

1

A Scheduling and Execution Model for Mission Planning and Automation

F. Croce - Vitrociset SpA (Italy) –francesco.croce@vitrociset.it

M. Kirchmann - Vitrociset SpA (Italy) – michael.kirchmann@vitrociset.it

C. Lannes - ESA/ESOC – catherine.lannes@esa.int

 M. Alberti – Terma GmbH – ma@terma.com

Abstract. The need to schedule and execute activities
within mission operations is not a new concept and
recently has gained new and stronger value within the
ESOC general approach to provide missions with a
required level of automation.
The overall approach goes towards two directions:
adoption as much as possible of standards and definition
of reference models of the ground systems including
modelling of the interfaces existing among the systems at
data and interaction mechanisms level.
In the automation concept the scheduling and execution
functionality is modelled as a layer providing activities
schedule and execution services to users required to plan
mission resources usage (as result of the mission planning
process) and to users required to automate repetitive
operations. The scheduling and execution layer makes use
of systems (e.g. mission control systems, ground segment
interfaces, etc.) in charge to ensure low-level mission
resources interfaces (e.g. resources monitoring and
control).
This paper describes an activities schedule and execution
reference model together with the related interfaces as
defined within the ESOC ATIS (Automatic Tool Interface
Study) study. The main objective of the study is the
definition of data specifications interfaces used by the
user of the scheduling and execution layer to define
activities and the functional reference model of such
system.
ATIS makes use of ESA and industry standards (such as
ECSS-E-70-31/32 and W3C XSD for schema definition)
and the paper provides a brief overview of the utilisation
of such standards and the benefits derived from their
adoption.

1 Introduction

This paper first introduces the “problem” domain where
an automatic scheduling system operates within a typical
mission environment.
Then we include a brief description of the Automatic
Scheduling Execution (ASE) tool, the ECSS-E-70-32

(PLUTO) standard. Both have been adopted as reference
“systems” (and in the case of PLUTO as applicable
standard) for the ATIS study in charge to formalise
activities definition and scheduling interfaces.
Finally we describe the schedule models as introduced by
the ATIS study.

2 Background and Domain Overview

Until recently, all users of systems at ESOC have not seen
the need for a formal activities scheduling and execution
facility. The operations are conducted by means of written
flight operations procedures, with the operations
personnel interacting with the system for monitoring,
sending of commands etc.
However, with the raising complexity of missions and the
necessity to provides users with an automatic flow of
operations from mission planning to spacecraft (S/C) and
ground segment resources allocation, the need of an
infrastructure for activities scheduling and execution has
grown.
Such infrastructure can be seen as an operational interface
between the planning system in charge to define space
and ground segment resources utilisation (according to
user requests) and the systems in charge to provide
configuration access (i.e. monitor and control) to such
resources.
Plans are typically described in terms of timelines
(schedules) of activities mapping the overall objectives of
the plan.
The domain of operations can be formalised with three
layers of responsibilities:
• plans definition and schedules generation layer

• schedules and procedures execution layer

• space and ground segment resources access layer
(interface)

The scheduling and execution infrastructure must then be
capable to provide:

2

• an interface allowing the planning system to inject
schedules of operations (plan) and provide feedbacks
about their execution status

• an environment where schedule and activities
(referenced by the schedule) can be executed

• an interface to the systems in charge to provide
access to space and ground resources referenced by
the activities in the schedule

2.1 Planning Layer
A typical mission plan production output consists of a
time-ordered sequence of activities that satisfies mission
utilisation requests over a defined period of time.

The process for generating a plan (plan generation), shall
take into account the set of rules and constraints that
restrict the method by which the plan can be
implemented, such as space and ground segment
resources availability operational modes.

Once a satisfactory plan has been created, the necessary
space and ground segment activities definition may be
generated, by translating the plan into proper schedules
using a formal definition paradigm.

2.2 Scheduling and Execution Layer

The activities scheduling and execution layer is in charge
to execute plans or schedule as defined by the planning
user.

