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Abstract.
A planning system must reason about the uncertainty of con-
tinuous variables in order to accurately project the possible
system state over time. Prior approaches to planning under
uncertainty reason about discrete possible outcomes but there
has been little attention given to continuous possible out-
comes. A method is devised for directly reasoning about the
uncertainty in continuous activity duration and resource us-
age for planning problems.By representing random variables
as parametric distributions, computing projected system state
can be simplified in some cases. Common approximation and
novel methods are compared for over-constrained and lightly
constrained domains. The system compares a few common
approximation methods for an iterative repair planner. Re-
sults show improvements in robustness over the conventional
non-probabilistic representation by reducing the number of
conflicts witnessed by execution. The improvement is more
significant for larger problems and problems with higher re-
source subscription levels but diminishes as the system is al-
lowed to accept higher risk levels.

1 Introduction
Planning systems that reason about real world events must
eventually deal with the inherent uncertainty of any real
world mechanism. For example, actions may take longer
or consume more resources than predicted. Even if it were
possible to model every variable that affected a planned set
of actions, doing so is impractical for realistically sized do-
mains. Further, practical modeling abstractions themselves
also introduce uncertainty into reasoning about a system.

The way a planning system deals with uncertainty in its
actions and observations is critical to how well the system
is able to perform in the real world. Clearly, systems that
effectively reason about uncertainty can better avoid gener-
ating plans that are likely to violate execution constraints.
But effective use of uncertainty can also improve the long-
term efficiency of a plan by balancing acceptable risk levels
against the inefficiencies incurred to avoid those risks. Fi-
nally, knowledge of uncertainty allows the system to better
assess and report on the most risky plan segments.

One historical approach to dealing with uncertainty is to
assume no uncertainty at the level of planning abstraction.

To be used in a real world system, such systems are often
augmented with some replanning mechanism for when pre-
dictions do not match results. One step further is to depend
on an execution system to handle any variations in plan exe-
cution. Effectively, the planner itself is abstracted from any
knowledge that the real world doesn’t behave as predicted.

Other approaches have relied on introducing plan branch-
ing points where one of several plans may be executed de-
pending on the actually observed world state during execu-
tion (Deardenet al. 2002). Another tactic is the insertion
of slack padding into the schedule to absorb execution vari-
ations (Davenportet al. 2001).

This paper outlines one possible approach for directly rea-
soning about the uncertainty in action timing and resource
consumption. Parametric probability distributions for these
parameters are specified by a user-supplied model. The dis-
tributions are then combined during planning to determine
the net probability distribution of a resource at any time
point, which in turn may be integrated to yield the proba-
bility of violating any execution constraints on the resource.
The key idea is to use this “probability of conflict” to score
potential plans and to drive the planner’s search toward low-
risk actions. An output plan provides a balance between the
user’s risk aversion and other measures of plan optimality.

The present work deals only with durations and resource
usages that can be modeled as normally distributed ran-
dom variables, though the techniques are more widely ap-
plicable. To gauge the effectiveness of our probabilistic
system, batch-generated plans are executed in a stochastic
simulator. A comparative evaluation of our technique ver-
sus some common probabilistic approximations is provided
along with an analysis of its applicability to different kinds
of planning problems.

2 Approach
Planning effort is directed to repairing areas of a plan that
have unacceptable levels of risk, as determined by a user-
specified risk tolerance on each resource as a function of
time. Risk for any one timeline segment is assessed by com-
puting the probability that the sum of all activity reservations



(i.e. condition and effects) that potentially overlap the seg-
ment would exceed one of the modeled system resource lim-
its. This probability of resource constraint conflict is readily
derived if the resources’ net probability density functions are
available. Our approach for maintaining each net resource
distribution is to combine individual activity resource reser-
vations parametrically.

Each activity in the plan is considered to make uncertain
resource reservations that follow a known distribution. Fur-
ther, each activity can also have a duration that is similarly
uncertain. (For simplicity, all activities are considered to
have certain start times - an assumption that holds for di-
rectly commanded actions, but may not apply for exogenous
events.) In this paper, we only consider reservations and
durations that are normally distributed random variables,
though in practice other parametric distributions can also be
used. The parametric representation for a normal distribu-
tion is very compact, requiring only the distribution mean
(µ) and standard deviation (σ). In comparison, a particle fil-
ter (Gordonet al. 1993), which requires a value and weight
for each sample taken from a distribution. Conveniently, cer-
tain values can be also represented as normal random vari-
ables with a givenµ butσ = 0.

