

Enhancing NASA's Procedure Representation Language to Support

Planning Operations

Pete Bonasso*, Mark Boddy†, Dave Kortenkamp*

*TRACLabs, Inc. 1012 Hercules, Houston, TX 77058

†Adventium Enterprises, 111 Third Avenue South, Suite 100, Minneapolis, MN 55401

Abstract

Automation and autonomy are key elements in realizing the
vision for space exploration. The NASA Exploration

Technology Development Program (ETDP) has been

developing several core autonomy capabilities, one of which
is called a procedure representation language (PRL). PRL

can be automatically translated into code that can be

executed by NASA-developed autonomous executives.
Another type of automation being developed by ETDP is

automated planning aids. These will be needed to increase

the number of missions that existing levels of flight
personnel are able to handle. But PRL has few constructs to

enable automated planners and schedulers to take advantage

of the procedures resulting from PRL. In a continuing
research effort, we have been developing extensions to PRL

to add planning information – resource, constraints and sub-

procedural information – so as to produce code useable by
automated planning software. From a representative

scenario for the PHALCON and EVA flight disciplines, we

have derived requirements for planning, developed XML
tags for the PRL changes, and translated the changes into

the ANML planning language. This paper describes these

results.

 Motivation & Approach

Automation and autonomy are key elements in realizing
the vision for space exploration. The NASA Exploration
Technology Development Program (ETDP) has been
developing a set of core autonomy capabilities that can
adjust the level of human interaction from fully supervised
to fully autonomous. One of those technologies is the
development of a procedure representation language (PRL)
that both captures the form of traditional procedures and
allows for automatic translation into code that can be
executed by NASA-developed autonomous executives
(Bonasso et al 2003, Verma et all 2006). PRL provides
for access to spacecraft and habitat telemetry, includes
constructs for human centered displays, allows for the full
range of human interaction, and allows for automatic
methods of verification and validation. But most

important, PRL is being developed with a graphical
authoring system that enables non-computer specialists to
write automated procedures (Kortenkamp et al 2007).
 However, PRL is in a relative infancy with regard to
supporting many of the autonomous software components
being developed by NASA, specifically automated
planners and schedulers. PRL has few constructs to enable
automated planners and schedulers to take advantage of the
procedures resulting from PRL. Such planners and
schedulers generate new plans arising from new situations
that often involve multiple concurrent tasks by multiple
humans or human-robot teams. These plans will be
composed of interleaved PRL-generated procedures, the
execution building blocks of mission plans. As a result,
automated planners and schedulers will require knowledge
of the purpose of the PRL procedures, the resources used
and any execution constraints that apply. Moreover, in
order to make flexible plans, planners may only need to
execute portions of existing procedures, so they need to
know how such procedures can be usefully decomposed.
 In support of ETDP, we have been investigating casting
three key types of planning information into PRL, so as to
support the construction of models that can be employed
by modern AI planners. Our approach was to study a
typical scenario involving two representative NASA-JSC
flight disciplines, derive the resource, constraints and sub-
procedural information, develop PRL extensions for that
information and then translate that information (manually
at first and then with translation software) into the newly-
developed planning language ANML (Smith & Cushing
2008). Using the PRL extensions and their AANML
translations, we have demonstrated the ability to generate
plans (manually, for the moment) for the scenario
equivalent to those used by the flight controllers.
 This paper describes the selected scenario, the planning
constructs that we derived, the subsequent changes to the
PRL and examples of the resulting PRL and ANML.

