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Abstract. We present optimal algorithms for nadir 
(instrument pointing straight down) observation scheduling 
for spacecraft with fixed orbits. We present a comparison 
between an integer program formulation and a branch and 
bound formulation that makes use of a flow network 
heuristic, each capable of solving instances of these 
problems optimally. Neither technique strictly dominates 
the other, and we characterize their respective advantages 
and disadvantages. Note that this problem is NP-complete. 

1 Introduction 
Nadir is the opposite of zenith; it is basically “straight 
down.” Orbiting spacecraft often have immobile imaging 
instruments, and generally such spacecraft maintain a fixed 
orientation with respect to the body that they are orbiting, 
therefore most instruments point straight down, or nearly 
straight down. This is called either nadir or off-nadir 
observing. Figure 1 (right) shows a nadir pointing 
spacecraft orbiting a spherical body and the area that is in 
view of the instrument. (The arrow indicates the direction 
of travel.) 

     
Figure 1  Swath and segments of a nadir pointing 

spacecraft 

In these cases, the instrument gathers data along a fixed 
trajectory called a swath. Figure 1 (center) shows the 
swath that could be imaged by the orbiting spacecraft. In 
practice, the swaths are broken into smaller swaths called 
segments. A segment is the smallest area that can be 
individually imaged. Therefore, a single observation 
equates to a segment. It is important to note that segments 
are both areas that could be imaged and intervals of time 
for the observation. Figure 1 (left) shows some example 
segments. 
 
The purpose of such spacecraft is to image various areas, 
called targets, according to the investigator’s priorities. 
Figure 2 shows an example of a target. 
 

 
Figure 2  A target, without and with segments 

Overlapping segments imply a potential for waste if the 
overlapping area is collected and transmitted more than 
once. Figure 3 shows more segments as a result of a 
subsequent orbit by the spacecraft. (The arrow indicates 
the direction of travel.) Note that the segment in the center 
of the target (shaded area) overlaps one of the previous 
segments. 

 
Figure 3  Another swath and its associated segments, with 

an overlapping segment (shaded area) 

Collecting overlapping segments is a problem because 
there are limits to how many segments we may collect. 
This is usually due to limited on-board memory, and 
limited downlink times and capacities. Not surprisingly, 
segments are usually carefully chosen to reduce overlap. 
But choosing the best segments can be problematic, 
especially for large numbers of observations. This problem 
is called the swath segment selection problem. Note that 
the terms swath and segment are standard terms. 

2 Problem Description 
The Swath Segment Selection Problem (SSSP) consists of 
selecting a subset of data collection opportunities from all 
that are available such that the most valuable data are 
collected given the limitations of bounded memory and 
bounded communication. In practice, all possible segments 
(candidate observation times) are usually determined 
beforehand. This problem is NP-complete (see Appendix 
A). 



2.1 Definitions 
The swath segment selection problem (SSSP) consists of: a 
set of target polygons, a set of swath segments, a set of 
downlinks, and a memory capacity. From the segments, 
choose a subset that respects the memory capacity and 
downlink capacity that maximizes the area of the targets 
downlinked. 
 
A shard is a sub-section of a target. We use shards to 
represent pieces of the target that can be gathered and 
downlinked. They are the natural result of combining the 
target and the edges of the segments. The term shard is 
taken from the basic appearance of these polygons as 
shards of broken glass, especially in larger problem 
instances. Figure 4 (left) shows a set of example shards 
derived from the segments and the target. We draw dotted 
lines around the inside of each shard for easier 
identification. For our formulation, we will assume that the 
targets are already broken into shards, and will therefore 
only refer to the shards. Note that the term shard is not 
standard and used solely for our description. 
 
Thus, more formally, given: 
• a set of shard polygons H where each h ∈ H is a simple 

(but possibly concave) polygon in the Euclidean plane 
and the real-valued reward function reward(h) that 
represents the reward for collecting the shard (piece of a 
target), e.g. {α, β, χ, δ, ε, φ} (see Figure 4, left), 

• a set of swath-segments S where each s ∈ S is a convex 
quadrilateral in the Euclidean plane (these are not 
necessarily parallel due to viewing angle warping the 
projection of the instrument on the surface to be 
imaged), e.g., {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,} (see 
Figure 4, right), the real-valued capacity cost function 
cap(s) that represents the memory required to store the 
segment, and the function shards(s) that returns the set 
of shards that intersect with s.  

• a set of downlinks D where each d ∈ D has a real-
valued capacity function cap(d) that represents the 
maximum amount of memory that can be communicated 
during the downlink, e.g., { D1, D2}. 

