
Optimal Nadir Observation Scheduling

Russell Knight and Ben Smith

Jet Propulsion Laboratory, California Institute of Technology
<first_name.last_name>@jpl.nasa.gov

Abstract. We present optimal algorithms for nadir
(instrument pointing straight down) observation scheduling
for spacecraft with fixed orbits. We present a comparison
between an integer program formulation and a branch and
bound formulation that makes use of a flow network
heuristic, each capable of solving instances of these
problems optimally. Neither technique strictly dominates
the other, and we characterize their respective advantages
and disadvantages. Note that this problem is NP-complete.

1 Introduction
Nadir is the opposite of zenith; it is basically “straight
down.” Orbiting spacecraft often have immobile imaging
instruments, and generally such spacecraft maintain a fixed
orientation with respect to the body that they are orbiting,
therefore most instruments point straight down, or nearly
straight down. This is called either nadir or off-nadir
observing. Figure 1 (right) shows a nadir pointing
spacecraft orbiting a spherical body and the area that is in
view of the instrument. (The arrow indicates the direction
of travel.)

Figure 1 Swath and segments of a nadir pointing

spacecraft

In these cases, the instrument gathers data along a fixed
trajectory called a swath. Figure 1 (center) shows the
swath that could be imaged by the orbiting spacecraft. In
practice, the swaths are broken into smaller swaths called
segments. A segment is the smallest area that can be
individually imaged. Therefore, a single observation
equates to a segment. It is important to note that segments
are both areas that could be imaged and intervals of time
for the observation. Figure 1 (left) shows some example
segments.

The purpose of such spacecraft is to image various areas,
called targets, according to the investigator’s priorities.
Figure 2 shows an example of a target.

Figure 2 A target, without and with segments

Overlapping segments imply a potential for waste if the
overlapping area is collected and transmitted more than
once. Figure 3 shows more segments as a result of a
subsequent orbit by the spacecraft. (The arrow indicates
the direction of travel.) Note that the segment in the center
of the target (shaded area) overlaps one of the previous
segments.

Figure 3 Another swath and its associated segments, with

an overlapping segment (shaded area)

Collecting overlapping segments is a problem because
there are limits to how many segments we may collect.
This is usually due to limited on-board memory, and
limited downlink times and capacities. Not surprisingly,
segments are usually carefully chosen to reduce overlap.
But choosing the best segments can be problematic,
especially for large numbers of observations. This problem
is called the swath segment selection problem. Note that
the terms swath and segment are standard terms.

2 Problem Description
The Swath Segment Selection Problem (SSSP) consists of
selecting a subset of data collection opportunities from all
that are available such that the most valuable data are
collected given the limitations of bounded memory and
bounded communication. In practice, all possible segments
(candidate observation times) are usually determined
beforehand. This problem is NP-complete (see Appendix
A).

2.1 Definitions
The swath segment selection problem (SSSP) consists of: a
set of target polygons, a set of swath segments, a set of
downlinks, and a memory capacity. From the segments,
choose a subset that respects the memory capacity and
downlink capacity that maximizes the area of the targets
downlinked.

A shard is a sub-section of a target. We use shards to
represent pieces of the target that can be gathered and
downlinked. They are the natural result of combining the
target and the edges of the segments. The term shard is
taken from the basic appearance of these polygons as
shards of broken glass, especially in larger problem
instances. Figure 4 (left) shows a set of example shards
derived from the segments and the target. We draw dotted
lines around the inside of each shard for easier
identification. For our formulation, we will assume that the
targets are already broken into shards, and will therefore
only refer to the shards. Note that the term shard is not
standard and used solely for our description.

Thus, more formally, given:
• a set of shard polygons H where each h ∈ H is a simple

(but possibly concave) polygon in the Euclidean plane
and the real-valued reward function reward(h) that
represents the reward for collecting the shard (piece of a
target), e.g. {α, β, χ, δ, ε, φ} (see Figure 4, left),

• a set of swath-segments S where each s ∈ S is a convex
quadrilateral in the Euclidean plane (these are not
necessarily parallel due to viewing angle warping the
projection of the instrument on the surface to be
imaged), e.g., {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,} (see
Figure 4, right), the real-valued capacity cost function
cap(s) that represents the memory required to store the
segment, and the function shards(s) that returns the set
of shards that intersect with s.

• a set of downlinks D where each d ∈ D has a real-
valued capacity function cap(d) that represents the
maximum amount of memory that can be communicated
during the downlink, e.g., { D1, D2}.

