

Compressed Large-scale Activity Scheduling and Planning (CLASP)

Applied to DESDynI

Russell Knight and Steven Hu

Jet Propulsion Laboratory, California Institute of Technology
<first name>.<last name>@jpl.nasa.gov

Abstract
We demonstrate the use of compression techniques to
accommodate scheduling of large swath coverage
campaigns in the context of the Deformation, Ecosystem
Structure, and Dynamics of Ice (DESDynI) mission. The
underlying scheduler is a simple squeaky-wheel optimizer,
which requires a greedy solver as a component. Normally,
this approach poses no problems for conventional
computers, but when attempting to schedule several years’
worth of observations in detail, the schedule alone fails to fit
in memory, thus our use of compression techniques.

 Introduction
The DESDynI mission is an Earth orbiting mission flying a
combination of SAR and LIDAR. The goal of the mission
to gather data for science disciplines. These disciplines are
Deformation, Ecosystem Structure, and Dynamics of Ice.
 Our goal is to determine the timing of operating mode
changes for the instruments onboard the spacecraft as well
as pointing of the spacecraft such that the science goals of
each discipline are met.

Consider the problem of scheduling the orientation and
on/off times of a spacecraft or collection of spacecraft such
that we adequately cover as many target points as possible.
But, we must not oversubscribe memory or energy.

Many aspects of the problem need to be considered.
• Cost in terms of battery and energy when the

instrument is on or off.
• Time to transition from one orientation to the

next.
• Rate, time, and duration of downlinks and sun

exposures.
For small versions of this problem, we can employ

standard scheduling techniques. In our work, we are using
a squeaky wheel optimizer.

But as the problem size grows, standard propagation
techniques are too costly, and even estimating the final
quality of a partial schedule becomes practically

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

intractable. If the problem size increases such that it must
be swapped out to disk, then even greedy solutions become
intractable.

The Scheduler
We note that many of these problems are cyclic in

nature. That is, for spacecraft, we often have “repeat
passes” where we overfly the same points at some
predetermined interval. If we can take advantage of this
cyclic nature in our representations, then we can compress
the problem into a single-cycle problem. Unfortunately,
memory and energy profiles are not guaranteed to match
any cyclic representation, and either must be represented
explicitly or compressed as well. Also, some observation
campaigns retain cyclic observation availability but not
cyclic behavior—that is, the same observations are not
taken at each repeat pass. Again, these must be
compressed.

Problem Representation
In general, we assume a scheduling problem

characterization as such:
a set of points P,
a set of observations opportunities O each o ∈ O

consists of a start (o.start), and a duration
(o.duration),

a function obs(p ∈ P) that returns the subset of O
whose elements positively affect coverage of p,

a function coverage(p, sol ⊆ obs(p)) that determines
the level of coverage of p given sol,

a bound on coverage minQuality that must be met for
a point to be considered covered,

a bound on memory memory,
a bound on energy energy,
a rate at which memory is used while the instrument is

on memRate,
a rate at which energy is used while the instrument is

on useWatts,
a rate at which memory is recovered during a

downlink downRate,

a rate at which energy is collected while in sunlight
sunWatts,

a function that returns the minimum duration to
transition from one observation orientation to
another trans(o1 ∈ O, o2 ∈ O),

a set of sun exposures S where each s ∈ S consists of
a start (s.start) and a duration (s.duration),

a set of downlinks D where each d ∈ D consists of a
start (d.start) and a duration (d.duration).

Our goal is to select p.sol subset of obs(p) for each p ∈
P such that the number of p ∈ P that coverage(p, p.sol) ≥
minQuality is maximized, yet at no time do we
oversubscribe memory or energy.

Since coverage is a black-box function, optimizing this
in general is problematic. But if we make the assumption
that coverage is monotone (adding another o to p.sol never
makes it worse), then we can perform local optimization
based on approximating that adding the o that gives us the
best improvement now might give us good improvement
overall.

The squeaky-wheel optimization algorithm initially
labels each target with a scheduling priority. This priority
will increase as the scheduler fails to schedule the target.

Then, iteratively, for each target in scheduler priority,
the scheduler attempt to schedule the target. Any target not
scheduled gets its scheduling priority bumped up. After
each scheduling session, the quality of the current schedule
is checked against the quality of the best schedule found
thus far. If the current schedule quality exceeds that of the
previous best schedule, then we replace the best schedule
with the current schedule.

If we run out of time or if the little improvement seems
likely (stagnation), we stop optimization and return the
best schedule as the solution.