• a memory limit m that represents the maximum amount 
memory that can be stored between downlink 
operations. 

• a route R that is a permutation of the segments and 
downlinks, e.g., 1, 2, 3, 4, 5, 6, D1, 7, 8, 9, 10, 11, D2. 

Find a solution route R' that is a subset of R that 
maximizes the reward of the collected shards while 
respecting memory capacity limits.  
 
The collected shards are the union of shards(s ∈ R'). 
Respecting memory capacity limits means that the sum of 
all segments previous to a given d ∈ D but not previous to 
any other d ∈ D must be less than m and less than cap(d). 

 
We presume real-valued functions area(s ∈ S) and 
area(h ∈ H) that gives the area of any segment or shard. 
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Figure 4 Example shards and segments 

We continue with two solution examples. Let us consider 
that there is a downlink opportunity after between 
segments 6 and 7 that can transfer up to 32 units of 
memory, and a downlink opportunity after segment 11 that 
can transfer the same amount of memory. The total 
memory on board is 33 units. Table 1 shows us the area of 
each segment. One solution R' is 2, 3, 5, D1, 8, 10, D2 (as 
shown in the left of Figure 5). This respects the downlink 
limits as segments 2, 3, and 5 (32 total units) can be 
handled by the first downlink, and segments 8 and 10 (16 
total units) can be handled by the second downlink. The 
collected shards are α, β, χ, δ, and φ. The quality of this 
solution is the collected target area (the summed area of 
the collected shards) – 44 units. The optimal solution, 
however, is 2, 4, 5, D1, 8, 9, 10, D2 (as shown in the right 
of Figure 5). 2, 4, and 5 (28 total units) handled by the first 
downlink, and 8, 9, and 10 (32 total units) handled by the 
second. This results in all shards being collected, yet still 
respects the downlink limits, for a quality of 56 units. 
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Table 1  Example segment and shard areas 
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Figure 5  Example solutions 

3 Solution Techniques 
The state of the art system for solving the SSSP is the 
ASTER scheduling algorithm [Muraoka 1998]. This 
algorithm partitions the problem into a single day’s worth 
of observations, and then solves each day’s observations in 
order using a greedy technique (greatest reward), breaking 
ties by choosing the earliest segment. There may be many 
months in a given problem. This is not an optimal 
technique, but it is very fast and allows the users to try 
various schedules very quickly. This technique would give 
the solution R' = 2, 3, 5, D1, 8, 10, D2, as is illustrated by 
Figure 5. 
 
Our goal, however, is to solve problems as optimally as 
possible. In fact, our solutions are the first optimal 
solutions for these problems. We compare our approach to 
a straightforward straw-man integer program formulation 
(IP) and to the ASTER algorithm. 

3.1 Solution Approach  
Our approach searches the space of segment-inclusions, 
starting with a solution that includes no segments. We use 
a depth first branch and bound search with a heuristic 
award estimator. The heuristic award estimator is a 
network flow formulation of the problem. The node 
ordering heuristic orders selections based on the reward to 
capacity cost ratio of a segment, given the segments that 
are known to be included or excluded. We refer to this 
technique as Flow. 

3.2 Network Flow Formulation 
The goal is to generate a flow network that represents the 
flow of capacity usage through the problem. It is important 
to note that this formulation does have some limitations; 
most importantly it assumes that the reward for an element 
scales with its capacity cost, which might not be the case. 
Under those circumstances, the IP formulation is the more 
accurate, and probably should be used. The rest of this 
subsection describes the construction of the flow network. 
Given our previous example, we would first add a node 
called src and a node called snk to our graph (see Figure 
6.) 

 
src snk

 
Figure 6  Source and sink nodes for the flow network 

We then add a node for each h in H, and add an edge 
representing the reward for collecting the shard from src to 
the elements node (see Figure 7). Note that capacity cost 
and reward must be equivalent for the network flow 
formulation to be used. 
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Figure 7  Shard nodes and reward edges 

 
Then, for each segment, we add a node and add an edge 
from each shard that the segment contains with the same 
capacity as the reward for the shard (see Figure 8). Note 
that in our example, shard χ belongs to segment 3 and 
segment 9. 
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Figure 8  Segment nodes and shard-intersection edges 

Then, for each downlink, we add two nodes. One node 
collects all of the segments, and we designate it the in 
node. The other sends the collected reward to the sink. So, 
for all segments of the leg previous to the downlink, we 
add an edge of the same capacity as the segment from each 
segment to the in node. We then add an edge of the same 
capacity as m between the in node and the second node. 



