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Abstract 

Automation and autonomy are key elements in realizing the 
vision for space exploration. The NASA Exploration 

Technology Development Program (ETDP) has been 

developing several core autonomy capabilities, one of which 
is called a procedure representation language (PRL). PRL 

can be automatically translated into code that can be 

executed by NASA-developed autonomous executives.  
Another type of automation being developed by ETDP is 

automated planning aids. These will be needed to increase 

the number of missions that existing levels of flight 
personnel are able to handle. But PRL has few constructs to 

enable automated planners and schedulers to take advantage 

of the procedures resulting from PRL.  In a continuing 
research effort, we have been developing extensions to PRL 

to add planning information – resource, constraints and sub-

procedural information – so as to produce code useable by 
automated planning software. From a representative 

scenario for the PHALCON and EVA flight disciplines, we 

have derived requirements for planning, developed XML 
tags for the PRL changes, and translated the changes into 

the ANML planning language. This paper describes these 

results. 

 Motivation  & Approach 

Automation and autonomy are key elements in realizing 
the vision for space exploration. The NASA Exploration 
Technology Development Program (ETDP) has been 
developing a set of core autonomy capabilities that can 
adjust the level of human interaction from fully supervised 
to fully autonomous.  One of those technologies is the 
development of a procedure representation language (PRL) 
that both captures the form of traditional procedures and 
allows for automatic translation into code that can be 
executed by NASA-developed autonomous executives 
(Bonasso et al  2003, Verma et all 2006).  PRL provides 
for access to spacecraft and habitat telemetry, includes 
constructs for human centered displays, allows for the full 
range of human interaction, and allows for automatic 
methods of verification and validation.  But most 

important, PRL is being developed with a graphical 
authoring system that enables non-computer specialists to 
write automated procedures (Kortenkamp et al 2007). 
 However, PRL is in a relative infancy with regard to 
supporting many of the autonomous software components 
being developed by NASA, specifically automated 
planners and schedulers.  PRL has few constructs to enable 
automated planners and schedulers to take advantage of the 
procedures resulting from PRL.  Such planners and 
schedulers generate new plans arising from new situations 
that often involve multiple concurrent tasks by multiple 
humans or human-robot teams.  These plans will be 
composed of interleaved PRL-generated procedures, the 
execution building blocks of mission plans.  As a result, 
automated planners and schedulers will require knowledge 
of the purpose of the PRL procedures, the resources used 
and any execution constraints that apply.  Moreover, in 
order to make flexible plans, planners may only need to 
execute portions of existing procedures, so they need to 
know how such procedures can be usefully decomposed. 
 In support of ETDP, we have been investigating casting 
three key types of planning information into PRL, so as to 
support the construction of models that can be employed 
by modern AI planners.  Our approach was to study a 
typical scenario involving two representative NASA-JSC 
flight disciplines, derive the resource, constraints and sub-
procedural information, develop PRL extensions for that 
information and then translate that information (manually 
at first and then with translation software) into the newly-
developed planning language ANML (Smith & Cushing 
2008).  Using the PRL extensions and their AANML 
translations, we have demonstrated the ability to generate 
plans (manually, for the moment) for the scenario 
equivalent to those used by the flight controllers. 
 This paper describes the selected scenario, the planning 
constructs that we derived, the subsequent changes to the 
PRL and examples of the resulting PRL and ANML.   
 