• a memory limit m that represents the maximum amount
memory that can be stored between downlink
operations.

• a route R that is a permutation of the segments and
downlinks, e.g., 1, 2, 3, 4, 5, 6, D1, 7, 8, 9, 10, 11, D2.

Find a solution route R' that is a subset of R that
maximizes the reward of the collected shards while
respecting memory capacity limits.

The collected shards are the union of shards(s ∈ R').
Respecting memory capacity limits means that the sum of
all segments previous to a given d ∈ D but not previous to
any other d ∈ D must be less than m and less than cap(d).

We presume real-valued functions area(s ∈ S) and
area(h ∈ H) that gives the area of any segment or shard.

α

β χ δ

ε

φ

5

8 9 10

2

3

4

6

7

1

11

Figure 4 Example shards and segments

We continue with two solution examples. Let us consider
that there is a downlink opportunity after between
segments 6 and 7 that can transfer up to 32 units of
memory, and a downlink opportunity after segment 11 that
can transfer the same amount of memory. The total
memory on board is 33 units. Table 1 shows us the area of
each segment. One solution R' is 2, 3, 5, D1, 8, 10, D2 (as
shown in the left of Figure 5). This respects the downlink
limits as segments 2, 3, and 5 (32 total units) can be
handled by the first downlink, and segments 8 and 10 (16
total units) can be handled by the second downlink. The
collected shards are α, β, χ, δ, and φ. The quality of this
solution is the collected target area (the summed area of
the collected shards) – 44 units. The optimal solution,
however, is 2, 4, 5, D1, 8, 9, 10, D2 (as shown in the right
of Figure 5). 2, 4, and 5 (28 total units) handled by the first
downlink, and 8, 9, and 10 (32 total units) handled by the
second. This results in all shards being collected, yet still
respects the downlink limits, for a quality of 56 units.

1

2

3

4

5

6

7

8

9

10

11

segment

4

8

16

12

8

8

4

8

16

8

4

area

α

β

χ

δ

ε

φ

shard

8

8

16

8

12

4

area

Table 1 Example segment and shard areas

2

10
3

8

5

2

1098

5

4

Figure 5 Example solutions

3 Solution Techniques
The state of the art system for solving the SSSP is the
ASTER scheduling algorithm [Muraoka 1998]. This
algorithm partitions the problem into a single day’s worth
of observations, and then solves each day’s observations in
order using a greedy technique (greatest reward), breaking
ties by choosing the earliest segment. There may be many
months in a given problem. This is not an optimal
technique, but it is very fast and allows the users to try
various schedules very quickly. This technique would give
the solution R' = 2, 3, 5, D1, 8, 10, D2, as is illustrated by
Figure 5.

Our goal, however, is to solve problems as optimally as
possible. In fact, our solutions are the first optimal
solutions for these problems. We compare our approach to
a straightforward straw-man integer program formulation
(IP) and to the ASTER algorithm.

3.1 Solution Approach
Our approach searches the space of segment-inclusions,
starting with a solution that includes no segments. We use
a depth first branch and bound search with a heuristic
award estimator. The heuristic award estimator is a
network flow formulation of the problem. The node
ordering heuristic orders selections based on the reward to
capacity cost ratio of a segment, given the segments that
are known to be included or excluded. We refer to this
technique as Flow.

3.2 Network Flow Formulation
The goal is to generate a flow network that represents the
flow of capacity usage through the problem. It is important
to note that this formulation does have some limitations;
most importantly it assumes that the reward for an element
scales with its capacity cost, which might not be the case.
Under those circumstances, the IP formulation is the more
accurate, and probably should be used. The rest of this
subsection describes the construction of the flow network.
Given our previous example, we would first add a node
called src and a node called snk to our graph (see Figure
6.)

src snk

Figure 6 Source and sink nodes for the flow network

We then add a node for each h in H, and add an edge
representing the reward for collecting the shard from src to
the elements node (see Figure 7). Note that capacity cost
and reward must be equivalent for the network flow
formulation to be used.

χ

δ

β

α

ε

φ

src

8

8

16

8

12

4
snk

Figure 7 Shard nodes and reward edges

Then, for each segment, we add a node and add an edge
from each shard that the segment contains with the same
capacity as the reward for the shard (see Figure 8). Note
that in our example, shard χ belongs to segment 3 and
segment 9.