Schedules are the “executable” version of the plan which
has been defined at planning level according to user
inputs, rules constraints and mission (space and ground)
resources availability.

Activities in the schedules are defined within a timeline,
and each activity is associated with time constraints
(execution time window) and dependencies with other
schedule activities.

The main high level requirements for an activities
scheduling and execution system are:

• It shall support a “syntax” that allows users to
describe activities to be performed

• It shall allow users to define activities with different
level of granularity and support their execution
within the same environment. For example a
telecommand, a procedure or a plan are all activities
expressing simple or complex operations at different
levels of abstractions which they need to coexist
within the same plan

• It shall have a high level of integration with the
planning systems (on one end) and the spacecraft
control system and ground segment interfaces (on the
other hand)

• It shall allow to accept re-planning requests for on-
going scheduled activities ensure a secure handover
between the old and new request

• It shall provide an environment where schedules and
activities are not only executed but they can be
monitored and controlled with different level of user
intervention (level of automation)

• It shall provide users with feedback about the
progress/final status of the plan execution

2.3 Mission Resources Access Layer

This layer is in charge to provide the required visibility of
all possible resources (and associated services) a plan
must refer to in order to achieve the mission plan goal.

The need to reference resources through the use of a
common interface model is essential in order to allow the
execution environment to be used for interacting with the
resources without being aware of their specific
implementation.

An example of such modelling approach is the availability
of a resources within a Space System Model definition
(see ECSS-E-70-32 section below).

3 Reference Standards and Systems

3.1 ECSS-E-70-32 (PLUTO)

E-70-32 specifies the language used to define those
activities of the Space System Model to be implemented
as Ground Procedures and this language is called the
Procedure Language for Users in Test and Operations
(PLUTO).
PLUTO defines three key elements:
• Syntax and semantics of the language

• Structure and dynamic behaviour of a procedure
when executed

• System interfaces to the Space System Model
(described in the ECCS-E-70-31)

The Space System Model allows abstraction of the space
and ground system in terms of hierarchical organisation of
System Elements (SE) with each SE modelling the

3

physical or logical resources available in the mission
space and ground segment.
 Space System

Space Segment Ground Segment

EGSE

MCS

Ground Station

Back-End
Equipment

Telemetry Decoder

Go_NoGo_

Power
subsystem

Undervoltage

AOCS

Star Tracker

Switch_

Background_Count_Re

Optical Head

Temperat

Source_Count

Sweep_Downlink

Lock_Stat

Figure 1 – Example of Space System Model

With this concept a PLUTO procedure does not need to
know the specific implementation of each resources but it
interacts with them through SE defined in the SSM using
a unique interface defined at SE level. It is the SSM that
resolves on behalf of the procedure the interaction with
the actual resource.
A PLUTO procedure has the following main structures:

 Declaration Body

Preconditions Body

Main Body

Confirmation Body

Watchdog Body Subg
oal

Subg
oal

Subg
oal

Subg
oal

Subg
oal

Watch-
dog

Watch-
dog

Figure 2 – PLUTO Procedure Structure

• An optional Declaration Body where events that can
be raised at procedure level are declared

• An optional Pre-conditions Body responsible for
ensuring that the procedure only executes if (or
when) pre-defined initial conditions are satisfied

• The Main Body responsible for achieving the
objective (goal) of the procedure. It is made of
procedure statements that can be executed in
sequence or in parallel

• An optional Confirmation Body that assesses
whether the objective(s) of the procedure have been
achieved or not (i.e. “post-condition”)

• An optional Watchdog Body that manages
contingency situations that can arise during the
execution of the procedure.

Watchdog body is started at the same time as the
main body and is active until the main body ends
execution

A subgoal can be achieved by executive a low level
algorithm encapsulated into a formal structure known as
step.
The structure of a step reflects the one of the procedure
and it is composed of:

• an optional declaration body

• an optional pre-conditions bodythe main bodyan
optional watchdog bodyan optional confirmation
body

Steps can be nested and they can be defined to be
executed sequentially and/or in parallel.