 2

Scenario

When we began this research, the PHALCON (Power,
Heat And Light CONtrol) and EVA (Extra Vehicular
Activity) flight controllers had recently conducted a
mission wherein one of the EVA tasks was the removal
and replacement of a DC-to-DC Converter Unit (DDCU).
That task was actually a “get ahead” task that was added
to the end of a sequence of previously planned EVA
tasks. Due to space limitations, we will cover only the
main EVA tasks for the six-hour scenario:

1) Crew egress the airlock
2) Retrieve CETA (Crew and Equipment Translation

Aid) Light 2
3) Relocate CETA-cart 2 from the P1 truss to the P3

truss
4) Remove and Replace the DDCU 1A on the S0 truss

5) Crew ingress the airlock

 Not only was this scenario sufficiently complex for our
purposes, but also, since the PHALCON had to prepare
and shutdown the old DDCU and power up the new
DDCU, it involved two very different flight disciplines.
The PHALCON represents the typical command center
flight discipline whose activity consists in monitoring
telemetry from a ground console, uplinking commands to
various equipment on the space station, and coordinating
with other flight disciplines, such as attitude control and
life support. While there is an EVA flight controller, the
locus of the EVA work is necessarily with the crew
carrying out the EVA tasks. Thus with this one scenario
we were able to investigate the planning requirements of a
range of flight control activities.

Figure 1 A partial expansion of a plan in our scenario. Starting with an initial configuration of the space station, a number of crew and a

set of goals, the resulting plan consists broadly of the crew (EV1 and EV2) emerging from the airlock (A/L) with the appropriate tools and

spares, carrying out each task and then returning to the airlock. The pictorials show the ISS in both plan-view, with all the locations of

work as well as a zoom-view of the airlock, the location of the egress procedure. The green text to the left is the information one would

find in the Word files of the SODFs for the one-person egress procedure. The Blue text shows the planning information associated with

that procedure derived from our analysis of the flight control procedures. The variable ?tether is in bold to designate it as a resource used
in the egress action.

 3

Deriving Planning Information

Knowledge engineering is key to constructing a planning
model as well as to extracting the critical parts of a
domain ontology. The PHALCON tasks were derived
from systems operations data files (SODFs), word files
that were part of the repository of flight controller
procedures. For the EVA tasks, we needed to go over the
written description of the full six-hour scenario because
the EVA flight controllers develop each EVA activity
essentially from scratch. While the activities of
connecting and disconnecting equipment to and from the
station are fairly routine (though new equipment requires
astronauts to test the procedures in the neutral buoyancy
facility at JSC), each EVA is unique both in the number
and types of tasks and in the starting locations of the
equipment and tools used in the tasks.
 But these written documents have little or no planning
information associated with them, such as activity
duration, purpose, preconditions or constraints. To derive
this planning information, we started with a given EVA or
PHALCON procedure, discussed each step with the
cognizant flight controller, and then rewrote the procedure
to include the information required for planning. We then
used this information to construct a planning model for
the tasks involved. This procedure analysis and
distillation resulted in a structured view of the tasks in our
scenario.
 A hierarchical task net of the EVA tasks with a partial
decomposition is shown in Figure 1. Consider the egress
airlock task. When the two astronauts exit the airlock,
first one goes out and attaches to a safety tether. Then the
second astronaut hands out certain equipment (in this case
the bag to hold the CETA-light to be retrieved) to the first
before exiting himself. The green text in Figure 1 shows
the procedure one would find in any number of previous
EVA procedures for the single person egress. Simply, it
says to open the thermal cover, go out and tether up. The
key choice here is which safety tether to use. The PRL
from the procedure alone would look like the following
(PRL is in XML so we use a pseudo-PRL for illustration):

Step 1
 Manual Instruction: Thermal cover to open
 Manual Instruction: Egress airlock
 Manual Instruction: Hook Safety-tether to D-ring on suit
 Verify Instruction: Verify Safety-tether configuration

 Our derived planning information associated with that
procedure shows that the point of the procedure is to get
an inside human agent located outside the airlock, the
duration is typically 4 minutes and it requires that there be
an unoccupied safety tether outside the airlock. A
bookkeeping side effect is that the thermal cover will be
open when this procedure completes.