This process is illustrated in Figure 1.

Observation Scheduler

timeout

good

enough

n
n

re-prioritize by

increasing

priority of

missed targets

for each target in priority order

assign the "best" campaign

y

y

Figure 1 Squeaky Wheel Optimizer

Detecting Stagnation
 As we iterate over various schedules, we see a pattern of
increasing and decreasing quality over time of the current

schedule. Figure 2 illustrates such a cycle. To estimate
when stagnation has occurred, we set a limit of the number
of quality cycles without improvement by the system, and
when this limit is exceeded, we presume (possibly falsely)
that the search is stagnant and not likely to lead to
improvement. Of course, this is a heuristic and is provably
incorrect, thus care should be taken before selecting quality
cycle limits.

Points Covered

0

5000

10000

15000

1 16 31 46 61 76 91

Points Covered

Figure 2 Schedule Quality over Time (Vertical is

number of Points, Horizontal is Iteration)

Schedule Compression
In general, our technique for compression is to save a

succinct uncompressed schedule and summarizations of
profile data that are implied by the succinct schedule, up to
available memory.

The succinct schedule data structure consists of a map
keyed by time of instrument modes.

Energy, battery level, and duty cycle profiles are
summarized. In general, the schedule is iteratively divided
starting from the beginning and each spanned area is
summarized with the appropriate characteristics. The
summaries are updated when scheduling occurs without
being recomputed until we detect a potential false negative
scheduling result. Then the actual profile is computed from
the nearest waypoint to determine legal scheduling options.
This “uncompression” of the schedule can be costly, and in
the worst case can induce a walk of half of the succinct
schedule, which in turn can take up to hundreds of
megabytes. Thus, we leverage the fact that we know that
the squeaky-wheel optimizer will be looking in detail at
earlier candidate times for observation schedules.

What results is a characteristic dynamic trading-off of
abstract schedule information for detailed information in
the current context of observation scheduling.

DESDynI Domain
As mentioned previously, the DESDynI domain consists

of scheduling observations in support of 3 science
disciplines:

Deformation: Surface deformation is linked directly to
earthquakes, volcanic eruptions, and landslides.
Observations of surface deformation are used to forecast

the likelihood of earthquakes occurring as a function of
location, as well as predicting both the place and time that
volcanic eruptions and landslides are likely. Advances in
earthquake science leading to improved time-dependent
probabilities would be significantly facilitated by global
observations of surface deformation, and could result in
significant increases in the health and safety of the public
due to decreased exposure to tectonic hazards. Monitoring
surface deformation is also important for improving the
safety and efficiency of extraction of hydrocarbons, for
managing our ground water resources, and, in the future,
providing information for managing CO2 sequestration.
Example targets are illustrated in Figure 3.

Figure 3 Deformation Targets

Ecosystem Structure: Radar and lidar measurements will
help us understand responses of terrestrial biomass, which
stores a large pool of carbon, to changing climate and land
management. Benefits would include the potential for
development of more effective land-use management,
especially as climate-driven effects become more
pronounced. Example targets are illustrated in Figure 4.

Figure 4 Ecosystem Structure Targets

Dynamics of Ice: The poorly-understood dynamic
response of the ice sheets to climate change is one of the
major sources of uncertainty in forecasts of global sea level
rise. DESDynI's InSAR measurements of the variations in
ice flow patterns and velocities provide important
constraints on their dynamic response to climate change.
This knowledge will help to determine how fast society
must adapt to sea level changes - knowledge crucial in
planning how to allocate scarce resources. Example targets
are illustrated in xxx.

Figure 5 Dynamics of Ice Targets

 As can be seen from our figures, we use Google Earth
KML files to communicate targets and scheduling
solutions to our systems and to our scientists.

These files are processed and result in a combined set of
targets, as seen in Figure 6.

Figure 6 Combined Targets

Results
Our system then decomposes the entire set of targets

into a set of target points, and attempts to gather each point

using the squeaky wheel optimization technique. We have
already seen in Figure 2 the evolution of quality over time.
Not surprisingly, the smaller the schedule, the faster
reasoning takes place, thus it is faster to solve schedules
that are of low quality than it is to solve schedules of
higher quality. This is illustrated in Figure 7.

0

1

2

3

4

5

6

7

8

9

Solut ion Time

Setup Time

Figure 7 Solution and Setup Times (Vertical axis is
minutes and horizontal axis is iteration)

Figure 8 illustrates a solution, with the gathered points
being represented by pins.