3.2 The ASE System
The “Automatic Scheduling Execution” (ASE) is a
system developed by Vitrociset in for Mission Control
System (MCS) procedure automation. The system
originally addressed the need to have a degree of
automation in addition to the standard telemetry and
telecommands monitoring and control functionality.
ASE is compliant to the proposed ESA standard ECSS
(European Cooperation for Space Standardization) ECSS-
70/32 “Procedure Language for Use in Test and
Operations” (PLUTO). At a high level, PLUTO defines
common specifications for procedures Mission
Operations and the pre-lauch AIT/AIV operations.
ASE is fully compliant to PLUTO extending what the
standard defines with procedure execution scheduling
capabilities.
In other word the system is capable:

• to execute a PLUTO compliant procedure

• schedule a procedure in time as single running entity

• execute aggregates of procedures within an higher
level entity called schedule

4

• execute parallel schedules within an agenda
In order to make references to external entities ASE uses
the PLUTO SSM.
A basic functionality implemented by the ASE SSM is the
interface to the ESA mission control system SCOS-2000
not only for telemetry and telecommand references but
also for MCS related services such as application
managements and configuration purposes.
Applicability of ASE are at the moment the Canadian
RADARSAT-2 MCS (operational) and the ESA Rosetta
MCS (proof of concept).

3.3 The ATIS Study
The study covers the need to define generic interfaces
between automation tools and towards external users.
In particular two types of users are addressed:
• Users preparing procedures

• Users preparing plans (schedules)

The study is in charge to produce two formal Interface
Control Documents (ICDs):
• Activity Definition ICD

Interface between mission operation procedure
preparation environment and procedure execution
environment and more generally systems that needs
to exchange activities defined as PLUTO procedures.

• Schedule File ICD

Interface between planning systems defining
operations activities and the system in charge to
execute such activities. Activities referenced in the
schedule are envisaged to be procedures available in
the procedure execution environment

Planning
User

(e.g. MPS)

Procedure Preparation
Environment

Activity
(Procedure) files
compliant with
the "procedure
ICD" defined
within ATIS

Procedures
compliant with
the "Activity
ICD" defined
within ATIS

E1

Procedure & Schedule
Execution Engine

Activity / Plans Scheduling and
Execution System

Space and Ground Segment Resources Handling System
(e.g. Mission Control System such as SCOS-2000)

E2

ATIS
SCOPE

Figure 3 – ATIS Context
The overall study has been built around the usage of
industry and ECSS standards. In particular:
• ICDs data format specifications are defined in terms

of XML schemas

• Activities are considered to be procedures compliant
to ECSS-E-70-32 (PLUTO)

• Schedules are specified in terms of ECSS-E-70-32
statements. The approach rationalises the definition
of the ICD with the Activity ICD by using PLUTO as
common definition language

The objective of the paper is to describe the execution
environment model mapped in the schedule ICD.

4 Execution and Scheduling Model

Activities must be defined with a different level of
granularity, timing and execution dependencies, in order
to allow the planning process to make access to the
resources with the required level of flexibility and
security.
The availability of a common reference language used for
the definition of the activities at different level of
granularity is considered an essential requirement,
together with a reference functional model of the system
implementing the activity scheduling and execution layer.
The model is described in terms of:
• High Level reference model

• Model elements

• Execution Dependencies

4.1 High Level Reference Model
The model of the execution environment is derived from
the ASE system and extended around the following
entities:
• Agenda and agenda timeline

• Schedule and schedule timeline

• Tasks which can be:

o Activities

o Events

o Checkpoints

The execution environment is the container where agenda,
schedules and tasks execute.
The agenda represents the higher-level entity of the
environment where schedules are scheduled for execution

5

within the agenda timeline and each schedule includes
entities to be executed called task requests.
A schedule can be used to map a plan of activities as
generated by Mission Planning.