Derived Sub-procedures

From our analysis we distilled seven intermediate sub-
procedures and ten leaf-level PHALCON procedures, and
thirteen intermediate and 48 leaf-level EVA sub-
procedures. An example of a partial breakout of sub-
procedures for PHALCONs is shown in Figure 2. When
viewed from a planning perspective, the DDCU shutdown
consists of a group of tasks that can be done many hours

prior to the EVA crew arriving at the DDCU site, and
another group that is executed when the EVA crew is 30
minutes away from arriving at the site. The first group
involves a mix of intermediate and leaf sub-procedures
(shown in light blue) that are executed in conjunction
with other flight disciplines that will be affected by the
shutdown. The actual number of these sub-procedures
used in a plan will depend on the state of the hardware of
the sub-disciplines at the time of the DDCU R&R EVA.
The second set of actions is leaf-level sub-procedures that
include powering down and electrically isolating the
DDCU.
 In several procedures, for example, the S-BAND-swap,

Figure 2 A breakdown of the PHALCON sub-procedures for a

DDCU Shutdown. Light blue text indicate leaf level (non-

decomposable) plan nodes.

Figure 3 A breakout of EVA sub-procedures for removing a
CETA light.

 4

the PHALCON serves as a kind of supervising agent, and
another flight controller, such as the CATO
(Communications and Tracking Operations) flight
controller, serves as the executing agent, who lets the
PHALCON know when the procedure is complete.
 An example of the breakout of sub-procedures for
EVAs is shown in Figure 3. This breakout shows how to
retrieve the CETA light with an agent at the AIRLOCK.
The agent gets the ORU (orbital replacement unit) bag for
the light, travels to the light’s location, removes the light
and stows it in the bag, then takes it back to the airlock.
The interesting aspect of this procedure, and all EVA
procedures that involve moving the agents from place to
place is the limitation of the safety tether. If the target
location is farther away than the 55’ safety tether can
reach, the agent has to travel to the location of another
tether, usually of the 85’ variety, and perform a tether-
swap before moving on. In essence, this action can be
applied at any level of the plan where a translation by free
flying over handrails is required.
 Unlike the multi-agent PHALCON procedures, where
one agent is the coordinator and one is the executor,
mulit-agent EVA procedures involve two agents working
together to accomplish the task. In the case of the
replacing the DDCU, for example, during the installation
of the spare DDCU, agent1 has the old DDCU attached to
his body restraint tether and agent2 holds the spare
DDCU on a stanchion mount cover. The coordinated
exchange is as follows:

1) Agent2 presents the spare DDCU to agent1.
2) Agent1 grabs the spare via a scoop on the spare

and agent2 detaches the spare from the cover
3) Agent1 inserts the spare in position and then

presents the old DDCU to agent2
4) Agent2 attaches the cover on the old DDCU and

then stows it
5) Agent1 bolts the spare in place

 This kind of coordinated effort as well as the fact that
each agent can be doing a different task at the same time,
motivated us to include specific temporal constraints in
our PRL enhancements described in the next section.

PRL Enhancements

The PRL enhancements derived from the procedure
analysis above include those for time, roles, resources and
pre- and postconditions.

Time

Information about time and timing constraints is critical to
planning operations. PRL has very little information
about time encoded in it. Therefore we include these
additional tags as part of our planning extensions:

Duration. PRL has no way of expressing the expected
duration of a procedure. This is critical for planning
purposes. The duration tag will not only take an expected
duration in any number of time units, but will also allow a
range (upper and lower bound) to be expressed. As well,
the duration tag will allow the invocation of a
computation with other local variables, such as when
computing the travel time along a translation path.

Allen interval algebra. While timing constraints
between procedures, steps, and instructions can be
captured using convoluted constructs of pre- and
postconditions, the ability to express intervals would be a
useful syntactic sugar. At the procedure level these would
call out any required timing constraints between
procedures. When used at the step or instruction level
these would guide execution within the procedure. We
are adopting a subset of Allen’s interval algebra (Allen
1983) as tags in the planning extension. This subset
includes: before, meets, overlaps, starts with, during,
finishes with and equal to.

Roles

Roles define the actors who will be performing the
procedures. The actors filling a given role in the current
PRL must be defined in the procedure (as a string). We
have modified the role tag in PRL to be a formal
parameter that can later be resolved with some constant
defined as part of the planning problem statement (i.e., a
particular astronaut). We also extended the role tag to
allow for multiple roles in a procedur,e which was
required in order to represent intermediate-level tasks,
which may decompose into separate but synchronized
procedures, each of which must be executed by a separate
agent.