Figure 8 Solution

When solving the larger problem of the entire schedule
over 330 days (30 cycles), we see that all possible points
that can be covered are, and this solution only requires 15
minutes to setup and solve. This is a greater than 20 fold
increase in speed over using non-compressed
representations and an even greater speed-up over using
other systems that require about a week to produce a single
schedule.

Related Work
[Knight 2005] solves smaller problems of this sort

optimally using a combination of branch and bound
techniques combined with flow network approximations.

For a good example of a polyhedral solution to a
combinatorial optimization problem having to do with
satellite scheduling (formulated as a pick-up and delivery
problem), see [Ruland 1986].

[Oddi 2003] solves a constrained-memory domain with
fewer types of constraints called the Mars Express Memory
Dumping Problem. The system uses a portfolio approach
to solving the problem as formulated in a constraint-based
framework. The portfolio consists of a tabu search strategy,
a random sampling strategy, and a greedy strategy.

More general constraint-based frameworks for
scheduling that have been applied to spacecraft operations
include that of [Dungan 2002], [Ghallab 1994], and [Chien
2000]. In each of these, the problem is expressed as a set of
constraints to be satisfied. In the case of [Dungan 2002],
and [Ghallab 1994], the systems search the feasible space
of domains in the constraint space. In the case of [Chien
2000] the system searches both the infeasible and feasible
space of value assignments, using randomized local search.

Acknowledgements
This research was carried out at the Jet Propulsion

Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Government
or the Jet Propulsion Laboratory, California Institute of
Technology.

References
[Chien 2000] S. Chien, G. Rabideu, R. Knight, R.

Sherwood, B Engelhardt, D. Mutz, T. Estlin, B. Smith, F.
Fisher, T. Barrett, G. Stebbins, and D. Tran. “Automating
space mission operations using automated planning and
scheduling.” In Proc. SpaceOps, 2000.

[Corman et al] Thomas H. Corman, Charles E.
Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. McGraw-Hill, 1990.

[Dungan 2002] J. Dungan, J. Frank, A. Jonsson, R.
Morris, and D. Smith. “Advances in Planning and
Scheduling of Remote Sensing Instruments for Fleets of
Earth Orbiting Satellites.” Earth Science Technology
Conference, 2002. Pasadena, California.

[Frank 2000] J. Frank. "SOFIA's Choice: Automating
the Scheduling of Airborne Observations" Proceedings of

the 2d NASA Workshop on Planning and Scheduling for
Space, March 2000.

[Garey and Johnson 1979] M.R. Garey and D.S.
Johnson. Computers and Intractability. W.H. Freeman and
Company, San Francisco, 1979.

[Ghallab 1994] M. Ghallab and H. Laruelle,
“Representation and control in IxTeT, a temporal planner”,
in Proceedings of the 2nd International Conference on
Artificial Intelligence Planning Systems (AIPS-94), pp. 61-
67, Chicago, IL, (1994). AAAI Press, Menlo Park.

[Knight 2005] R. Knight, “Solving the Constrained
Coverage Problem using Flow Networks as Linear
Program Approximations,” Ph.D. Dissertation, University
of California, Los Angeles, 2005.

[Karp 1972] R. M. Karp “Reducibility among
combinatorial problems.” In R. E. Miller and J. W.
Thatcher (eds.) Complexity of Computer Computations,
Plenum Press, New York, 85-103.

[Muraoka 1998] H. Muraoka, R. H. Cohen, T. Ohno,
and N.Doi. “ASTER Observation Scheduling Algorithm.”
SpaceOps 98. 1998, 1-5 June, Tokyo, Japan.

[Oddi 2003] A. Oddi, N. Policella, A. Cesta and G.
Cortellessa. “Generating High Quality Schedules for
Spacecraft Memory Downlink Problems.” Ninth
International Conference on Principles and Practice of
Constraint Programming, 29 September - 3 October, 2003,
Kinsale, County Cork, Ireland.

[Papadimitriou and Steiglitz 1982] C. H. Papadimitriou
and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, Englewood Cliffs, NJ,
1982.

[Ruland 1986] K. Ruland. Polyhedral solution to the
pickup and delivery problem. Washington University,
Sever Institute of Systems Science and Mathematics.
http://rodin.wustl.edu/~kevin/dissert/dissert.html
(Dissertation). St. Louis Missouri, 1995.

[Schrijver 1986] A. Schrijver. Theory of Linear and
Integer Programming, Wiley, 1986.