NOTE: because of the previous statement
“schedule” and “plan” are used in the rest of
the paper to refer to the same entity

The following figure provides the representation of:
• The agenda and agenda timeline

• Schedules within the agenda and schedule timeline
within each schedule

• Task requests within each schedule

AGENDA
AGENDA timeline

SCHEDULE A

TR

TR

TR

Schedule A Timeline

SCHEDULE B

TR

TR

TR

Schedule B Timeline

SCHEDULE ..

TR

TR

TR

Schedule .. Timeline

Each plan defines execution scheduling and execution
constraints of one or more task request(s) within the
schedule timeline.
A task request is effectively an execution container for
specific classes of entities to execute which can be:
• Activity: a PLUTO procedure or an external

command

• Event: typically an operator message

• Checkpoint: an execution milestone reached within
the execution of the plan

Each schedule is an instance of a scheduler machine
where tasks can be scheduled and executed according to
time constraints and interdependencies (interlocks) among
tasks.
Task requests can be interlocked among each other by
defining the task followers and predecessors. Interlocks
allows the user to specify the behaviour of the schedule in
terms of task requests dependencies and parallel /
sequential execution.

AGENDA

SCHEDULE

ProcProcTR

Schedule Timeline

ProcProcTR

Task Request
Interlock

Task Request
Interlock

Agenda Timeline

TR

ProcProcTR

Task Request
Interlock

In other words each schedule can be defined to have
parallel and/or sequential branches of execution resulting
in a graph topology of tasks.
The following figure provides a formalisation of the
environment in terms of UML diagram.

Agenda

Schedule

1

0..*

Task

1

0..*

1

0..*

Follower

1

0..*

Predecessor

Event

-Mode

CheckPointActivity

PLUTO Procedure External-Cmd

Figure 4 – UML Class Diagram of Schedule

It must be noted that parallel execution of elements is not
only available at plan schedule level but also at:
• Agenda level: with the possibility to execute in

parallel more than one schedule

6

• Activity level (in case of PLUTO procedure) with the
possibility to define parallel steps within the
procedure

Schedule definition can be saved within files, and can be
exchanged between two entities required to interact (e.g.
for plans execution).

Schedule
File

Receiver,
Validator

and
Consistency

Checker

AGENDA

SCHEDULE A

TR

Schedule A Timeline

TR

TR

Schedule A
File

New
Schedule

Valid
Schedule

Procedure Execution and
Scheduling Environment

Notification of
New Schedule

Schedule File definitions are used to
create the schedule within the agenda

Schedule File definitions are used to create task requests
within the schedule

Schedules
Producer

(e.g. MPS)

Procedures

Procedures (as activities
within Task Request) must

be available in the
procedure execution

environment

Schedule
Consistency

Checking

To be noted that the model assumes schedules (files)
include references to activities whose definition exists in
the execution environment.
The role of the schedule file receiver is to consistency
check the schedule definition against the availability of
activities (procedures) present in the execution
environment.

SCHEDULE -B

ProcProcTR

ProcProc

Activity

ProcProcTR

TR
Activity

Activity CP

TR

ProcProcTR

Activity

ProcProcTR

Activity
Event

Event

AGENDA

CP

TR ProcProcTR

Activity

Figure 5 – Complete Schedule example

Figure 5 provides an example of a schedule present in the
agenda each one having a set of task requests defined as
activities, events or checkpoints.

4.2 Model Elements

4.2.1 Agenda

The agenda is modelled to be just a container of schedules
to be run according an agenda timeline.

It imposes no dependencies among schedules defined in
the agenda meaning that multiple schedules can be
present and scheduled to run in parallel.
As later described, synchronisation (if needed) among
schedules can be achieved through the definition of
checkpoints.

4.2.2 Schedule

A schedule is a container of task requests to be executed
on a timeline.
Each schedule runs within the agenda timeline and is
associated with:
• An Identifier

• schedule reference time (SRT)

Normally each instance of a scheduler exists up to the
time the execution of the last task request within the
schedule is completed. By “last” here is meant the task
request within the agenda where timing and interlocks
constraints make it the last to complete among the whole
set of task requests present in the schedule.