2

3

4

5

8

9

10

χ

δ

β

α

ε

φ

src

8

8

16

8

12

4

8

8

16

16

8

12

4 snk

Figure 8 Segment nodes and shard-intersection edges

Then, for each downlink, we add two nodes. One node
collects all of the segments, and we designate it the in
node. The other sends the collected reward to the sink. So,
for all segments of the leg previous to the downlink, we
add an edge of the same capacity as the segment from each
segment to the in node. We then add an edge of the same
capacity as m between the in node and the second node.

Finally, we add an edge of the downlink capacity from the
second node to snk. Figure 9 shows the final flow network
for our example problem, where the edge-labels represent
the capacity of the edge. Figure 10 shows one possible
solution to the network flow problem, where the edge-
labels represent the flow, and Figure 11 shows what this
solution would imply when translated back into a swath
segment selection problem.

2

3

4

5

8

9

10

χ

δ

β

α

ε

φ

src

8

8

16

8

12

4

8

8

16

16

8

12

4

D1in

D2in

D1

D2

snk

8

16

12

8

8

8

16

33

33

32

32

Figure 9 Flow Network example

2

3

4

5

8

9

10

χ

δ

β

α

ε

φ

src

8

8

16

8

12

4

8

8

8

8

8

12

4

D1in

D2in

D1

D2

snk

8

8

12

4

8

8

8

24

32

32

24

Figure 10 Example network flow solution

2

1098

5

4

3

Figure 11 Implied relaxed swath segment selection

problem solution

Given the network flow relaxation, we are tempted to
simply use this as our heuristic reward estimator for a

branch and bound search, but this would be a mistake. As
soon as a segment is selected during search, the flow
network needs to be adjusted to reflect the lost capacity
due to the segment selection. Often, waste is associated
with this allocation. We have implemented an incremental
flow network capacity update that allows us to change the
capacities upon segment selection and de-selection. The
time complexity of the update is proportional to the total
number of depot’s and the total number of elements
associated with the segment being updated.

Now we have a good heuristic reward estimator that we
can apply to a traditional branch and bound search. We
need a node ordering heuristic that takes a partial solution
and the search options available and orders the options
accordingly, hoping to find good solutions early.
Specifically, we need to take the partial solution R' and
consider which segments s ∈ R, s ∉ R' to include. The
basic approach is to calculate the reward/cost for including
each set not yet included. It is the score for selecting a
segment is the sum of the reward of each of the shards
covered by the segment that have not yet been collected
divided by the capacity cost of the segment. Ties are
broken randomly.
Search ensues thusly:

1. Let b ← 0, i.e., the current best quality bound
2. Let R' ← ∅, i.e., our current best solution
3. Let P ← ∅, i.e., our current partial solution
4. Let reward(P) be the summed reward of the

shards collected in the partial solution P
5. Let OpenList be a priority queue of segments

where priority is based on reward/cost ratio gain
given the partial solution P. pop(OpenList)
returns the highest valued segment while
removing it from OpenList

6. Let OpenList ← S
7. Let h be a real-valued heuristic function that

returns the quality of the network flow relaxation
of the remaining segments in OpenList given the
partial solution P

8. search(R', P, b)
Recursive search routine
 search(R', P, b)

9. if reward(P) + h < b return, i.e., prune
10. if OpenList = ∅, i.e., the bottom of the recursion
11. if reward(P) > b
12. R' ← P
13. b ← reward(P)
14. end if
15. return
16. end if
17. s ← pop(OpenList)
18. if feasible to insert s into P
19. insert s into P
20. search(R', P, b)
21. remove s from P
22. end if
23. search(R', P, b)
24. push s back onto OpenList

4 Results
We report “first solution” time and quality results for
ASTER, BnBFlow, and Integer Programming for many
sizes of random problems. Problems are randomly
generated SSSPs.

Easily computable metrics that appear to reflect on the
scale of the problems and the quality of solutions are the
number of shards in H for each problem and the initial
network flow approximation, thus we report these for the
sizes of problems here. We report results for 100 instances
per size, with a time cutoff of 1 hour. It is important to
note that ASTER required less than 1 second for any
instance.

Figure 12 compares a solution for a typical SSSP solved
using ASTER and BnBFlow. Shading indicates the
solution area.

Figure 13 shows a comparison of BnBFlow (our technique
using branch and bound with a network flow heuristic) and
IP (Integer Programming; the “straw-man” for optimal
solutions). Times are for optimal solutions, except where
time is two hours. Clearly, BnBFlow took less time in
finding the optimal solutions where both found optimal
solutions.