Resources

Resources are critical to planning operations. PRL says
very little with respect to the resources that a procedure
requires or uses. We propose these additional tags with
respect to resources for our planning extension. PRL does
not keep track internally of resource levels so that is left
to an execution engine or resource management system.
These tags therefore will need to be tied to an external
representation of resources specific to each application.

Uses. This tag denotes that the procedure uses a certain
number of a countable resource, such as tether-points.
This tag includes a resource name and a numeric value
expressing how many of that resource is used. The
assumption is that there needs to be this number of the
resource available before procedure execution. They are
only freed up if a busy tag is employed as well (see next
item). Thus, if a safety tether is used in a procedure,
without a busy designation, it will continue to be
“consumed” until another action, such as un-tethering,
asserts they are not busy as a result of the action.

Busy. This tag denotes that a particular resource is busy
for the duration of the procedure. This resource must be

 5

free at the start of the procedure, but may or may not be
freed up at the end of that procedure.

Consumes. This tag denotes that a procedure uses up a
certain amount of this resource, such as oxygen, during
the execution of the procedure. This tag includes a
resource name and a numeric value expressing how much
of that resource is used. The assumption is that there
needs to be enough of the resource available before
procedure execution and that the resource is decreased by
the numeric value at the end of the procedure. Invoking a
function can also derive the consumption value.

Produces. This tag denotes that a procedure restores a
certain amount of this resource, such as power, during the
execution of the procedure. This tag includes a resource
name and a numeric value expressing how many of that
resource is produced. Invoking a function can also derive
the production value.

Planning preconditions

PRL has preconditions already defined, used as checks
prior to procedure execution. Planning models need a
different form of precondition, used to constrain what
constitutes a legal plan, or to make inferences about the
results of actions with conditional effects. Both forms of
precondition must appear in the extended PRL dialect
described here. The planning preconditions are used in
the planning process in the expected way. The execution
preconditions, also known as "go-conditions" serve
multiple functions. First, they may (but need not) appear
as planning preconditions. Second, they cause the

generation of an explicit "check" action as part of the
generated plan, indicating that at that point in execution

the specified condition should be verified. Third, they are
passed through to the PRL procedures tied to the
primitive actions in the generated plan, so that the
relevant conditions will in fact be checked.

Planning effects

The situation with effects is similar to that of
preconditions. PRL has postconditions, which express the
states in which the system needs to be for procedure
success. Planners need a form of postcondition as well
which because it is different from the PRL precondition
will only appear in the planning data. A subset of the
planning preconditions will be further tagged as the
purpose (or objective) of the procedure. There may be
many postconditions, only a subset of which constitutes
the real objective of the procedure. Therefore, we’ve
added the purpose tag so that the planner knows to add to
the plan an explicit check for that condition and to signal
a plan failure if it is not achieved.

Obtaining Consistent Semantics with ANML

Not all automated planning and scheduling systems use
the same algorithms and representations for plans and not
all of them interface with executives in the same way.
For example, hierarchical task net (HTN) planners search
for actions in a tree of actions that form a task hierarchy
similar to military plans. Interval planners place actions
in a timeline and adjust start and end conditions to meet
deadlines. Some automated planners can send single

tasks to an executive for execution; others post mostly
complete plans. As the plan or task is executing, some

Figure 4 A sample translation of PRL to ANML for the Egress action

 6

planners require a minimum amount of execution status,
others may require more. Such differences in planning
systems will have an impact on the number and types of
additional information that the new PRL must provide.

One way to address the disparity among planning systems
is to provide the PRL enhancements with a rigorous
semantics by showing they can be translated to one or
more of the planning domain modeling languages in
current use by the artificial intelligence planning
community. We have selected the ANML planning
language (Smith & Cushing 2008), because it is based on
strong notions of action and state (so planners like Aspen
(Chien 2003) can use it), uses a variable/value model (so
planners like Europa (Pell 1998) can use it), supports rich
temporal constraints, and provides simple, convenient
idioms for expressing the most common forms of action
conditions, effects, and resource usage. The language
supports both generative and HTN planning models (so
HTN planners like AP (Applegate et al 1983) can use it)
in a uniform framework and has a clear, well-defined
semantics.

