
Tractable Goal Selection with Oversubscribed Resources

Gregg Rabideau, Steve Chien, David McLaren

Jet Propulsion Laboratory

California Institute of Technology

4800 Oak Grove Dr, Pasadena, CA 91109

firstname.lastname@jpl.nasa.gov

Abstract

We describe an efficient, online goal selection algorithm
and its use for selecting goals at runtime. Our focus is on the
re-planning that must be performed in a timely manner on
the embedded system where computational resources are
limited. In particular, our algorithm generates near optimal
solutions to problems with fully specified goal requests that
oversubscribe available resources but have no temporal
flexibility. By using a fast, incremental algorithm, goal
selection can be postponed in a “just-in-time” fashion
allowing requests to be changed or added at the last minute.
This enables shorter response cycles and greater autonomy
for the system under control.

Introduction

Consider the following properties of many autonomous
systems:
• embedded computing resources are typically scarce
• response times can be critical

In other words, our algorithms must be fast. In particular,
for time-critical problems, we must be able to make
guarantees on responsiveness. Also consider the following:
• the time horizon is bounded (i.e. the autonomous

system does not need to be indefinitely autonomous)
• some parts of the planning problem (ones that can

be well predicted) can be solved in advance
This suggests that, in many cases, we are not trying to
solve the general “planning problem”. For example, active
spacecraft rarely operate for more than two weeks without
ground communication. Therefore, onboard plans do not
need to cover a large time frame. Also, parts of the
planning problem can be solved well in advance (e.g.
spacecraft orbit predictions) and pre-compiled solutions
can be utilized by the onboard planner. Limiting the scope
of the problem gives us some hope at finding efficient
solutions. Our work focuses on a restricted planning
problem with a tractable solution that has a guaranteed
worst-case complexity.
 Specifically, we address the problem of providing high-
level, goal-based autonomy for computationally limited
robotic systems. We enable on-board and remote goal

Copyright © 2008, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

triggering through the use of an embedded, dynamic goal
set that can oversubscribe resources. From the set of
conflicting goals, a subset must be selected that maximizes
a given quality metric.
 Our approach solves the following problem:
• Goals have fixed start times and durations (making

this a goal selection problem rather than an NP-hard
scheduling problem).

• Goals can have flexible sub-activities for execution but
the selection of alternative branches or timings cannot
require search (e.g. we may wait for an event, retry a
fixed number of times, or branch based on a condition
but no backtracking occurs). This can be viewed as
backtrack-free hierarchical task network planning.

• Goals can conflict by exceeding the limits of shared
resources (e.g. oversubscription) with selection based
on a strict priority ordering (i.e. a goal can never be
pre-empted by any number of lower priority goals).

• Goals can be added, removed, or updated at any time,
and the “best” goals will be selected for execution.

 While these algorithms are general, we have
implemented them as prototype extensions to the Virtual
Machine Language (VML) [Grasso 2008] execution
system. VML is advanced, multi-mission flight and ground
software developed for NASA flown on a number of past
and current missions including: The Spitzer Space
Telescope, Mars Odyssey, Stardust, Genesis, Mars
Reconnaissance Orbiter, Phoenix, and Dawn. The
prototype goal and resource concepts are added to the
language for both planning and execution purposes.
Specifically, the Goal Manager (GM) maintains the set of
requested goals, their priorities, and their interactions (i.e.
shared resource constraints). When a goal is submitted, the
GM quickly analyses the goal to determine whether or not
it should be selected for execution. When the current time
approaches the scheduled start time of a selected goal, the
goal is committed and satisfied by spawning the
corresponding VML sequences.
 Our work is motivated by experience from space
mission operations, such as autonomous operations of the
Earth Observing One satellite [GSFC] and operations
conducted by the Autonomous Sciencecraft (ASE) flight
and ground software [Chien et al. 2005]. In ASE, events
are detected on-board which trigger changes in goal
requests. For example, images taken of the Earth can be
processed on-board to detect interesting events such as