In the case of activities that make persistent reservations
on a resource, the net resource distribution for a timeline
segment is the sum of all current and preceding normally
distributed reservations. Fortunately, the sumΣ of i inde-
pendent normal reservationsn is itself a normal, with pa-
rametersµΣ =

∑
i µni

andσΣ =
√∑

i σni
2. Notice that

the uncertainty of the sum is greater than any single com-
ponent, indicating that resultant uncertainty grows with the
number of interacting reservations.

For actions that only have a transient reservation during
their duration, the same method is limited to those reserva-
tions that are concurrent. In the simple case that each con-
current activity has a certain duration, the net resource dis-
tribution is computed by adding each local reservation. In
the more complex case of concurrent activities with uncer-
tain duration, the net resource distribution itself becomes a
function of time.

For an activityA with start timets and durationd =
dµ ± dσ, considerP[A](t) to be the probability that action
A is executing at timet (see figure 1). Asd is normally dis-
tributed, the end timete is also a normal, and we can express
P[A](t) as:

P[A](t) =
{

0 t < tsA

1− Φµte ,σte
(t) t ≥ tsA

whereΦµ,σ(x) is the cumulative distribution function for
a normal with meanµ and standard deviationσ. Strictly,
normal distributions may yield negative samples, so we must
truncate only the duration distributions to[0, µ + 3σ].

Each ofA’s resource reservations must reflect the gradual
tailing off of the activity’s probability. IfA makes a reser-
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Figure 1:Probability of activityA with normally distributed durationd continuing

after its start timets.
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Figure 2: Transient resource usage distribution for activityA of uncertain dura-

tion, showing peaks atR when the activity is likely and0 when the activity is unlikely.
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Figure 3: Computing the sum of two bimodal resource usage distributions re-

sults in a multi-modal distribution. Each resultant peak weight is the product of the

component weights.



vation R when active, its effective reservation becomes a
function of time,R(t), as in figure 2). This distribution is
bimodal: one peak at zero resource usage represents that the
activity is not in effect (weightedw0 = 1 − P[A](t)), and
the R peak representsA’s transient reservation (weighted
wRA

= P[A](t)). The peak at zero is a scaled Dirac delta
function: it integrates tow0, but has infinitesimal width.

The time-sensitive reservations seen in figure 2 are no
longer simple normals, so the net resource distribution must
also be more complex. In fact, the sum of|Ai| different bi-
modal reservations results in a multi-modal distribution with
O(2|Ai|) distinct peaks: one for each combination of activi-
ties that could be in effect (see figure 3).

With the net resource distributionPDFRx, t in hand,
Computing the probability of violating a system resource
constraint during a timeline unit becomes a simple integral.
For a timeline unitT with a random variable resource level
R and constraints thatR ∈ [lmin, lmax], then the probabil-
ity of violation is given by:

P[VT ](t) = P[R(t) < lmin] + P[R(t) > lmax]
= 1− P[lmin ≤ R(t) ≤ lmax]
= 1− (CDFR(lmax, t)− CDFR(lmin, t))

= 1−
∫ lmax

lmin

PDFR(x, t)dx

Fortunately, this integral for normal distributions amounts to
a pair of constant time calls to the standard error function,
erf(x). For multi-modal distributions, the integral must be
computed for each component normal distribution and com-
bined according to the weight of the peaks.

In the end,P[VT ](t) may still be a function of time. In
this event, we consider the reportableP[VT ] for a timeline
unit to be the maximum instantaneous probability of viola-
tion anytime during the unit. (Such an assumption works for
systems where each random value is chosen once and not
sampled repeatedly from the distribution.) To avoid check-
ing all t ∈ T , we currently only check a constant number of
critical times fromT , including the endpoints.

The probability of constraint violation for each timeline
unit is compared to the user-specified acceptable risk level,
and any violations that are more likely than the risk tolerance
are flagged as plan conflicts. A planning algorithm can use
the tolerance to help decide whether and where to add, order,
move, or remove an activity.