PRL to ANML Mapping

Figure 4 shows an example translation of the PRL from

the EVA egress action described in above to an ANML
representation. Each PRL item maps directly from a PRL
tag to a given ANML construct as described in the
previous section. Of particular note, however, is the
handling of the purpose clause. Besides being one of the
effects of the action and thus contributing to the change in
location of the agent in an “over all” clause, an auxiliary
intermediate action is generated that decomposes into this
action and a runtime check for the stated purpose.
 While this example shows how we tie PRL planning
information to procedural information, we also need PRL
files that instead of a procedure show the decomposition
of intermediate planning actions. Figure 5 shows such a
file and its translation into ANML. In this DDCU R&R
task, an intra-vehicular agent, IV1, will operate the
SSRMS, while two EVA crew carry out the task. EV2
must prepare the SSRMS in the task called
SSRMS_Setup. This task is referenced via the PRL Call
procedure tag, which is a reference to another PRL file
that has further task decomposition. In this case, the task
will decompose into fetching and installing an
Articulating Portable Foot Restraint (APFR) on the
SSRMS, ingressing the SSRMS and then having IV1
move the SSRMS to the work site. At the same time,
EV1 will be setting up the worksite by fetching the spare
DDCU and moving it to the work site. Finally, the two

Figure 5 A PRL to ANML translation of an intermediate action

 7

EVs will remove the old DDCU and install the spare. The
temporal ordering in PRL assumes a sequence and we use
the unordered block tag to allow for operations that just
need to finish before the next step in the sequence. In
ANML, a task tag, e.g., c1, allows us to attach
preconditions to tasks.

ANML Modeling Choices

Based on the task analysis and distillations conducted in
Phase1 we have a preliminary modeling approach to be
used for representing EVA plan data in Phase2. We will
extend these model choices in Phase 2 as we 1) determine
the availability of interfaces to ISS configuration files,
and 2) extend our domain to cover additional tasks, crew,
tools and equipment.

Use of Action Decomposition. We have chosen to
employ action decompositions for a number of reasons,
not the least of which is that the flight controllers tend to
think of their planning tasks in a hierarchical way.
Additionally, it allows us to construct part of the plan
using compiled mission planning knowledge rather than
explicitly modeling domain interactions. We also realize
search efficiency, since it seems in the PHALCON and
EVA domains, there are only a small number of legal
ways to carry out tasks. Finally, the hierarchy allows us
to scope for reserving crew/equipment. For example, in
DDCU-EVA example above, several different resources
are reserved at a level above where they are actually
employed, so as to ensure that the operation does not start
if they are not available. This can be done in a flat
representation, but not as easily, especially not for
execution, since one wants to ensure that the given item
remains reserved.

Agent Assignment Restriction. ISS procedures to date
only assign one crew member per procedure, including in
situations where the overall plan requires coordinated
action by multiple agents. We handle this restriction by
using intermediate tasks with multiple, temporally
constrained leaf actions, one for each agent needed.

Types. We use types to “dispatch" planning actions, in
the sense that whether a given action can be used with a
given set of variable bindings (unifications, co-
designations, etc.) can be determined by type. We can do
this without getting into the difficulties of type inference,
by enforcing the closed-world assumption, i.e., all objects
are known and can be enumerated, and that any type
differences on which actions are tested for applicability
partition the set of all objects. For example, the
equipment type partitions all entities in the domain model
into equipment and not-equipment. The INSTALL
DDCU action partitions carriers into ceta cart, SSRMS,
and not-a-carrier. Our subtypes are as follows:

Things.

• object – enumerated type.

• equipment – a subset of object.

• ceta-cart – a subset of equipment.

• scoop – a subset of equipment.