 



 2 

Scenario 

When we began this research, the PHALCON (Power, 
Heat And Light CONtrol) and EVA (Extra Vehicular 
Activity) flight controllers had recently conducted a 
mission wherein one of the EVA tasks was the removal 
and replacement of a DC-to-DC Converter Unit (DDCU).  
That task was actually a “get ahead” task that was added 
to the end of a sequence of previously planned EVA 
tasks.  Due to space limitations, we will cover only the 
main EVA tasks for the six-hour scenario: 

1) Crew egress the airlock 
2) Retrieve CETA (Crew and Equipment Translation 

Aid) Light 2 
3) Relocate CETA-cart 2 from the P1 truss to the P3 

truss 
4) Remove and Replace the DDCU 1A on the S0 truss 

5) Crew ingress the airlock 

 Not only was this scenario sufficiently complex for our 
purposes, but also, since the PHALCON had to prepare 
and shutdown the old DDCU and power up the new 
DDCU, it involved two very different flight disciplines.  
The PHALCON represents the typical command center 
flight discipline whose activity consists in monitoring 
telemetry from a ground console, uplinking commands to 
various equipment on the space station, and coordinating 
with other flight disciplines, such as attitude control and 
life support.  While there is an EVA flight controller, the 
locus of the EVA work is necessarily with the crew 
carrying out the EVA tasks.  Thus with this one scenario 
we were able to investigate the planning requirements of a 
range of flight control activities. 

  

 

Figure 1 A partial expansion of a plan in our scenario.  Starting with an initial configuration of the space station, a number of crew and a 

set of goals, the resulting plan consists broadly of the crew (EV1 and EV2) emerging from the airlock (A/L) with the appropriate tools and 

spares, carrying out each task and then returning to the airlock.  The pictorials show the ISS in both plan-view, with all the locations of 

work as well as a zoom-view of the airlock, the location of the egress procedure.  The green text to the left is the information one would 

find in the Word files of the SODFs for the one-person egress procedure.  The Blue text shows the planning information associated with 

that procedure derived from our analysis of the flight control procedures.  The variable ?tether is in bold to designate it as a resource used 
in the egress action. 
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Deriving Planning Information 

Knowledge engineering is key to constructing a planning 
model as well as to extracting the critical parts of a 
domain ontology. The PHALCON tasks were derived 
from systems operations data files (SODFs), word files 
that were part of the repository of flight controller 
procedures.  For the EVA tasks, we needed to go over the 
written description of the full six-hour scenario because 
the EVA flight controllers develop each EVA activity 
essentially from scratch.  While the activities of 
connecting and disconnecting equipment to and from the 
station are fairly routine (though new equipment requires 
astronauts to test the procedures in the neutral buoyancy 
facility at JSC), each EVA is unique both in the number 
and types of tasks and in the starting locations of the 
equipment and tools used in the tasks. 
 But these written documents have little or no planning 
information associated with them, such as activity 
duration, purpose, preconditions or constraints.  To derive 
this planning information, we started with a given EVA or 
PHALCON procedure, discussed each step with the 
cognizant flight controller, and then rewrote the procedure 
to include the information required for planning.  We then 
used this information to construct a planning model for 
the tasks involved. This procedure analysis and 
distillation resulted in a structured view of the tasks in our 
scenario. 
 A hierarchical task net of the EVA tasks with a partial 
decomposition is shown in Figure 1.  Consider the egress 
airlock task.  When the two astronauts exit the airlock, 
first one goes out and attaches to a safety tether.  Then the 
second astronaut hands out certain equipment (in this case 
the bag to hold the CETA-light to be retrieved) to the first 
before exiting himself.  The green text in Figure 1 shows 
the procedure one would find in any number of previous 
EVA procedures for the single person egress.  Simply, it 
says to open the thermal cover, go out and tether up.  The 
key choice here is which safety tether to use.  The PRL 
from the procedure alone would look like the following 
(PRL is in XML so we use a pseudo-PRL for illustration):  
 
Step 1 
  Manual Instruction: Thermal cover to open 
  Manual Instruction: Egress airlock 
  Manual Instruction: Hook Safety-tether to D-ring on suit 
  Verify Instruction: Verify Safety-tether configuration 
 
 Our derived planning information associated with that 
procedure shows that the point of the procedure is to get 
an inside human agent located outside the airlock, the 
duration is typically 4 minutes and it requires that there be 
an unoccupied safety tether outside the airlock.  A 
bookkeeping side effect is that the thermal cover will be 
open when this procedure completes. 
  
