
VSE - Verification Support Environment

Andreas Nonnengart and Georg Rock and Werner Stephan
German Research Center for Artificial Intelligence

Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany
{nonnenga,rock,stephan}@dfki.de

Abstract. The Verification Support Environment (VSE) is
a CASE-tool that supports the user in theformaldevelopment
of software. It has a rather broad range of applicability as was
already shown in several industrial applications, be it in the
safety or in the IT-security domain. We claim that VSE is
equally applicable in the domain of plan verification.

1 Introduction
The Verification Support Environment (VSE) supports large
parts of the software-engineering process in a systematic
way and is general enough to cover several aspects of formal
modelling in a common setting. It consists of a basic system
for editing and type checking specifications and implemen-
tations, a facility to display the development structure, a the-
orem prover that releases the proof obligations arising from
development steps (e. g. refinements), a central database to
store all aspects of the development including proofs, and
an automatic management of dependencies between devel-
opment steps. VSE was developed in two phases for the
German Information Security Agency (GISA) by consortia
from industry and academia. VSE-II (Hutteret al. 1999;
Rocket al. 1999) the follow-up system of VSE-I (Hutteret
al. 1996) was developed under the lead management of the
German Research Centre for Artificial Intelligence (DFKI).

2 Formalisms in VSE
Formal development in VSE is based on two formalisms:
abstract data typesare used to specify data structures and
functional computations while a version oftemporal logic
(based on Leslie Lamport’s Temporal Logic of Actions
(Lamport 2003)) is used to specify the dynamic behaviour of
systems with a persistent state. Although there is a fully de-
veloped methodology in its own right for abstract data types
typically data types are used to provide values for state de-
pendent (flexible) variables in state based systems. Func-
tional computations are then used to model single (uninter-
ruptable) steps of state based systems.

3 Plan Verification
In general, to solve a planning problem means to find a se-
quence of actions taken from a fixed given set of possible

actions - each transforming states (situations) into new states
(situations) - such that applying this sequence of actions to
a given initial state results in a desired final state.

Slightly more formally this means that a planning prob-
lem essentially consists of a pair of states - the initial and the
final state(σ0, σn) - together with a set of possible actions
A with Ai : Σ 7→ Σ for eachAi ∈ A. The ultimate goal is
to find a sequence of actions〈A1, . . . , An〉 that transforms
the initial state to the final state, i.e.Ai(σi) = σi+1 for all
0 ≤ i < n.

Plan verification on the other hand addresses the problem
of verifying that a given sequence of actions together with a
given pair of (initial, final) states really transforms the initial
state to the final state. Thus plan verification is not at all
concerned with the problem of finding such a sequence; its
aim is to prove that this very sequence - regardless of how it
was determined - solves the problem.

Obviously, a formal plan generation approach that guar-
antees the plan correctness would not need such a subse-
quent plan verification. To verify the correctness of a plan
thus comes into play whenever the plan generation did not
yet guarantee the plan correctness, be it because the plan
happened to be somewhat handcrafted or because an auto-
mated plan generation failed for some reason and therefore
some gaps remained open that had to be filled by suitable
heuristics or human action.

VSE is a tool that supports plan verification, and that man-
ifold. On the one hand VSE’s temporal logic (of actions) fits
nicely to state transformation systems. On the other hand
its internal treatment of abstract data types allows for even
highly sophisticated state descriptions and state transforma-
tion descriptions (e.g. freely generated and thus inductively
defined data structures). But even (dense) real-time consid-
erations can easily be incorporated into VSE’s model of ac-
tions and state transformations, and that although dense real-
time is not directly incorporated into the general idea of TLA
(Nonnengartet al. 2001).



References
Dieter Hutter, Bruno Langenstein, Claus Sengler, Jörg H.
Siekmann, Werner Stephan, and Andreas Wolpers. Deduc-
tion in the Verification Support Environment (VSE). In
Marie-Claude Gaudel and James Woodcock, editors,Pro-
ceedings Formal Methods Europe 1996: Industrial Benefits
and Advances in Formal Methods. SPRINGER, 1996.

Dieter Hutter, Heiko Mantel, Georg Rock, Werner Stephan,
Andreas Wolpers, Michael Balser, Wolfgang Reif, Ger-
hard Schellhorn, and Kurt Stenzel. VSE: Controlling the
complexity in formal software developments. In D. Hut-
ter, W. Stephan, P. Traverso, and M. Ullmann, editors,
Proceedings Current Trends in Applied Formal Methods,
FM-Trends 98, Boppard, Germany, 1999. Springer-Verlag,
LNCS 1641.

Leslie Lamport.Specifying Systems: The TLA+ Language
and Tools for Hardware and Software Engineers. Addison-
Wesley, 2003.

A. Nonnengart, G. Rock, and W. Stephan. Expressing Re-
altime Properties in VSE-II. InESA Workshop on On-
Board Autonomy, volume WPP-191, pages 447–454, Oc-
tober 2001.

Georg Rock, Werner Stephan, and Andreas Wolpers. Mod-
ular Reasoning about Structured TLA Specifications. In
R. Berghammer and Y. Lakhnech, editors,Tool Support for
System Specification, Development and Verification, Ad-
vances in Computing Science, pages 217–229. Springer,
WienNewYork, 1999.