2.1 Comparison Approximations
Several approximation methods were implemented for com-
parison against the fully probabilistic system described
above. Each fits within the same planning and heuristic
framework, but maintains the net resource distributions dif-
ferently.

Means Only: One very natural and easy approximation
method is to disregard all uncertainty in the distributions and

P[V]
01

tets time
0

us
ag

e 
va

lu
e

R

Figure 4: Single peak approximation for resource usage distribution in place of

multi-modal distribution (figure 2).

instead consider only the one value of maximum likelihood.
For normal distributions, this is the mean. Because durations
are also estimated by the mean, there are no multi-modal
distributions, and resource values can be tracked by a sin-
gle value for each unit. The Means Only approximation is
equivalent to default configuration of our planner wherein
everything behaves as expected.

Pessimistic: Similar to the Means Only approximation,
the Pessimistic approximation only tracks one value from
each distribution. Instead of choosing the value of maxi-
mum likelihood, however, it chooses the “worst case” value.
For a normal distribution, our pessimistic system tracks only
the valueµ + 2σ (or µ − 2σ), and considers that to be the
actual resource reservation. The choice of which direction
constitutes the worst case is inherently domain dependent
and must be specified.

Single Peak:A possible limiting factor of the Fully Prob-
abilistic system described above is theO(2|A|) peaks that
emerge when summing reservations from a set of activities
A, each with uncertain duration. Rather than track each
of the peaks, the Single Peak approximation uses a single
normal distribution as in figure 4 (compare with figure 2).
This approximation forfeits accurate representation in favor
of much improved time complexity. In fact, the Single Peak
approximation is optimistic since it underestimates reserva-
tions.

Chebyshev Bound: The Chebyshev Bound approxima-
tion is similar to the Single Peak approximation in that both
eliminate the multi-modal distributions that arise from un-
certain duration. However, the Chebyshev Bound uses a
more rigorous mathematical foundation for its approxima-
tion: for any random variableR, no matter the distribution,
the probability of receiving a sample further thanl from the
distribution meanmu is given by the single-tailed version of
Chebyshev’s inequality:

P[R− µ ≥ l] ≤ σ2

σ2 + l2

Because the Chebyshev Bound assumes so little about a



distribution, it is necessarily pessimistic. Like the Single
Peak, Chebyshev tracks only a single mean and standard de-
viation, and the sum of two approximated values is taken to
have the worst case standard deviation ofσΣ =

∑
i σni

2.
We apply the one-sided Chebyshev inequality to the net
mean and standard deviation, and report the resulting upper
bound on violation probability astheviolation probability.

3 Results

The Full Probabilistic system was evaluated against each
of the comparison algorithms in two disparate planning do-
mains. The first domain is an abstract testbed, and the sec-
ond is a much more complex orbiting spacecraft domain.

For each domain, a random problem generator provided
the initial schedule for the planner to repair. A iterative op-
timization planner was then run for a fixed number of iter-
ations on the seed plan. The planner was augmented to use
each of the full probabilistic and approximation algorithms,
and an output plan was saved for each. The saved plans
were then executed on a stochastic simulator that reported
the number of resource constraint violations that occurred.
Notably, no replanning was allowed as information became
available during simulation. It would be possible to aug-
ment our experiments with more elaborate execution mod-
els (flexible time points, replanning, etc), but such was not
investigated in the present work.

3.1 Abstract Domain

The abstract testbed domain has only a single resource and
a series of activities that may consume or replenish that re-
source. The model was run with both permanent and tran-
sient resource reservations, and with different levels of reser-
vation uncertainty. A valid solution existed for every gen-
erated problem (that is, there exists a known plan that can
always execute with zero resource errors).

A comparison of the simulation error means for each ap-
proximation method is show in figure 5. As expected, the
Means Only approximation stacked activities until the re-
source value was very close to its limit. This resulted in
simulation errors when the simulated values exceeded the
mean. The Pessimistic approximation only fared slightly
better, likely due to a modeling deficiency: a simulation er-
ror occurs when a resource exceeds its limit or falls below
zero. After a sequence of several overestimated consumers,
the Pessimistic approximation replenished those reserva-
tions with twice as many underestimated replenishers. This
causes the resource to fall well below zero, and an error is
reported. In real systems, many resources only have one-
sided constraints: it might not be an error to fall below zero
power usage.