• pgt – a subset of equipment.

• brt – a subset of equipment.

• tfr – a subset of equipment.

• power-jumper – a subset of equipment.

• med-oru-bag – a subset of equipment.

• rover – a subset of equipment.

• pgt-socket – a subset of equipment.

• ratchet – a subset of equipment.

• ects-loop – a subset of equipment.

• pgt+tm – a subset of equipment.

• ORU-tether – a subset of equipment.

• stanchion-mount-cover – a subset of equipment.

• ISS-EVA-handrail – a subset of equipment.

• symbol – enumerated type.

People.

• people – subset of object

• crew – subset of people.

• fc – (flight-controller), subset of people.

Places.

• location – a vector of three symbols: < segment, bay,
face >

What a location is may be context-dependent. For a rover
it might be waypoints. Even on ISS, for crew moving
around on EVA, rails should count at least as transitions
between locations, if not locations themselves.

• path – an ordered sequence of locations.

Functions.

• label(equipment) ! symbol

• installed-on(equipment) ! equipment – domain is
installed equipment, range is what it’s installed on.
Making this a function rather than a predicate is cleaner in
a lot of ways, but requires a special value for objects that
aren’t installed on anything, which is easier to represent
with a predicate.

• on(crew) ! equipment – like installed-on, but let’s not
use the same function for equipment and people.

• path-duration(crew location location symbol) !
duration – how long will it take a given agent (currently
crew-only), to move from one location to another, using a
means denoted by a symbol? The model should
eventually include the possibility of a non-human agent.

• plan-path(location location) ! path

• O2-needed(crew path symbol) ! number – how much
(excess?) oxygen is consumed by crew in traversing path
using the means denoted by a symbol?

• O2-level(crew) ! number

• fuel-level(equipment) ! number

 8

• work-site(equipment-site) ! location

• location(movable-object) ! location.

• choose-ceta-cart() ! ceta-cart

• get-current-operator(SSRMS) ! person

• get-current-wif-adaptor(SSRMS) ! wif-adaptor

• get-current-APFR(SSRMS) ! apfr

• state(object) ! symbol

• compute-movement-
duration(SSRMS,location,location) ! number

• get-current-adco() ! person

• get-current-mcs() ! person

• get-current-ctg() ! person

• get-current-cato() ! person

• get-current-odin() ! person

• get-etcs-loop(ddcu) ! etcs-loop

• power-string(equipment) ! symbol

• comms-state(equipment) ! symbol

Predicates.

• installed(equipment-site, equipment)

• use(equipment) – not quite a unary resource. More like
a critical section (think “busy”).

• use(location) – as above.

• use(crew) – as above.

• has(object, object) One object is connected to another
(either could be a person)

• tethered(equipment, equipment) – one piece of
equipment is fastened to another.

• tethered(equipment, crew) – a piece of equipment is
fastened to a crew member. Also, tethered(E,C) implies
has(C,E)

• tool-match(equipment, equipment) – match a
(particular type of) tool to another piece of equipment. In
the absence of a real object model, this is done by
enumeration.

• training(person, symbol)

• connected(object, object) – generalization of tethered.

• empty(equipment)

Special Values and Constants.

• Undefined -- part of ANML. Permits no inference to be
drawn, positive or negative. There is a type issue
involving this and other constants. We plan to use a
separate constant for each type, e.g., undefined-boolean,
undefined-equipment, etc.

• *Nothing* -- Special value that matches no other
member of the class, such as what equipment is at the site
of a DDCU that has been removed.

By the end of our first year of research we had modeled
all of the scenario tasks in ANML and PRL to ensure that
our modeling approach was complete.