volcanic eruptions. These detections can then trigger
changes to upcoming goals such as increasing the priority
of requests for images of the same volcano. On the ground,
sensorweb processing may detect similar events and
upload new goal requests in a short time frame.
 We demonstrate our prototype implementation on these
scenarios. In the Goal Manager (GM), goal selection is
postponed until the latest possible time, allowing goals to
be added, removed or changed just prior to execution. This
dynamic goal set enables additional autonomy capabilities
such as on-board and ground-based event triggering,
similar to ASE. The GM, however, does not require a full
planner and has theoretical guarantees on worst-case
response time. In these scenarios, start times of goals are
assumed to be fixed. This is a reasonable assumption due
to the nature of a spacecraft in orbit – opportunities for
communications and science observations occur at specific
(repeating) times. Also, we have found that many
spacecraft resource constraints can be abstracted to the
goal level. For example, the EO-1 spacecraft can point
science instruments to only one target at a time. Thus, for
target locations in close proximity, we must choose one of
possibly many observation goals. We take advantage of
these assumptions to develop efficient algorithms that
provide advanced onboard autonomy capabilities.
 Finally, we build on previous work [Rabideau and
Chien, 2008] by providing an empirical analysis that
supports the theoretical results. In these experiments, the
GM runs in polynomial time, generating schedules that
rank near optimal.

Resource Constraints

The primary driver for goal selection comes from the
constraints on resources shared by the goals. We define a
resource constraint as a value and a bound on that value
over a period of time. Resource constraints can exist as
part of goals, activities, or sequences. A combination of
effects of constraints on the same resource conceptually
comprises a timeline (although we do not maintain an
explicit representation of a timeline). Resource constraints
have the following attributes:

ResourceConstraint

{

 IdType id;

 ResourceType type;

 TimeType start;

 TimeType end;

 ValueType value;

 ValueType initial;

 ValueType min;

 ValueType max;

}

The id uniquely identifies the affected resource for the
purpose of analyzing the interaction with other resource
constraints. The type specifies the type of effect that the

constraint has on the resource. The time range specifies the
temporal scope of the constraint. The last four values
specify, respectively: the constraint value, the initial value
of the resource in the absence of all constraints, the
minimum valid resource value, and the maximum valid
resource value.
 There are four fundamental types of resource
constraints: Producer, Consumer, Assigner,

and Requirement. A Producer adds the constraint
value to the resource at the start of the time range and
subtracts it at the end (where the end may be infinity). A
Consumer subtracts at the start and adds at the end. An
Assigner simply assigns the constraint value at a
specific time point. A Requirement specifies only a
constraint on the value of the resource over a period of
time (i.e. it has no effect on the resource value).
 A resource constraint can be defined for any type of
value as long as the following set of operators is available:
+, -, =, <, and ==. The arithmetic operators allow us to
compute resource values from a set of interacting resource
constraints, and the boolean operators are for testing the
validity of computed resource values. For example, for a
single producer, we would add the produced value to the
initial value and compare the result to the maximum value.
If the constraint check fails, the resource value is
considered invalid (i.e. has conflicting constraints).
 We have demonstrated four common types of resource
values: int, double, string, set<string>.
The definitions of the operators are intuitive for simple
types such as integers, doubles, and strings. For sets, we
define them as follows: addition (+) is set union,
subtraction (-) is set subtraction, assignment (=) replaces
all values in one set with values from another, less (<) is a
lexicographical ordering on two sets, and equals (==)
returns true if each element in one set is equal to exactly
one element in the other set.
 For set resources, we introduce another operator for set
containment. This allows us to specify a constraint that
requires the computed resource value (which is a set of
values) to contain the constraint value.

Goals

We define a goal to represent the request for execution of
an activity or set of activities. Goals have the following
attributes:

Goal

{

 IdType id;

 PriorityType priority;

 TimeType start;

 TimeType end;

 set<ResourceConstraint> constraints;

}

The id is used to uniquely identify the goal. The goal
priority is used to rank goals. The start and end

values specify the expected temporal scope of the goal.
Due to system uncertainties at the time the goal is
requested, the start and end times contain only the
requested or expected values. Goals also maintain a set of
resource constraints that must hold for the goal to execute.
Similar to the start and end times, resource constraints
contain the requested or expected values for the resources.
 The goal attributes are used for selecting and dispatching
goals for execution. In addition, a goal must specify what
is to be done when it is dispatched. Typically, this involves
spawning a sequence to start execution at a given time.
Essentially, we define goals as a summary of the intent and
effects of one or more sequences.