 

Derived Sub-procedures 

From our analysis we distilled seven intermediate sub-
procedures and ten leaf-level PHALCON procedures, and 
thirteen intermediate and 48 leaf-level EVA sub-
procedures.  An example of a partial breakout of sub-
procedures for PHALCONs is shown in Figure 2. When 
viewed from a planning perspective, the DDCU shutdown 
consists of a group of tasks that can be done many hours 

prior to the EVA crew arriving at the DDCU site, and 
another group that is executed when the EVA crew is 30 
minutes away from arriving at the site.  The first group 
involves a mix of intermediate and leaf sub-procedures 
(shown in light blue) that are executed in conjunction 
with other flight disciplines that will be affected by the 
shutdown.  The actual number of these sub-procedures 
used in a plan will depend on the state of the hardware of 
the sub-disciplines at the time of the DDCU R&R EVA. 
The second set of actions is leaf-level sub-procedures that 
include powering down and electrically isolating the 
DDCU. 
 In several procedures, for example, the S-BAND-swap, 

 

 

Figure 2 A breakdown of the PHALCON sub-procedures for a 

DDCU Shutdown. Light blue text indicate leaf level (non-

decomposable) plan nodes. 

 

 

Figure 3 A breakout of EVA sub-procedures for removing a 
CETA light. 
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the PHALCON serves as a kind of supervising agent, and 
another flight controller, such as the CATO 
(Communications and Tracking Operations) flight 
controller, serves as the executing agent, who lets the 
PHALCON know when the procedure is complete.  
 An example of the breakout of sub-procedures for 
EVAs is shown in Figure 3.  This breakout shows how to 
retrieve the CETA light with an agent at the AIRLOCK.  
The agent gets the ORU (orbital replacement unit) bag for 
the light, travels to the light’s location, removes the light 
and stows it in the bag, then takes it back to the airlock.  
The interesting aspect of this procedure, and all EVA 
procedures that involve moving the agents from place to 
place is the limitation of the safety tether.  If the target 
location is farther away than the 55’ safety tether can 
reach, the agent has to travel to the location of another 
tether, usually of the 85’ variety, and perform a tether-
swap before moving on.  In essence, this action can be 
applied at any level of the plan where a translation by free 
flying over handrails is required. 
 Unlike the multi-agent PHALCON procedures, where 
one agent is the coordinator and one is the executor, 
mulit-agent EVA procedures involve two agents working 
together to accomplish the task. In the case of the 
replacing the DDCU, for example, during the installation 
of the spare DDCU, agent1 has the old DDCU attached to 
his body restraint tether and agent2 holds the spare 
DDCU on a stanchion mount cover.  The coordinated 
exchange is as follows: 
 

1) Agent2 presents the spare DDCU to agent1. 
2) Agent1 grabs the spare via a scoop on the spare 

and agent2 detaches the spare from the cover  
3) Agent1 inserts the spare in position and then 

presents the old DDCU to agent2 
4) Agent2 attaches the cover on the old DDCU and 

then stows it 
5) Agent1 bolts the spare in place 

 
 This kind of coordinated effort as well as the fact that 
each agent can be doing a different task at the same time, 
motivated us to include specific temporal constraints in 
our PRL enhancements described in the next section. 

PRL Enhancements 

The PRL enhancements derived from the procedure 
analysis above include those for time, roles, resources and 
pre- and postconditions. 

Time 

Information about time and timing constraints is critical to 
planning operations.  PRL has very little information 
about time encoded in it.  Therefore we include these 
additional tags as part of our planning extensions: 
 

Duration.  PRL has no way of expressing the expected 
duration of a procedure.  This is critical for planning 
purposes.  The duration tag will not only take an expected 
duration in any number of time units, but will also allow a 
range (upper and lower bound) to be expressed.   As well, 
the duration tag will allow the invocation of a 
computation with other local variables, such as when 
computing the travel time along a translation path. 