ANML as a Target Language

Our choice of ANML as a target language for this project
was made after consideration of a wide range of
alternatives, and presented both advantages and
disadvantages. As discussed above, in this domain,
having the ability to express both HTN and classical
planning information in a uniform semantics is very
useful. Additional constructs available in ANML that
have proved beneficial include a very flexible model for
specifying temporal constraints and parameter co-
designation among subactions, and an explicit resource
model.
 As also previously mentioned, ANML is a relatively
new language, and as such is still under development.
The downside to this include the fact that there is
currently no planner that accepts ANML as input, though
that lack is currently being addressed on several fronts,
including the ongoing development of ANML translators
to PDDL and NDDL. Another, less significant
implication of using a language under development is that
the syntax has changed under us. The syntax used here is
that given in (Smith & Cushing 2008). Readers of more
recent papers describing ANML will have encountered a
different syntax, for which we are currently updating our
models.
 However, there are also benefits to being early
adopters. As the developers of one of the first significant
planning models written in ANML, we have been in a
position to push on what ANML can and cannot do,
which has led to some small changes in both syntax and
semantics, in ways that make the modelling task
somewhat easier, for example, in defining the semantics
of execution-time choices versus parameters that are
determined when the plan is constructed.

Summary

Our key findings with regard to the potential of capturing
and storing planning information online are as follows:
• Through analysis of complex PHALCON and EVA
procedures we determined that in fact, flight controllers
plan with actions that are actually sub-procedures of the
formal procedures maintained online.
• After identifying the specific sub-procedures we were
able to distill from them the key information with regard
to time, resources and pre- and postconditions that could
potentially be used by automated planning software
• Further, we determined that such planning information
could be given consistent semantics by developing a
mapping from the PRL to a formal planning language,
namely ANML.
 Based on the above we hypothesize that planning
software being developed under NASA funding should be
able to use the new PRL files via an ANML translation to
provide automated aids for flight controller mission
planning. Some planners use the New Domain
Description Language (NDDL) (http://react.cs.uni-

 9

sb.de/mbt2007/slides/raimondi.pdf). A partial ANML to
NDDL translator for the Automation for Operations
(A4O) program has already been implemented. Many
planners use the Planning Domain Description Language
(PDDL) (Fox and Long 2003). An ANML to PDDL
translator is now under development. These efforts will
greatly extend the number of planners that can be applied
to domain models captured in ANML.
 Our current efforts are focused on developing an
interactive planning tool that uses the PRL planning
information to automatically generate plans as good as the
ones previously developed for the scenario described in
this paper.

Acknowledgements

We are indebted to NASA-JSC flight controllers Wayne
Wedlake and Dave Crook for providing extensive domain
expertise for this work. This effort is funded through
SBIR grant NNX09CA17C, sponsored by Dr Jeremy
Frank of NASA's Ames Research Center.

References

Allen, J.F., Maintaining Knowledge About Temporal
Intervals. Communications of the ACM, 1983. 26(11): p.
832-843.

Applegate, C., C. Elsaesser, and J. Sanborn, An
Architecture for Adversarial Planning. IEEE Transactions

on Systems, Man, and Cybernetics, 1990. 20(1): p. 186-
194.

Bonasso, R.P., D. Kortenkamp, and C. Thronesbery,
Intelligent Control of a Water Recovery System: Three
Years in the Trenches, in AI Magazine. 2003. p. 19-44.

Chien, S., et al. Autonomous Science on the Earth
Observer One Mission. In i-SAIRAS 2003. 2003. Nara,
Japan.

Kortenkamp, D., R.P. Bonasso, and D. Schreckenghost.
Developing and Executing Goal-Based, Adjustably
Autonomous Procedures, in AIAA InfoTech@Aerospace
Conference. 2007.

Fox, M. and D. Long, PDDL2.1: An Extension to PDDL
for Expressing Temporal Planning Domains. Journal of
Artificial Intelligence Research, 2003. 20: p. 61-124.

Pell, B., et al., An Autonomous Spacecraft Agent
Prototype. Autonomous Robotics, 1998. Vol. 5

V. Verma, A. Jónsson, C. Pasareanu, and M. Iatauro,
Universal Executive and PLEXIL: Engine and Language
for Robust Spacecraft Control and Operations, American
Institute of Aeronautics and Astronautics Space 2006
Conference.

Smith, D.E. and W. Cushing, The ANML Language, in
iSAIRAS. 2008: Los Angeles, CA.