Example: Onboard File System

When defining goals and resources, we worked to find a
balance between a representation that is general and
powerful, but also has the details required for efficient
resource analysis and goal selection. We show the power
of the representation with an example: managing an
onboard file system. This example is of particular interest
to us because many spacecraft (including EO-1) must deal
with data products stored on an onboard file system.
Typically, science activities write data to a file while
engineering procedures read and downlink files, deleting
them when appropriate to free up space.
 We can model this file system with five goals and four
resources. The goals represent file system requests: create,
delete, read, write, and format. The resources shared by
these goals are: a set of file handles (100), limited disk
space (1024K), a current directory listing, and finally an
exclusive use of the file system by certain operations.
 Each goal instance creates and adds the resource
constraints for that goal type. Creating a file consumes one
of the 100 available file handles, and produces a file with
the specified unique ID. Deleting a file produces a file
handle while consuming the file with the specified unique
ID. It also produces disk space equal to the size of the file.
Writing to a file consumes available memory equal to the
size of the data written. Both writing and reading require
that the unique file ID is a member of the set of available
file IDs, and that no other reads or writes occur at the same
time.
 Each goal type also defines the required method for
executing the goal. For example, creating a file would call
fopen() on a Unix operating system.

Goal Selection Algorithm

We present an algorithm for selecting goals with
oversubscribed resources. The pseudo-code for the core of
the algorithm (updating the set of selected goals) is shown
in Figure 1. The algorithm can be categorized as a repair-
based approach with no search – the constraints and
priorities define exactly which goals to choose. We focus
on the re-selection that is required when the requested goal

set changes, either by adding a new goal or removing an
existing goal1. While making selections, goal parameter
values (e.g. start times) are assumed to be fixed. The result
is a set of non-conflicting “best” goals that have been
selected for execution. After selections are made,
conflicting goals are retained for additional consideration
in the event of future changes to the goal set. In this
implementation, conflicts are defined by shared resource
interactions, and choices are made among conflicting goals
using a strict priority rule. Only the highest priority goals
are selected, with ties broken by earliest request time (i.e.
first-come-first-served).
 The Goal Manager (GM) maintains data structures that
enable efficient goal selection and dispatch. One set of
goals is sorted by priority so that the algorithm can
efficiently perform goal selection. The goals are also sorted
by start time so that it can quickly find the next selected
goal to dispatch for execution. For each goal, the GM
maintains a set of interacting goals (i.e. goals that share a
resource) to assist resource reasoning. According to the
priority rule, a goal will be selected and dispatched for
execution if and only if it does not conflict with a higher
priority goal, which does not conflict with an even higher
priority goal, etc. For example, in Figure 2 we assume that
overlapping goals conflict. Goal C is highest priority and is
selected. Goal B is not selected because it conflicts with C.
Because B is not selected, goal A is selected even though it
is lower-priority than B. Therefore, goals A and C are the

1Changing parameters of a goal (e.g. start time, priority)

can be implemented by removing the goal and adding it

back with new values.

01 void updateSelectedGoals(g)

02 for each Goal gs in selectedGoals

03 with priority <= priority of g

04 remove gs from selectedGoals

05 for each Goal gi in allGoals

06 with priority <= priority of g

07 in decreasing priority order

08 if wasStarted(gi)

09 or isBestGoal(gi, selectedGoals)

10 add gi to selectedGoals

11

12 bool isBestGoal(g, selectedGoals)