4.2.3 Task Request

A task is a container of an activity and is executed within
the schedule timeline.
A task request is similar in concept to the operating
system process environment where user programs
(executable binary code) run and system resources
required by the program are managed. A number of
information is associated to each task request:
• Task request identification

• Activity reference and Input parameters

• Execution time references

• Task request followers or predecessors

• Execution dependencies with the predecessors in
terms of Interlock type and subtype

Each task request is associated with an ID and a name.
The identifier is used by the procedure execution to
unique identify the task with the environment.
When the schedule is created within the agenda the
schedule reference time is used together with task request
delta timing to compute the actual timing of each task
request in absolute format.
A task request starts execution when its start time is due
and its interlocks (if any) with predecessors are open (the
concepts of task request execution time windows and
interlocks among tasks are covered in more detailed in
following sections).

7

4.2.4 Activities

A PLUTO procedure is designed by the user and includes
steps and statements modelling a specific goal together
with the interaction with space and ground resources.
The schedule model as defined by ATIS assumes the
availability of a Space System Model within the
execution environment to be used by procedures to
interact with mission resources.
PLUTO includes all classical procedural language
statements together with the methods to interact with the
space system model.
It is the set of procedures defined in each schedule to
express the overall goal of a plan.
An activity can also be associated with an external
command (e.g. scripts) or programs available in the
execution environment

4.3 Execution Dependencies

4.3.1 Timing Dependencies

Each Schedule is associated with a schedule reference
time (SRT)

Timing attributes associated to a task request are
expressed as delta time with reference to the SRT.
Each task request is associated with static time references
which represents the predicted task execution time
window.
A delay time is also associated to the task request and
represents (if defined) the minimum time the task is
supposed to wait before to run with respect to the actual
finish time of its latest predecessor.
Since at runtime the time slot used by a task can be
different from the predicted time window (e.g. activities
can take longer time to execute, contingencies might
happen, etc..) the actual start time of each task is re-
computed by the schedule at runtime using the task static
time references and the actual timeline evolution of the
schedule.

AGENDA

SCHEDULE

ProcProcTR-2

Schedule Timeline

ProcProcTR-3

Task
Request

Start
Time

Task
Request
Finish
Time

Agenda Timeline

Schedule
Reference

Time

ProcProcTR-1

Schedule
Finish
Time

ProcProcTR-4

Delay Time of TR-3 with
respect to actual finish

time of TR-1

Delay Time of TR-2 with
respect to actual finish

time of TR-1

Static time references and delay time are used to compute
at runtime the actual task request execution time as
modelled by the user through the static time references
and delay time.
The actual start time (AST) computation will follow the
algorithm to guarantee in any case a delay time interval
between the actual finish time (AFT) of the predecessor
and the (AST) of the task request to be scheduled for
execution.

4.3.2 Checkpoints and Synchronisation

A checkpoint is a milestone in the timeline execution of a
schedule and can be defined in any branch of the
schedule.
Each Checkpoint has an associated status that is
“NOT_REACHED” by default and it is set to
“REACHED” if the checkpoint is reached during the
execution of the schedule.

SCHEDULE

ProcProcTR

ProcProc

Activity

ProcProcTR

CP

ProcProcTR

TR

TR

Activity

Activity

ActivityCP

TR

Checkpoints are used as mechanism to link the execution
of two or more schedules in order to achieve schedules
synchronisation.

8

Each checkpoint has an execution mode, which can be
one of the following:

Mode Description

CONTINUE Continues without stopping. This is
used just to report the schedule has
reached the milestone

USER The execution of the schedule branch
where the checkpoint is defined is
suspended and the user is prompt to
STOP or CONTINUE the execution of
that branch

HANDOVER The checkpoint is associated with a
PLUTO expression and the schedule
branch is suspended until the expression
becomes true.

The expression can include references
to “REACHED” conditions of
checkpoints defined in other schedules
OR / AND to time occurrences.