Finally, we add an edge of the downlink capacity from the 
second node to snk. Figure 9 shows the final flow network 
for our example problem, where the edge-labels represent 
the capacity of the edge. Figure 10 shows one possible 
solution to the network flow problem, where the edge-
labels represent the flow, and Figure 11 shows what this 
solution would imply when translated back into a swath 
segment selection problem. 
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Figure 9 Flow Network example 
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Figure 10  Example network flow solution 
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Figure 11  Implied relaxed swath segment selection 

problem solution 

Given the network flow relaxation, we are tempted to 
simply use this as our heuristic reward estimator for a 

branch and bound search, but this would be a mistake. As 
soon as a segment is selected during search, the flow 
network needs to be adjusted to reflect the lost capacity 
due to the segment selection. Often, waste is associated 
with this allocation. We have implemented an incremental 
flow network capacity update that allows us to change the 
capacities upon segment selection and de-selection. The 
time complexity of the update is proportional to the total 
number of depot’s and the total number of elements 
associated with the segment being updated. 
 
Now we have a good heuristic reward estimator that we 
can apply to a traditional branch and bound search. We 
need a node ordering heuristic that takes a partial solution 
and the search options available and orders the options 
accordingly, hoping to find good solutions early. 
Specifically, we need to take the partial solution R' and 
consider which segments s ∈ R, s ∉ R' to include. The 
basic approach is to calculate the reward/cost for including 
each set not yet included. It is the score for selecting a 
segment is the sum of the reward of each of the shards 
covered by the segment that have not yet been collected 
divided by the capacity cost of the segment. Ties are 
broken randomly.  
Search ensues thusly: 

1. Let b ← 0, i.e., the current best quality bound 
2. Let R' ← ∅, i.e., our current best solution 
3. Let P ← ∅, i.e., our current partial solution 
4. Let reward(P) be the summed reward of the 

shards collected in the partial solution P 
5. Let OpenList be a priority queue of segments 

where priority is based on reward/cost ratio gain 
given the partial solution P. pop(OpenList) 
returns the highest valued segment while 
removing it from OpenList 

6. Let OpenList ← S 
7. Let h be a real-valued heuristic function that 

returns the quality of the network flow relaxation 
of the remaining segments in OpenList given the 
partial solution P 

8. search(R', P, b) 
Recursive search routine 
 search(R', P, b) 

9. if reward(P) + h < b return, i.e., prune 
10. if OpenList = ∅, i.e., the bottom of the recursion 
11.      if reward(P) > b 
12.           R' ← P 
13.           b ← reward(P) 
14.      end if 
15.      return 
16. end if     
17. s ← pop(OpenList) 
18. if feasible to insert s into P 
19.      insert s into P 
20.      search(R', P, b) 
21.      remove s from P 
22. end if 
23. search(R', P, b) 
24. push s back onto OpenList 



4 Results 
We report “first solution” time and quality results for 
ASTER, BnBFlow, and Integer Programming for many 
sizes of random problems. Problems are randomly 
generated SSSPs. 
 
Easily computable metrics that appear to reflect on the 
scale of the problems and the quality of solutions are the 
number of shards in H for each problem and the initial 
network flow approximation, thus we report these for the 
sizes of problems here. We report results for 100 instances 
per size, with a time cutoff of 1 hour. It is important to 
note that ASTER required less than 1 second for any 
instance. 
 
Figure 12 compares a solution for a typical SSSP solved 
using ASTER and BnBFlow. Shading indicates the 
solution area. 
 
Figure 13 shows a comparison of BnBFlow (our technique 
using branch and bound with a network flow heuristic) and 
IP (Integer Programming; the “straw-man” for optimal 
solutions). Times are for optimal solutions, except where 
time is two hours. Clearly, BnBFlow took less time in 
finding the optimal solutions where both found optimal 
solutions. 

 
Figure 14 compares BnBFlow, ASTER, and IP for 
solution quality. Note that we also include the network 
flow value as an upper bound on quality—Relaxation. This 
is not so important for those values where optimal values 
are found, but is good for comparing values where neither 
algorithm found optimal value, e.g., shard counts greater 
than 8000. 
 
ASTER dominates in terms of generating a fast solution. 
But the time cost of BnBFlow is minimal compared to the 
solution quality. Integer programming returns an optimal 
solution, but does not outperform BnBFlow, and for 
relatively small problems doesn’t terminate. Thus, in terms 
of any-time performance, the best strategy appears to be to 
first use ASTER followed immediately by BnBFlow. (See 
Figure 13 and Figure 14.) Note that the quality of the 
BnBFlow solutions continues to track the quality of the 
Relaxation, indicating good any-time performance by the 
technique. 
 