13 for each interacting Goal gi of g

14 if gi is in selectedGoals

15 and gi conflicts with g

16 return false

17 return true

Figure 1: Incrementally updating the set of selected goals

Figure 2: Goals A and C are selected

“best” goals.
 Adding and removing goals involves three steps:
updating the sets of interacting goals, updating the sorted
goal sets, and updating the selected goal set. This last step
is the most interesting and is shown in pseudo-code in
Figure 1. In this step, we first de-conflict the schedule by
removing all goals with lower priority than the goal being
added or removed (lines 2-4). Higher priority goals are
unaffected and can remain selected. Next, we re-evaluate
each of the lower-priority goals (lines 5-9). Evaluating a
goal g involves adding the resource effects of g to the
effects of all selected (i.e. higher-priority) goals that
interact with g (lines 13-18). If the combined resource
effects are invalid, then g will not be selected (lines 19-
20). Finally, dispatching goals within a given time range
simply involves finding selected goals that fall in that
range. The dispatch function is intended to be called
periodically with a small time range covering the near
future.
 It is important to note that the low-priority conflicting
goals are retained so that changes to the goal set can be
made at any time (goals added, removed, or updated), and
goals will be dispatched from the latest set of selected
goals. Once a goal has started executing (determined by the
“wasStarted” function on line 8) it will thereafter be
selected regardless of priority. A goal expires if it is
unselected and falls in the past, or if it is selected and all of
its interacting goals completely fall in the past. Expired
goals are periodically removed from the goal sets. As a
final note, the definition of “interacting” and “conflicting”
can be arbitrary boolean operators. In this work, resources
define which goals interact and resource calculations are
performed to determine conflicts.

Algorithm Analysis

We now describe the run-time computational complexity
of our goal selection algorithms. Selecting the best goals
and updating the cache (lines 21-39) is:

 O(MlgM + N(lgM + Xi(lgM + Si)))

where N is the number of all goals, M is the number of
selected goals, Xi is the number of interacting goals for
goal i, and Si is the number of resources shared by goal i.
Goals are stored in tree data structures with a log-based
lookup. The first term comes from removing lower-priority
goals from the selected goals (lines 22-24). The longer
second term comes from re-selecting the best goals (lines
25-39).
 Assuming worst case, where each goal interacts with
every other goal (Xi == N for all i), each goal uses all
resources (Si == R for all i), and all goals are selected
(M == N):

 O(NlgN + N(lgN + N(lgN + R)))

Or:

 O(NlgN + NlgN + N2lgN + N2R)

Since N2lgN dominates NlgN:

 O(N2lgN + N2R)

And assuming that R is constant (defined by the domain),
we have:

 O(N2lgN)

This is a theoretical worst case complexity. In practice,
each goal will typically use a subset of the resources, and
many of the goals will not be selected for execution. More
importantly, goals interact with a small number of other
goals (Xi is constant) due to the temporal scope of the
resource constraints (i.e. effects on resources have limited
extent). This gives us:

 !(NlgN)

Our empirical analysis (discussed in a later section)
supports this average case bound.
 Once we have cached the best goals, checking a specific
goal is a simple lookup in the set. Dispatching a selected
goal for execution is:

 O(lgN + lgM)

The first term is from the lookup for goals due for
execution which we assume to be small (typically one).
The second term is from the lookup in the set of selected
goals. Assuming worst case where all goals are selected (M
== N), we get:

 O(lgN)

Finally, we take a look at the expected quality of the output
of the algorithm. Our primary claim is that the algorithm is
optimal for the given priority rule. In other words, a goal
with priority P will always be selected in place of any
number of goals with priority less than P. Intuitively, this
follows from the decreasing priority order in which goals
are selected. Now consider scoring the selected goal set
with a weighted sum using weights sufficiently large at
priority P to outweigh all goals at priority less than P. Our
goal selection algorithm will maximize this score, but only
when the requested goals are assigned unique priorities. If
goal priorities are not unique, the overall weighted sum of
priorities depends on the order in which we select goals
with equal priority. In our implementation, the goal
submitted first is selected first. This goal, however, may
use more resources than the other goals with the same
priority, accommodating fewer goals at lower priorities,
and producing an overall lower score. Our initial empirical
analysis, however, shows that our solutions do not fall far
from the maximum score.

Algorithm Assumptions, Limitations, and

Requirements

We make several assumptions to keep the goal selection
algorithm simple and efficient.
• We do not solve the general planning problem. We

only decide which high level goals should be selected.
We do not search for alternate methods of achieving
the high level goals. While less powerful, this tends to
be more accepted by spacecraft engineers who prefer
consistency and predictability. The tasks of goal
decomposition and command execution are left to an
executive or sequencing engine (e.g. VML). These
systems can be very expressive and allow goals to be
expanded in a complex, context-dependent manner.

• We do not solve the general scheduling problem. We
only decide on which subset of requested goals and
activities to add to the plan, not on when they should
be scheduled. Goals and activities must be submitted
with predetermined start times. As an example, for an
orbiting spacecraft with repeating science
opportunities, this restricted form of planning can
select which observation to perform on a specific
orbit, but can not select alternate overflights for a
particular observation.