This is the mode which allows to
synchronise the execution of a schedule
with other checkpoints defined in other
schedules

STOP_ON_H
ANDOVER

Stops execution of the schedule branch
following the Checkpoint in case
another schedule has defined a
HANDOVER express for this
checkpoint

Synchronization is needed in order to make the start of
execution of a schedule depending on the achievement of
a certain condition (i.e. checkpoints) within other
schedules in the agenda.
This might be needed in two possible use-cases:
• re-planning: where an updated version of an already

scheduled plan is injected by mission planning
system and the handover from the first plan to the
second must occur at very well defined milestone

• continuous planning: defined by more than one
schedule where the sequence of execution across
scheduled must be synchronised. Continuous
planning can be considered as generalisation of re-
planning

5 Model / Interface Definition

The PLUTO language has been adopted for the definition
of the model and All model elements, execution

dependencies and constraints have been mapped into
PLUTO structures and statements.
In particular:
• A schedule is defined in terms of PLUTO statements

(It is then similar to a procedure)

• Procedure variables are used for Storage of Status,
Times and Message Strings

• Each Task (Activity, Checkpoint and Event) is
mapped to a procedure step:

o The precondition body is used to wait for task
interlocks

o The Main body is used for functionality of each
Entity and Status assignments

o For the functionality in the Main Body the
statements “inform user”, “log”, “initiate &
wait”, “if” and “wait until” where used

o Regular PLUTO expressions are used for
handover checkpoints expressions

o The Watchdog body is used to interrupt a Task if
a certain condition is reached (Latest Finish
Time exceeded, Latest Start Time exceeded)

The actual interface is specified in terms of XML schema
and schedules are described within XML files compliant
to the schema.
XML allows to refer to a standard way to model data
which can be exchanged regardless the actual data
processing performed by the ends involved in the
interface.

6 The overall Picture

The following picture summarises the overall model with
all involved systems and interfaces.

9

Schedule
File

Receiver,
Validator

and
Consistency

Checker

AGENDA

SCHEDULE A

TR

Schedule A Timeline

Schedule A
File

Procedure Execution and
Scheduling Environment

Notification of
New Schedule

Schedules
Producer

(e.g. MPS)

Procedures

 Space System

Space Segment Ground Segment

EGSE

MCS

Ground Station

Back-End
Equipment

Telemetry Decoder

Go_NoGo_

Power
subsystem

Undervoltage

AOCS

Star Tracker

Switch_

Background_Count_Re

Optical Head

Temperat

Source_Count

Sweep_Downlink

Lock_Stat

Space System Model

TR

TR

Schedules compliant
to the ATIS Schedule

ICD
(Subset of PLUTO) Scheduling and execution

environment compliant to the model

PLUTO
Procedures

Interaction to the
Resources through

the SSM

ResourcesResourcesResourcesResources

ResourcesResourcesResourcesResources

PLUTO
Procedure
Producer

PLUTO Procedures
as defined by the

ATIS ICD

7 Conclusions

The environment has been modelled with the explicit
needs to provide the user with a flexible plan definition
language, which allows:
• To define executable entities with a common

language to be used at different levels of granularity

• To provide a flexible environment where:

o different plans (schedules) can be executed in
parallel and within each plan different activities
can be executed in parallel or sequentially
according to time constraints and interlocks

o within each activities steps can be defined with
the same logic

o the possibility to synchronise plans through
checkpoints

• to abstract resources referenced by the plans through
the usage of the Space System Model

The definition of the model in the case of ATIS this has
been pursued through:
• modelling: of the interfaces between the scheduling

environment and its users. This implied the definition
of the environment itself

• Adoption of suitable standards which have been
considered “tools” for the specification of the model.
In particular PLUTO has proved to be flexible
enough to map the model constructs.

It is believed that an operational assessment of the
specification is needed in order to stress the model in
terms of its capability to fulfil all operational constraints.

References
[1] ECSS-E70-32 - Space Engineering: Ground

Systems and Operations- Procedure definition
language - Draft 18 Rev 1

[2] XML Definition - http://www.w3.org/TR/REC-xml