The Full Probabilistic system fared the best, consistently
achieving nearly zero errors in each domain. It added an
appropriate amount of both resource and schedule slack to

1 2 3 4 5

0

1

A: Consumable Resource

1 2 3 4 5

0

1

B: Consumable Resource with 2x Stdev

MeansOnly Pessimistic FullProbabilistc SinglePeakAprx ChebyshevAprx

0

1

2

3

4

5

E
xe

cu
tio

n 
E

rr
or

s 
P

er
 R

un

C: Non−Consumable Resource

Figure 5: Execution error means for the three abstract domain variations. The

99% confidence of the mean is shown as an error bar.

accommodate the specified risk tolerance of 95%. The Sin-
gle Bump approximation also performed well, only having
difficulty when the resource uncertainty was doubled in (B).
Notably, The Chebyshev approximation did not meet expec-
tations: it turned out to be so very pessimistic in its distribu-
tion estimation that it failed to find good solutions, flounder-
ing with imagined conflicts.

The price of using the Fully Probabilistic system is of
course computation time. For problems in which duration
was not uncertain, the Fully Probabilistic system was about
10 times slower (unoptimized) than non probabilistic ap-
proaches. When duration was made uncertain, however,
a vast difference appeared. Notably, the Single Peak ap-
proximation was almost 100 times faster than Full Proba-
bilistic, on par with the non-probabilistic approaches. Sys-
tems where computational time is at a premium would likely
fare well to adopt a simple Single Peak approximation and
instead leave the Full Probabilistic approach for systems
where execution errors are extremely high cost.

3.2 Complex Orbiter Domain

The second domain is a more realistic mock up of an orbit-
ing spacecraft model. The probe is tasked with acquiring
images during target visibility windows, processing those
images in RAM, recording them to disk, and later down-
linking them to a ground station. The probe has to reason
about 10 resources, and has 10 different activities to com-
plete its goals. Each activity makes reservations on multi-
ple resource timelines. In this domain, the random problem
generator does not guarantee that its problems will always
have a completely valid solution (that is, the problems could
be over-constrained since the planner is forbidden to shed
goals).

As before, the Fully Probabilistic system achieves statisti-
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Figure 6: Execution error distribution for each reasoning system. The box plot shows the median as a horizontal line, a 95% confidence of the median as a notch, and the

interquartile range as a box. The whiskers extend to encompass 1.5 more interquartile ranges, and outliers are plotted beyond that.

−30 −20 −10 0 10 20

D
iff

er
en

ce
 P

D
F

Simulation Error Count Improvement of Full Probabilistic over Means Only

Full Probabilistic BetterMeans Only Better

100% Goals
  Mean Improvement = 3.05
  CI(99.0%) = [ 1.75, 4.60 ]
50% Goals
  Mean Improvement = −0.49
  CI(99.0%) = [ −1.71, 0.56 ]
25% Goals
  Mean Improvement = −0.20
  CI(99.0%) = [ −0.79, 0.39 ]

Figure 7: Execution error improvement distribu-

tion for problems of different goal densities. (The im-

provement is measured as the per-problem difference

in errors.)
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cally significantly fewer simulation errors than either of the
non-probabilistic systems, and generates plans on par with
the Single Peak approximation’s. The box plot in figure
6 conveniently shows a comparison of the error counts for
each system. On a per-problem basis, the Full Probabilis-
tic system had a mean 3.05 fewer simulation errors, with a
99.9% confidence interval of [ 1.35, 4.90 ]. The Pessimistic
approximation still suffers from the double resource bound
problem noted for the abstract model, but still achieves per-
formance comparable to the Means Only approach. The
overly pessimistic Chebyshev system still fares worse than
the Fully Probabilistic system, but is not statistically signif-
icantly worse than the either of the non-probabilistic sys-
tems. Notably, the Single Peak approximation achieves an
error rate that is comparable to - perhaps even better than
(confidence of 85%) - the Fully Probabilistic system. This is
likely an artifact of our domain, in which activities seldom
have tails that stack up into large multi-modal distributions.