• We are only reasoning at the goal level. Resource
reasoning is performed on goal resources which are
assumed to be abstractions of the expected use of
resources by the lower-level commands. We found
this abstraction useful for many of the EO-1 resource
constraints

• We also assume that goals are ranked using the strict
priority rule. In other words, any number of low-
priority goals can be preempted by a high-priority
goal. When goals have equal priority, the goal that was
requested first will take precedence (i.e. first-come-
first-served). EO-1 scientists were most comfortable
with this simple priority scheme.

It is worth pointing out that even with these restrictive
assumptions, the goal replacement capabilities we are
offering far exceed what is available on typical spacecraft
today, whether implemented in general commanding
capabilities or custom flight software.
 To benefit from these capabilities, however, users must
encode some additional knowledge when defining goals
compared to defining activities or sequences strictly for the
purpose of execution. First, users must provide some form
of selection criteria. In our case, this is a priority for the
goal. The user must also specify a summary of the
expected resource usage for each goal. Where resource use
at runtime may be intricate or even implicit, goal resources
force the user to define resource use in an explicit and
predictable way. Finally, users must provide an expected
start and end time for the activity or sequence requested by
the goal. This is necessary for predicting the temporal
scope of the resource use.

Planning and Execution with VML

Designed as a multi-mission application, VML is one of
the most advanced onboard execution systems in
widespread use for NASA missions [Grasso 2004].
Missions currently using VML include Odyssey, Spitzer,
Dawn, MRO, and Phoenix. On these missions, VML has
been used for a wide range of sequencing functions
including: launch routines, orbit insertion, entry-descent-
and-landing, science acquisition, and fault response.
 We have implemented goals, resources, and the goal
selection algorithm as prototype extensions to VML. A
new thread/task, the Goal Manager (GM), implements the
goal selection algorithm and invokes the dispatch function
periodically. Finally, new user interface functions are
added to allow goals to be added, removed, or changed.
 At runtime, we ultimately need a set of executable
commands that achieve the selected goals. Using existing
VML 2.0 sequencing capabilities, we define a general
pattern to the language to enable goal achievement with
flexible and robust execution. Specifically, the language
pattern consists of defining hierarchies, preconditions and
effects familiar to the AI planning community. To
implement a hierarchy, a VML sequence for a goal or
activity can spawn other VML sequences for sub-activities,
eventually breaking down to executable commands. When
appropriate, sequence execution can be delayed to wait for
the preconditions to be met, allowing more flexible
execution. Finally, effects of the commands are monitored
and appropriate responses can be defined to recover from
failures and provide more robust execution.

Autonomous Spacecraft Operations

Our work was motivated by scenarios taken from the
Autonomous Sciencecraft Experiment (ASE) used in
operating the Earth-Observing 1 (EO-1) satellite. In these
scenarios, the science team starts by providing a set of data
collect requests that oversubscribe spacecraft resources. A
baseline set of collects and alternates are selected and
uplinked. During execution, on-board science processing
may generate new goal requests [Chien et al., April 2005].
Ground-based sensorweb processing may do the same
using uplinked commands [Chien et al., June 2005]. A
prototype Goal Manager was implemented and tested on
these scenarios. The EO-1 model consists of VML
sequences that implement activities for operating EO-1,
including collecting and downlinking science data. The
system was run on a typical EO-1 collect-downlink cycle
where on-board resources (e.g. science data storage) are
oversubscribed. At runtime, a simple spacecraft simulator
was used to mimic command behavior, including effects
on resources. Goal request changes were simulated using a
time-tagged file containing the change specifications.

 We also studied
planning and
sequencing problems
from the Mars
Reconnaissance
Orbiter (MRO) and
the Mars Exploration
Rover (MER)
missions. From these,
we identified several
scenarios that might
benefit from this
technology. For
example, in data relay
scenarios an anomaly
can either trigger a
request for an
emergency relay
communication goal,
or create a relay
opportunity from a
failed goal that
releases resources. In
addition, goal
selection could be
used to maximize the
use of onboard data
storage. Rejected science goals, which at first seem to
oversubscribe this highly-contended resource, could be
selected at runtime if more data storage is available than
originally expected.