Figure 14 compares BnBFlow, ASTER, and IP for
solution quality. Note that we also include the network
flow value as an upper bound on quality—Relaxation. This
is not so important for those values where optimal values
are found, but is good for comparing values where neither
algorithm found optimal value, e.g., shard counts greater
than 8000.

ASTER dominates in terms of generating a fast solution.
But the time cost of BnBFlow is minimal compared to the
solution quality. Integer programming returns an optimal
solution, but does not outperform BnBFlow, and for
relatively small problems doesn’t terminate. Thus, in terms
of any-time performance, the best strategy appears to be to
first use ASTER followed immediately by BnBFlow. (See
Figure 13 and Figure 14.) Note that the quality of the
BnBFlow solutions continues to track the quality of the
Relaxation, indicating good any-time performance by the
technique.

But, as mentioned earlier, in the case that the reward for a
member of a set is not proportional to the capacity cost of a
set, then IP is the stronger formulation.

Aster Solution area = 819.6 BnBFlow solution area = 1383.29

Figure 12 ASTER and BnBFlow comparison

Solution Time by Problem Size

0

500

1000

1500

2000

2500

3000

3500

4000

22
0.2

9
39

2.4
7

62
3.7

1

98
2.6

84
21

13
87

.2
18

98
.7

31
05

.9
47

78
.2

50
26

.2
71

48
.7

80
94

.5

11
17

0.2

16
22

6.8

Average Number of Shards

A
ve

ra
ge

 T
im

e
in

 S
ec

on
ds

BnBFLow
IP

Figure 13 Comparative time performance

Solution Quality by Problem Size

0

200

400

600

800

1000

1200

1400

1600

1800

2000

22
0.2

9
39

2.4
7

62
3.7

1

98
2.6

84
21

13
87

.2
18

98
.7

31
05

.9
47

78
.2

50
26

.2
71

48
.7

80
94

.5

11
17

0.2

16
22

6.8

Average Number of Shards

A
ve

ra
ge

 R
ew

ar
d

BnBFlow
IP
Aster
Relaxation

Figure 14 Comparative quality performance

5 Related Work
The best previous problem solver for SSSPs is the
ASTER system [Muraoka 1998]. They use greedy
maximization, breaking ties by choosing earliest segments
first, to find a solution. Their algorithm is deterministic
and very fast. Basically, they subdivide the problem into
separate legs, and schedule each leg. As it turns out, a leg
corresponds to a day of operations. For each leg, they
include the segment that has the best reward/cost value,
until no more segments can be accommodated. They
break ties by choosing the earlier segment.

Work on a somewhat similar problem with more degrees
of freedom is reported by [Frank 2000]. In this case, a
route for an aircraft-borne off zenith observatory must be
planned that maintains pointing at celestial targets over an
interval of time. The route is flexible (as opposed to our
fixed routes) and more constraints (maximum fuel usage,
round trip travel, etc.) are considered, but on-board
memory is not a prohibitive factor.

For a good example of a polyhedral solution to a
combinatorial optimization problem having to do with
satellite scheduling (formulated as a pick-up and delivery
problem), see [Ruland 1986].

[Oddi 2003] solves a constrained-memory domain with
fewer types of constraints called the Mars Express
Memory Dumping Problem. The system uses a portfolio
approach to solving the problem as formulated in a
constraint-based framework. The portfolio consists of a
tabu search strategy, a random sampling strategy, and a
greedy strategy.

More general constraint-based frameworks for scheduling
that have been applied to spacecraft operations include
that of [Dungan 2002], [Ghallab 1994], and [Chien 2000].
In each of these, the problem is expressed as a set of
constraints to be satisfied. In the case of [Dungan 2002],
and [Ghallab 1994], the systems search the feasible space
of domains in the constraint space. In the case of [Chien
2000] the system searches both the infeasible and feasible
space of value assignments, using randomized local
search.

6 Acknowledgements
This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not

constitute or imply its endorsement by the United States
Government or the Jet Propulsion Laboratory, California
Institute of Technology.

Appendix A SSSP NP-completeness proof
The SSSP is NP-complete. It is contained by NP in that
we can “guess” a solution (the set of swaths segments to
take) and verify our guess in deterministic polynomial
time. It contains NP in that any instance of a number
partitioning problem can be reduced to an equivalent
instance of the SSSP. (Number partitioning is NP-
complete.) The reduction follows.

As a reminder, number partitioning is, given a set of
positive integers V, partition V into two subsets V1 and V2
that do not intersect, yet contain all elements of V in their
union. The sum of the elements of V1 and V2 must be
equal.