Allen interval algebra.  While timing constraints 
between procedures, steps, and instructions can be 
captured using convoluted constructs of pre- and 
postconditions, the ability to express intervals would be a 
useful syntactic sugar.  At the procedure level these would 
call out any required timing constraints between 
procedures.  When used at the step or instruction level 
these would guide execution within the procedure.   We 
are adopting a subset of Allen’s interval algebra (Allen 
1983) as tags in the planning extension.  This subset 
includes: before, meets, overlaps, starts with, during, 
finishes with and equal to. 

Roles 

Roles define the actors who will be performing the 
procedures. The actors filling a given role in the current 
PRL must be defined in the procedure (as a string). We 
have modified the role tag in PRL to be a formal 
parameter that can later be resolved with some constant 
defined as part of the planning problem statement (i.e., a 
particular astronaut). We also extended the role tag to 
allow for multiple roles in a procedur,e which was 
required in order to represent intermediate-level tasks, 
which may decompose into separate but synchronized 
procedures, each of which must be executed by a separate 
agent. 

Resources 

Resources are critical to planning operations.  PRL says 
very little with respect to the resources that a procedure 
requires or uses.  We propose these additional tags with 
respect to resources for our planning extension.  PRL does 
not keep track internally of resource levels so that is left 
to an execution engine or resource management system.  
These tags therefore will need to be tied to an external 
representation of resources specific to each application.  

Uses.  This tag denotes that the procedure uses a certain 
number of a countable resource, such as tether-points.  
This tag includes a resource name and a numeric value 
expressing how many of that resource is used.  The 
assumption is that there needs to be this number of the 
resource available before procedure execution.  They are 
only freed up if a busy tag is employed as well (see next 
item).    Thus, if a safety tether is used in a procedure, 
without a busy designation, it will continue to be 
“consumed” until another action, such as un-tethering, 
asserts they are not busy as a result of the action. 

Busy.  This tag denotes that a particular resource is busy 
for the duration of the procedure. This resource must be 
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free at the start of the procedure, but may or may not be 
freed up at the end of that procedure.    

Consumes. This tag denotes that a procedure uses up a 
certain amount of this resource, such as oxygen, during 
the execution of the procedure.  This tag includes a 
resource name and a numeric value expressing how much 
of that resource is used.  The assumption is that there 
needs to be enough of the resource available before 
procedure execution and that the resource is decreased by 
the numeric value at the end of the procedure.  Invoking a 
function can also derive the consumption value. 

Produces.  This tag denotes that a procedure restores a 
certain amount of this resource, such as power, during the 
execution of the procedure.  This tag includes a resource 
name and a numeric value expressing how many of that 
resource is produced.  Invoking a function can also derive 
the production value.   

Planning preconditions 

PRL has preconditions already defined, used as checks 
prior to procedure execution.  Planning models need a 
different form of precondition, used to constrain what 
constitutes a legal plan, or to make inferences about the 
results of actions with conditional effects.  Both forms of 
precondition must appear in the extended PRL dialect 
described here.  The planning preconditions are used in 
the planning process in the expected way.  The execution 
preconditions, also known as "go-conditions" serve 
multiple functions.  First, they may (but need not) appear 
as planning preconditions.  Second, they cause the 

generation of an explicit "check" action as part of the 
generated plan, indicating that at that point in execution 

the specified condition should be verified.  Third, they are 
passed through to the PRL procedures tied to the 
primitive actions in the generated plan, so that the 
relevant conditions will in fact be checked. 

Planning effects 

The situation with effects is similar to that of 
preconditions.  PRL has postconditions, which express the 
states in which the system needs to be for procedure 
success.  Planners need a form of postcondition as well 
which because it is different from the PRL precondition 
will only appear in the planning data.  A subset of the 
planning preconditions will be further tagged as the 
purpose (or objective) of the procedure.  There may be 
many postconditions, only a subset of which constitutes 
the real objective of the procedure.  Therefore, we’ve 
added the purpose tag so that the planner knows to add to 
the plan an explicit check for that condition and to signal 
a plan failure if it is not achieved.   