Empirical Analysis

The motivation for our experiments is to:
• Quantitatively present the difference between our

solutions and optimal solutions.
• Quantitatively present the difference between our

solutions and solutions generated by a greedy,
forward dispatch algorithm.

• Empirically show that the run-time of the algorithm
matches the theoretical analysis.

Experiments were run on two problem sets:
• Randomly generated problems for randomly

generated domains
• Randomly generated problems for the EO-1 domain

For the randomly generated domains, we identified several
domain parameters that affect performance, including:
number of goal types (G), number of resource types (R),
and number of resources per goal (RPG). These parameters
impact the level of interaction between goals. We expect
higher levels of interaction to result in slower runtimes, but
a higher potential for quality improvements when
compared to greedy solutions.
 When generating random problem sets for either a
random domain or the EO-1 domain, we looked at the
following parameters: number of goal instances (N),
number of goals per goal type (NPG), number of goals per

time unit (NPT), and number of goals per priority level
(NPP). Again, the first three parameters impact the level of
goal interaction. More goals in a smaller time range will
have more shared resources that interfere. The last
parameter, number of goals per priority level (NPP), was
used to show that our solutions are optimal when
guaranteed (NPP = 1) and do not stray far from optimal
otherwise (NPP > 1).
 Experiments were generated using a random problem
generator. Specifically, random domains include 20
resource types and 20 goal types with each goal type using
10 resources. The EO-1 domain contains 7 resource types
and 5 goal types with each goal using about 3 resources on
average. Goals are defined for collecting, processing, and
downlinking data. Shared resources are defined for the
onboard data recorder and file system. For both random
and EO-1 domains, we generated 300 problems sets
containing 300 goals each.
 Three algorithms were used to generate solutions from
the problems sets:
• Goal Manager (GM)
• Optimal (OPT)
• Greedy Forward Dispatch (GFD)

GM runs the algorithm described in this paper. OPT is a
variant of this algorithm that tries all possible orderings for
adding goals with equal priority. This is meant to find
better solutions that may have been missed by GM which
breaks ties using a first-come-first-served rule. In GFD,
goals with earlier requested start times are selected first,
ignoring the interactions with unselected goal requests.
This simplifies the resource reasoning by removing the
need to propagate resource values into the future. Also,

rejected goals are not maintained for future consideration,
reducing the number of interactions that must be analyzed.
GFD is used as a representative algorithm that is simple
and fast, but more naïve at selecting goals, giving a lower
bound on both runtime and solution quality. All algorithms
were implemented in C++ and run on a Sun workstation
configured with two 2.6 GHz AMD Opteron™ 252
processors, 16 GBytes of RAM, and the 64-bit Red Hat
Enterprise Linux operating system.
 The graphs show the average runtimes (Figure 3 bottom)
and scores (Figure 3 top) for adding a single goal to an
increasing baseline goal set for the EO-1 domain (Figure 3
right) and random domains (Figure 3 left) . The CPU times
reported are for adding one new goal to a set of N goals
plotted on the x-axis. The scores reported are for the
resulting set of selected goals. The score of a single goal is
calculated using the function GPPmax

(p – Pmax) where
GPPmax is the maximum goals per priority level, p is the
priority of the goal, and Pmax is the maximum priority of all
goals. The score for a set of goals is the sum of scores for
all goals in the set. This function ensures that the score for
any number of goals at a lower priority will not sum up to
more than the score of a single goal at a higher priority.
 In these runs, start times and priorities were chosen at
random from an increasing range of values, representing
typical scenarios where NPT and NPP are relatively
constant. This corresponds to the average case complexity
analysis, and the data for random domains support the
!(NlgN) result. The NlgN fit to the GM data is shown in
the graph. The EO-1 domain demonstrates the worst case
where nearly all goals share the same resource (the
onboard file system), and we see a best fit to an N2 curve.
The exponential runtime of OPT is due to our naïve
implementation that considers all possible ordering of
goals with equal priority. The graphs also show GM
producing solutions with scores at or slightly lower than
OPT (plotted on top of each other), but with GM and OPT
both scoring much higher than GFD. The 95% confidence
intervals (using standard error of the mean) are shown, but
are very small for OPT and GM. The scores produced by
GFD are noisy due to its preference for selecting goals
with earlier start times instead of higher priority.
 In other experiments we looked at performance on
problems that added larger sets of goal requests. We also
examined algorithm behavior along individual dimensions
such RPG, NPT, and NPP. The details of these
experiments are beyond the scope of this paper, but
preliminary results support the theoretical analysis.
 In summary, we have empirically shown our goal
selection algorithm to:

