planners for
collaborative problem solving using human decision sup-
port. Like our approach, local and global views of planning
problem help the planners coordinate the elaboration and
repair of their plans. DSIPE provides insight into human
involvement in the planning process as well as automatic
information filtering for isolating necessary information to
share. While our approach relies on the domain modeler

to specify up front what information will be shared, SHAC
supports a fully decentralized framework and focuses on in-
terleaved coordination and execution.

In many ways this work is following the Generalized Par-
tial Global Planning approach to using a mix of coordina-
tion protocols tailored for the domain (Decker 1995). SHAC
offers an alternative framework for separating implementa-
tion of these mechanisms from the planning algorithms em-
ployed by specific agents. Unlike GPGP, SHAC provides a
modular framework for combining lower-level mechanisms
to create higher-level roles and protocols. Our future work
will build on GPGP’s evaluations of mechanism variations to
better understand how agents should coordinate for domains
varying in agent interaction, communication constraints, and
computation limitations.

Finally, TEAMCORE provides a robust framework for
developing and executing team plans (Tambe 1997; Pyna-
dath et al. 1999). This work also offers a decision-theoretic
approach to reducing communication within a collaborative
framework. Our shared activity model is inspired by Team-
Oriented Programming. Research is needed to investigate
the integration of coordinated planning with robust coordi-
nated execution.

An assumption commonly made in multiagent research is
that agents will be able to communicate at all times reliably.
However, this is rarely the case with spacecraft that can only
intermittently communicate and have significant communi-
cation delays (e.g. with Earth). Guaranteeing consensus on
beliefs and intentions is impossible without certain commu-
nication guarantees (Mullender 1995). Understanding the
communication properties that make consensus possible and
the overhead for establishing consensus is critical for multia-
gent research. Preliminary work (Clement and Barrett 2003;
Clement and Schaffer 2004) investigates coordinating plan-
ning in real-time with limited communication opportunities.

6 Conclusion

We introduced a distributed planning framework built on
ideas of argumentation that is capable of continually coor-
dinating planning agents. We described its capabilities and
gave examples of argumentation mechanisms (protocols)
built on these capabilities. We showed how variations of
argumentation perform on joint measurement problems for
interacting spacecraft. The round robin and AWC protocols
generally avoid problems of consistency and limited search
space encountered by simpler approaches. The round robin
exhibited the best balance of time and communication costs
when the number of sharing agents was minimized but per-
formed similar to AWC for the hardest problems. For prob-
lems it can solve, the master/slave protocol uses the least
communication overhead. The default unstructured SHAC
protocol (chaos) shows promise if given causally consis-
tent communication guarantees. Our future work is aimed
at evaluating the benefits of other non-argumentation-based
protocols with these for different classes of multiagent do-
mains and examining real-time performance during execu-
tion.

References

R. Alami, F. Ingrand, and Qutub S. A scheme for coordi-
nating multi-robot planning activities and plans execution.
In Proc. ECAI, pages 617–621, 1998.

S. Chien, G. Rabideu, R. Knight, R. Sherwood, B Engel-
hardt, D. Mutz, T. Estlin, B. Smith, F. Fisher, T. Barrett,
G. Stebbins, and D. Tran. Automating space mission oper-
ations using automated planning and scheduling. In Proc.
SpaceOps, 2000.

B. Clement and A. Barrett. Continual coordination of
shared activities. In Proc. AAMAS, 2003.

B. Clement and E. Durfee. Performance of coordinating
concurrent hierarchical planning agents using summary in-
formation. In Proc. ATAL, pages 213–227, 2000.

B. Clement and S. Schaffer. Distributed network schedul-
ing. In Proc. IWPSS, 2004.

D. Corkill. Hierarchical planning in a distributed environ-
ment. In Proc. IJCAI, pages 168–175, 1979.

K. Decker. Environment centered analysis and design of
coordination mechanisms. PhD thesis, University of Mas-
sachusetts, 1995.

M. desJardins and M. Wolverton. Coordinating a dis-
tributed planning system. AI Magazine, 20(4):45–53, 1999.

E. Ephrati and J. Rosenschein. Divide and conquer in
multi-agent planning. In Proc. AAAI, pages 375–380, July
1994.

M. P. Georgeff. Communication and interaction in multia-
gent planning. In Proc. AAAI, pages 125–129, 1983.

B. Grosz and S. Kraus. Collaborative plans for complex
group action. Artificial Intelligence, 86:269–358, 1996.

H. Jung, M. Tambe, and S. Kulkami. Argumentation as dis-
tributed constraint satisfaction: Applications and results. In
Proc. Intl. Conf. Autonomous Agents, 2001.

S. Kraus, K. Sycara, and A. Evanchik. Reaching agree-
ments through argumentation: a logical model and imple-
mentation. Artificial Intelligence, 104:1–70, 1998.

A. Lansky. Localized search for controlling automated
reasoning. In Proc. DARPA Workshop on Innov. Ap-
proaches to Planning, Scheduling and Control, pages 115–
125, November 1990.

S. Mullender. Distributed Systems. Addison-Wesley New
York, 1995.

D. Pynadath, M. Tambe, N. Cauvat, and L. Cavedon. To-
ward team-oriented programming. In Proc. ATAL, 1999.

M. Tambe and H. Jung. The benefits of arguing in a team.
AI Magazine, 20(4), 1999.

M. Tambe. Towards flexible teamwork. Journal of Artifi-
cial Intelligence Research, 7:83–124, 1997.

M. Yokoo and K. Hirayama. The distributed constraint sat-
isfaction problem: Formalization and algorithms. IEEE
Trans. on KDE, 10(5):673–685, 1998.