Various parameters of the system were changed to evalu-
ate the relative sensitivity of each approach. One such pa-
rameter is the user-specified risk tolerance. As expected, the
payoff (in terms of reduced simulation errors) for using the
Fully Probabilistic over a Means Only approach diminishes
as the risk tolerance is increased. At a risk tolerance of 5%,
they are distinct with 100% confidence, but even at 10% risk
tolerance the statistical significance has dropped to 80%. At
a risk tolerance of 50%, the Full Probabilistic system be-
comes essentially algorithmically equivalent to the Means
Only system.

The difficulty of the problem also plays an important role
in determining the Full Probabilistic system’s dominance.
As problem difficulty (measured as number of goals re-
quired) decreases, the Means Only approach gains on and
eventually overtakes the Full Probabilistic approach in terms
of simulation errors. Figure 7 shows the relevant confidence
intervals.

Perhaps the most important change is that due to over-
all problem size. Figure 8 shows that both the probabilis-
tic and non-probabilistic systems suffer a roughly exponen-
tial growth in simulation errors as a function of problem
size. However, the slope of the Full Probabilistic system’s
function is significantly lower than that for Means Only.
This indicates that the difference in simulation error counts
will probably grow roughly exponentially was well. Figure
9 demonstrates this fact more clearly by showing the per-
problem improvement distribution. At large problem sizes,
the Fully Probabilistic system vastly dominates the Means
Only approach, while at small problem sizes, there is hardly
any difference.

4 Related Work
The idea of planning with uncertainty is not new. There are
a variety of systems that incorporate probabilistic reasoning
to improve plan robustness.

One of the most natural mechanisms for dealing with un-
certainty in planning is with Markov Decision Processes, as
is used in systems like PGraphplan from (Blum and Lang-
ford 1999). While MDP-based systems can leverage Marko-
vian state independence to improve search strategy, one of
their critical disadvantages is the lack of a simple metric re-
source mechanism within such a state representation.

More traditional planning systems, such as STRIPS, have
been augmented with uncertainty reasoning mechanisms as
in the CBURIDAN system from (Draperet al. 1994). Such
systems generate conformant plans with a specified proba-
bility of achieving a goal state regardless of random actions
taken. In this way, they are similar to our system of han-
dling unobservable state and uncertain actions. However,
like most STRIPS systems, resource constraints must be rep-
resented as propositions.

Some planning systems such as CNLP (Peot and Smith
1992) generate contingent plans where the actions to be
taken are determined by observing the execution-time state
of the world. Though each of the contingencies are deter-
mined in advance, this still leads to more flexible plans. Our
system does not handle execution-time concerns, though it
is possible that it could be extended to either generate con-
tingent branches or facilitate dynamic re-planning.

5 Conclusions
We have described an approach for directly dealing with
plan uncertainty by collecting and merging the probability
distributions from action duration and resource usage. The
essential idea is that by maintaining such merged distribu-
tions, a planning system can ask specific questions about the
risk of violating constraints at any time. Being able to ask
such questions allows the planner to better balance its risk
posture against its desire to achieve goals.

We have shown that augmenting a planner with such
a probabilistic reasoning system allows for plans with
execution-time quality superior to that which can be ob-
tained without directly considering uncertainty. Though
the underlying structure of the planner’s decisions are not
changed, the more robust risk assessment afforded by a
probabilistic system allow the planner to focus its decisions
on the most probable errors. As problem size increases or as
resources become more saturated with subscriptions, such
focus becomes more important to finding plans that perform
well on execution.

The fully probabilistic system makes its gains using a
O(2n) algorithm, but we have also shown that a simple
approximation technique that still tracks distributions can
achieve comparable (and sometimes superior) results with
only aO(n) algorithm.

The techniques we have demonstrated are applicable to
most planning problems that satisfy a few constraints. First
the resource and duration distributions of actions must be
known. Second, the system must have a relatively high



risk averseness for the probabilistic system to make a dif-
ference. In the current implementation, we have not handled
many desirable planner capabilities such as direct temporal
constraints or discrete state resources. We believe the tech-
niques are still applicable for problems with such character-
istics, albeit with some modification. Probabilistic reasoning
is especially suited to problems of large size and high cost
of failure.
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