• Exhibit low-order polynomial runtime behavior
with respect to the size of the problem

• Generate solutions near optimal and much better
than a greedy approach

In other words, with a few restrictions, we show that it is
possible to preserve alternative goal sets and (when the
need arises) re-consider previously rejected goals in a
timely fashion in order to maintain high quality solutions.

Related Work

Much of the research in planning and goal selection has
focused on more general, intractable problems. For
example, [Smith 2004] looks at the more general problem
that includes selecting goals and choosing their order when
resource usage depends on the order of the goals (e.g., for a
traveling rover). Both the Squeaky Wheel Optimization
[Joslin and Clements 1999] and the Task Swapping
[Kramer and Smith 2004] algorithms have been shown to
improve oversubscribed schedules by re-scheduling tasks
to allow more goals to fit. Instead, we look at a more
constrained problem that can be solved in polynomial time,
while still providing advanced autonomy capabilities
useful for many embedded applications.
 Tractable planning solutions typically take one of the
following three approaches:

1) focus on average case performance

2) use domain-specific knowledge to simplify the

general problem

3) apply general restrictions to the problem to make

planning tractable

In the first approach average case performance is
considered for difficult applications when occasional
failures are acceptable (e.g. with the use of heuristics
[Bonet and Geffner 2001]). When relying on average-case
performance, one must accept the fact that the algorithm
may not efficiently solve some problems. In the second
approach, domain-specific knowledge is used to encode
problem-specific solutions when possible including the use
of hierarchies [Tate et al. 1994, Erol et al. 1994, Nau et al.
2003] or context-dependent effects [Wilkins and
DesJardins 2001]. A knowledge-based solution, however,
is a one that is tailored for a particular problem and can be
difficult to formally verify. Our work is most closely
related to the third approach, which is supported by
theoretical work showing how the efficiency of planning is
related to the expressivity of the planning domain
language. For example, [Bylander 1994] and [Erol et al.
1995] examine limited forms of STRIPS-style operators
and the effect on planning complexity. [Erol et al. 1994]
investigates restricted HTN planning. [Jonsson and
Backstrom 1998] examine how structural restrictions on
state transition graphs impact planning complexity for the
SAS+ formalism (a state variable representation). In the
goal selection problem we describe, goals have fixed start
times and durations. In all cases, different levels of
restrictions result in different guarantees on the worst case
performance of planning. For applications that can meet
sufficient restrictions, planning becomes verifiably
tractable.
 A considerable amount of work has been done in the
area of online planning and execution. We list some of the
implemented systems here. For example, SCL [ICS]
provides a procedural language for spacecraft commanding
similar to VML. ESL [Gat 1996] is an execution language
for autonomous agents, implemented as an extension to the
Common Lisp programming language. TDL [Simmons et

al.] extends the C++ programming language to include the
concept of a task. Like ESL, programs in TDL can take
advantage of the generic language on which they are based.
The tradeoff, however, is that it can be much more difficult
to verify programs written in an expressive language.
Model-based executives such as Titan [Williams et al.
2003] and Kirk [Kim et al. 2001] use a declarative
specification of system behavior (plant model) to track
system state and compute desired sequences of control
actions. The focus of these executives is primarily on the
execution and monitoring of goals, while ours is on the
selection of goals prior to execution.
 Finally, our goals and resources are similar to the
concepts of goals and state variables that are central to
JPL’s Mission Data System (MDS). MDS [Dvorak et al.
1999, Barrett et al. 2004] is a comprehensive approach to
systems engineering and a methodology for the design and
development of control system applications. Goal selection
is a core capability required by many such applications.

Conclusions

We have described a carefully constrained set of resource
and priority reasoning capabilities designed to enable run-
time goal selection within a limited computational
environment. These capabilities enable fast re-optimization
of goal sets which oversubscribe available resources and
have a strict priority ranking. We have presented both a
theoretical and an empirical analysis of our algorithm as
well as described its application to a number of typical
spacecraft operations scenarios.