Obtaining Consistent Semantics with ANML 

Not all automated planning and scheduling systems use 
the same algorithms and representations for plans and not 
all of them interface with executives in the same way.  
For example, hierarchical task net (HTN) planners search 
for actions in a tree of actions that form a task hierarchy 
similar to military plans.  Interval planners place actions 
in a timeline and adjust start and end conditions to meet 
deadlines.  Some automated planners can send single 

tasks to an executive for execution; others post mostly 
complete plans.  As the plan or task is executing, some 

 

Figure 4 A sample translation of PRL to ANML for the Egress action 
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planners require a minimum amount of execution status, 
others may require more.  Such differences in planning 
systems will have an impact on the number and types of 
additional information that the new PRL must provide.  
 
One way to address the disparity among planning systems 
is to provide the PRL enhancements with a rigorous 
semantics by showing they can be translated to one or 
more of the planning domain modeling languages in 
current use by the artificial intelligence planning 
community.  We have selected the ANML planning 
language (Smith & Cushing 2008), because it is based on 
strong notions of action and state (so planners like Aspen 
(Chien 2003) can use it), uses a variable/value model (so 
planners like Europa (Pell 1998) can use it), supports rich 
temporal constraints, and provides simple, convenient 
idioms for expressing the most common forms of action 
conditions, effects, and resource usage.  The language 
supports both generative and HTN planning models (so 
HTN planners like AP (Applegate et al 1983) can use it) 
in a uniform framework and has a clear, well-defined 
semantics.  

PRL to ANML Mapping 

Figure 4 shows an example translation of the PRL from 

the EVA egress action described in above to an ANML 
representation.  Each PRL item maps directly from a PRL 
tag to a given ANML construct as described in the 
previous section.  Of particular note, however, is the 
handling of the purpose clause.  Besides being one of the 
effects of the action and thus contributing to the change in 
location of the agent in an “over all” clause, an auxiliary 
intermediate action is generated that decomposes into this 
action and a runtime check for the stated purpose. 
 While this example shows how we tie PRL planning 
information to procedural information, we also need PRL 
files that instead of a procedure show the decomposition 
of intermediate planning actions.  Figure 5 shows such a 
file and its translation into ANML.  In this DDCU R&R 
task, an intra-vehicular agent, IV1, will operate the 
SSRMS, while two EVA crew carry out the task.  EV2 
must prepare the SSRMS in the task called 
SSRMS_Setup. This task is referenced via the PRL Call 
procedure tag, which is a reference to another PRL file 
that has further task decomposition.  In this case, the task 
will decompose into fetching and installing an 
Articulating Portable Foot Restraint (APFR) on the 
SSRMS, ingressing the SSRMS and then having IV1 
move the SSRMS to the work site.  At the same time, 
EV1 will be setting up the worksite by fetching the spare 
DDCU and moving it to the work site.  Finally, the two 

 

Figure 5 A PRL to ANML translation of  an intermediate action 
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EVs will remove the old DDCU and install the spare.  The 
temporal ordering in PRL assumes a sequence and we use 
the unordered block tag to allow for operations that just 
need to finish before the next step in the sequence.  In 
ANML, a task tag, e.g., c1, allows us to attach 
preconditions to tasks. 
 

ANML Modeling Choices 

Based on the task analysis and distillations conducted in 
Phase1 we have a preliminary modeling approach to be 
used for representing EVA plan data in Phase2.  We will 
extend these model choices in Phase 2 as we 1) determine 
the availability of interfaces to ISS configuration files, 
and 2) extend our domain to cover additional tasks, crew, 
tools and equipment. 