But, as mentioned earlier, in the case that the reward for a 
member of a set is not proportional to the capacity cost of a 
set, then IP is the stronger formulation. 
 
 
 

 
 

Aster Solution area = 819.6                                    BnBFlow solution area = 1383.29 
 

 

          

 

 
Figure 12 ASTER and BnBFlow comparison 



Solution Time by Problem Size
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Figure 13 Comparative time performance 

Solution Quality by Problem Size
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Figure 14 Comparative quality performance 



 
 

5 Related Work 
The best previous problem solver for SSSPs is the 
ASTER system [Muraoka 1998]. They use greedy 
maximization, breaking ties by choosing earliest segments 
first, to find a solution. Their algorithm is deterministic 
and very fast. Basically, they subdivide the problem into 
separate legs, and schedule each leg. As it turns out, a leg 
corresponds to a day of operations. For each leg, they 
include the segment that has the best reward/cost value, 
until no more segments can be accommodated. They 
break ties by choosing the earlier segment. 
 
Work on a somewhat similar problem with more degrees 
of freedom is reported by [Frank 2000]. In this case, a 
route for an aircraft-borne off zenith observatory must be 
planned that maintains pointing at celestial targets over an 
interval of time. The route is flexible (as opposed to our 
fixed routes) and more constraints (maximum fuel usage, 
round trip travel, etc.) are considered, but on-board 
memory is not a prohibitive factor. 
 
For a good example of a polyhedral solution to a 
combinatorial optimization problem having to do with 
satellite scheduling (formulated as a pick-up and delivery 
problem), see [Ruland 1986].  
 
[Oddi 2003] solves a constrained-memory domain with 
fewer types of constraints called the Mars Express 
Memory Dumping Problem.  The system uses a portfolio 
approach to solving the problem as formulated in a 
constraint-based framework. The portfolio consists of a 
tabu search strategy, a random sampling strategy, and a 
greedy strategy. 
 
More general constraint-based frameworks for scheduling 
that have been applied to spacecraft operations include 
that of [Dungan 2002], [Ghallab 1994], and [Chien 2000]. 
In each of these, the problem is expressed as a set of 
constraints to be satisfied. In the case of [Dungan 2002], 
and [Ghallab 1994], the systems search the feasible space 
of domains in the constraint space. In the case of [Chien 
2000] the system searches both the infeasible and feasible 
space of value assignments, using randomized local 
search. 
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Appendix A   SSSP NP-completeness proof 
The SSSP is NP-complete. It is contained by NP in that 
we can “guess” a solution (the set of swaths segments to 
take) and verify our guess in deterministic polynomial 
time. It contains NP in that any instance of a number 
partitioning problem can be reduced to an equivalent 
instance of the SSSP. (Number partitioning is NP-
complete.) The reduction follows. 
 
As a reminder, number partitioning is, given a set of 
positive integers V, partition V into two subsets V1 and V2 
that do not intersect, yet contain all elements of V in their 
union. The sum of the elements of V1 and V2 must be 
equal. 
 
The idea underlying our transformation is to determine V1 
by forcing a selection that just exactly fits into V1. Our 
transformation is as follows.  
 

Let c = 
2

||

1
∑

=

V

i
iV

, i.e. c is the target sum for V1 (and V2). 

 
Let  D = {d}, with cap(d) = c. 
 
∀ v∈ V ,add a shard h to H, i.e., reward(h) = Vi. 
 
∀ h ∈ H, add a segment s to S, cap(s) = reward(h), 
shards(s)={h}. 
 
Let R = S1, S2, … S|S|, d 
 
Having the downlink, shards and segments, solve the 
SSSP. If the SSSP has a value of c, then a perfect 
partition exists. For example, if V = {1, 2, 4, 10, 15}, then  
 D = {d},  
  cap(d) = 16,  
 H = {α, β, χ, δ, ε}, 

reward(α) = 1, 
reward(β) = 2, 
reward(χ) = 4, 
reward(δ) = 10, 
reward(ε) = 15 

 S has a one-to-one relationship with H, with 
  cap(S1) = 1, shards(P1) = α, 
  cap(S2) = 2, shards (P2) = β, 
  cap (S3) = 4, shards (P3) = χ, 
  cap(S4) = 10, shards (S4) = δ, 
  cap (S5) = 15, shards (S5) = ε 
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Figure 15 Number partitioning to SSSP example 

One solution to this instance is R' = S1, S5, d, as 
illustrated in Figure 15 (shaded area is the solution area). 
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