Acknowledgements

This work was performed by the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space
Administration. A special thanks to Chris Grasso for VML
software and support.

References

A A. Barrett, R. Knight, R. Morris, R. Rasmussen, Mission
Planning and Execution Within the Mission Data System,
Intl Workshop on Planning and Scheduling for Space,
Darmstadt, Germany, June 2004.
 B. Bonet and H. Geffner, Planning As Heuristic Search,
Artificial Intelligence 129 (2001) 5-33.
 T. Bylander, The computational complexity of
propositional STRIPS planning, Artificial Intelligence 69
(1994) 165-204.
 S. Chien, et al., Using Autonomy Flight Software to
Improve Science Return on Earth Observing One, Journal
of Aerospace Computing, Information, and
Communication, April 2005.
 S. Chien, et al., An Autonomous Earth-Observing
Sensorweb, IEEE Intelligent Systems, May/June 2005.

 D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks.
Software architecture themes in JPL's Mission Data
System. In Proceedings of the AIAA Guidance, Navigation,
and Control Conference, number AIAA-99-4553, 1999.
 K. Erol, J. Hendler, and D.S. Nau. 1994. UMCP: A
sound and complete procedure for hierarchical task
network planning. Proc Intl Conf AI Planning Systems.
 K. Erol, D. Nau, V. Subrahmanian, Complexity,
decidability and undecidability results for domain-
independent planning, Artificial Int. 76 (1995) 75-88.
 E. Gat. ESL: A language for supporting robust plan
execution in embedded autonomous agents. AAAI Fall
Symp: Issues in Plan Execution, Cambridge, MA, 1996.
 Goddard Space Flight Center, The Earth Observing One
Mission Page, eo1.gsfc.nasa.gov.
 C. Grasso, P. Lock. VML Sequencing: Growing
Capabilities over Multiple Missions. In Proceedings of
SpaceOps 08. Heidelberg, Germany. May 2008.
 Interface and Control Systems (ICS), Inc.,
http://www.interfacecontrol.com
 P. Jonsson, C. Bäckström. State-Variable Planning
Under Structural Restrictions: Algorithms and Complexity.
Artificial Intelligence 100 (1998) 125-176.
 D. E. Joslin and D. P. Clements, “Squeaky Wheel”
Optimization, Journal of Artificial Intelligence Research
(1999), 10:353-373.
 P. Kim, B. Williams, and M. Abramson. Executing
reactive, model-based programs through graph-based
temporal planning. Procs Intl Joint Conf Art Intell, 2001.
 Kramer, L. A., and Smith, S. F., Task swapping for
schedule improvement, a broader analysis. In Proc. 14th
Int’l Conf. on Automated Planning and Scheduling, 2004.
 D. Nau, et al.. SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research, 20 (2003) 379-
404.
 G. Rabideau and S. Chien, Runtime Goal Selection with
Oversubscribed Resources, Procs Intl Joint Conf Art Intell
(ICAPS), Workshop on Oversubscribed Planning, Sydney,
Australia, September 2008.
 R. Simmons and D. Apfelbaum. TDL Quick-Reference
Manual (v1.3.2). http://www-2.cs.cmu.edu/~tdl/tdl.html,
2002.
 D.E. Smith, Choosing Objectives in Over-Subscription
Planning, In Proc. 14th Int’l Conf. on Automated Planning
and Scheduling, 2004.
 A. Tate, B. Drabble, and R.B. Kirby. 1994. O-Plan2: an
open architecture for command, planning, and control. In
Fox, M., and Zweben, M., eds., Intelligent Scheduling.
Morgan Kaufmann Pub, San Francisco, CA. 213–239.
 D. Wilkins and Marie DesJardins, A Call for
Knowledge-based Planning, AI Magazine, Volume 22, #1,
pp. 99-115, Spring 2001.
 B.C. Williams, M.D. Ingham, S.H. Chung, and P.H.
Elliott. Model-based Programming of Intelligent
Embedded Systems and Robotic Space Explorers. In
Proceedings of the IEEE, Special Issue on Modeling and
Design of Embedded Software, Vol. 91, No. 1, Jan. 2003,
pp. 212-237.