The idea underlying our transformation is to determine V1
by forcing a selection that just exactly fits into V1. Our
transformation is as follows.

Let c =
2

||

1
∑

=

V

i
iV

, i.e. c is the target sum for V1 (and V2).

Let D = {d}, with cap(d) = c.

∀ v∈ V ,add a shard h to H, i.e., reward(h) = Vi.

∀ h ∈ H, add a segment s to S, cap(s) = reward(h),
shards(s)={h}.

Let R = S1, S2, … S|S|, d

Having the downlink, shards and segments, solve the
SSSP. If the SSSP has a value of c, then a perfect
partition exists. For example, if V = {1, 2, 4, 10, 15}, then
 D = {d},
 cap(d) = 16,
 H = {α, β, χ, δ, ε},

reward(α) = 1,
reward(β) = 2,
reward(χ) = 4,
reward(δ) = 10,
reward(ε) = 15

 S has a one-to-one relationship with H, with
 cap(S1) = 1, shards(P1) = α,
 cap(S2) = 2, shards (P2) = β,
 cap (S3) = 4, shards (P3) = χ,
 cap(S4) = 10, shards (S4) = δ,
 cap (S5) = 15, shards (S5) = ε

0,0

y

x

Figure 15 Number partitioning to SSSP example

One solution to this instance is R' = S1, S5, d, as
illustrated in Figure 15 (shaded area is the solution area).

References
[Chien 2000] S. Chien, G. Rabideu, R. Knight, R.
Sherwood, B Engelhardt, D. Mutz, T. Estlin, B. Smith, F.
Fisher, T. Barrett, G. Stebbins, and D. Tran. “Automating
space mission operations using automated planning and
scheduling.” In Proc. SpaceOps, 2000.

[Corman et al] Thomas H. Corman, Charles E. Leiserson,
and Ronald L. Rivest. Introduction to Algorithms.
McGraw-Hill, 1990.

[Dungan 2002] J. Dungan, J. Frank, A. Jonsson, R.
Morris, and D. Smith. “Advances in Planning and
Scheduling of Remote Sensing Instruments for Fleets of
Earth Orbiting Satellites.” Earth Science Technology
Conference, 2002. Pasadena, California.

[Frank 2000] J. Frank. "SOFIA's Choice: Automating the
Scheduling of Airborne Observations" Proceedings of the
2d NASA Workshop on Planning and Scheduling for
Space, March 2000.

[Garey and Johnson 1979] M.R. Garey and D.S. Johnson.
Computers and Intractability. W.H. Freeman and
Company, San Francisco, 1979.

[Ghallab 1994] M. Ghallab and H. Laruelle,
“Representation and control in IxTeT, a temporal
planner”, in Proceedings of the 2nd International
Conference on Artificial Intelligence Planning Systems
(AIPS-94), pp. 61-67, Chicago, IL, (1994). AAAI Press,
Menlo Park.

[Karp 1972] R. M. Karp “Reducibility among
combinatorial problems.” In R. E. Miller and J. W.
Thatcher (eds.) Complexity of Computer Computations,
Plenum Press, New York, 85-103.

[Muraoka 1998] H. Muraoka, R. H. Cohen, T. Ohno, and
N.Doi. “ASTER Observation Scheduling Algorithm.”
SpaceOps 98. 1998, 1-5 June, Tokyo, Japan.

[Oddi 2003] A. Oddi, N. Policella, A. Cesta and G.
Cortellessa. “Generating High Quality Schedules for
Spacecraft Memory Downlink Problems.” Ninth
International Conference on Principles and Practice of
Constraint Programming, 29 September - 3 October,
2003, Kinsale, County Cork, Ireland.

[Papadimitriou and Steiglitz 1982] C. H. Papadimitriou
and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, Englewood Cliffs, NJ,
1982.

[Ruland 1986] K. Ruland. Polyhedral solution to the
pickup and delivery problem. Washington University,
Sever Institute of Systems Science and Mathematics.
http://rodin.wustl.edu/~kevin/dissert/dissert.html
(Dissertation). St. Louis Missouri, 1995.

[Schrijver 1986] A. Schrijver. Theory of Linear and
Integer Programming, Wiley, 1986.

[Zhang 2000] W. Zhang. “Depth-First Branch-and-Bound
versus Local Search: A Case Study.” In Proceedings of
the 17th National Conference on Artificial Intelligence
(AAAI 2000), pages. 930-935, Austin, Texas, 2000.