Use of Action Decomposition. We have chosen to 
employ action decompositions for a number of reasons, 
not the least of which is that the flight controllers tend to 
think of their planning tasks in a hierarchical way. 
Additionally, it allows us to construct part of the plan 
using compiled mission planning knowledge rather than 
explicitly modeling domain interactions.   We also realize 
search efficiency, since it seems in the PHALCON and 
EVA domains, there are only a small number of legal 
ways to carry out tasks.  Finally, the hierarchy allows us 
to scope for reserving crew/equipment. For example, in 
DDCU-EVA example above, several different resources 
are reserved at a level above where they are actually 
employed, so as to ensure that the operation does not start 
if they are not available. This can be done in a flat 
representation, but not as easily, especially not for 
execution, since one wants to ensure that the given item 
remains reserved.  

Agent Assignment Restriction. ISS procedures to date 
only assign one crew member per procedure, including in 
situations where the overall plan requires coordinated 
action by multiple agents. We handle this restriction by 
using intermediate tasks with multiple, temporally 
constrained leaf actions, one for each agent needed. 

Types.  We use types to “dispatch" planning actions, in 
the sense that whether a given action can be used with a 
given set of variable bindings (unifications, co-
designations, etc.) can be determined by type.  We can do 
this without getting into the difficulties of type inference, 
by enforcing the closed-world assumption, i.e., all objects 
are known and can be enumerated, and that any type 
differences on which actions are tested for applicability 
partition the set of all objects.  For example, the 
equipment type partitions all entities in the domain model 
into equipment and not-equipment.  The INSTALL 
DDCU action partitions carriers into ceta cart, SSRMS, 
and not-a-carrier.  Our subtypes are as follows: 

Things.  

• object – enumerated type.  

• equipment – a subset of object.  

• ceta-cart – a subset of equipment.  

• scoop – a subset of equipment.  

• pgt – a subset of equipment.  

• brt – a subset of equipment.  

• tfr – a subset of equipment.  

• power-jumper – a subset of equipment.  

• med-oru-bag – a subset of equipment.  

• rover – a subset of equipment.  

• pgt-socket – a subset of equipment.  

• ratchet – a subset of equipment.  

• ects-loop – a subset of equipment.  

• pgt+tm – a subset of equipment.  

• ORU-tether – a subset of equipment.  

• stanchion-mount-cover – a subset of equipment.  

• ISS-EVA-handrail – a subset of equipment.  

• symbol – enumerated type.  

People.   

• people – subset of object  

• crew – subset of people.  

• fc – (flight-controller), subset of people.  

Places. 

• location – a vector of three symbols: < segment, bay, 
face >  

What a location is may be context-dependent. For a rover 
it might be waypoints. Even on ISS, for crew moving 
around on EVA, rails should count at least as transitions 
between locations, if not locations themselves. 

• path – an ordered sequence of locations. 

Functions. 

• label(equipment) ! symbol  

• installed-on(equipment) ! equipment – domain is 
installed equipment, range is what it’s installed on.  
Making this a function rather than a predicate is cleaner in 
a lot of ways, but requires a special value for objects that 
aren’t installed on anything, which is easier to represent 
with a predicate.  

• on(crew) ! equipment – like installed-on, but let’s not 
use the same function for equipment and people.  

• path-duration(crew location location symbol) ! 
duration – how long will it take a given agent (currently 
crew-only), to move from one location to another, using a 
means denoted by a symbol?  The model should 
eventually include the possibility of a non-human agent.  

• plan-path(location location) ! path  

• O2-needed(crew path symbol) ! number – how much 
(excess? ) oxygen is consumed by crew in traversing path 
using the means denoted by a symbol?   

• O2-level(crew) ! number  

• fuel-level(equipment) ! number  
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• work-site(equipment-site) ! location  

• location(movable-object) ! location.  

• choose-ceta-cart() ! ceta-cart  

• get-current-operator(SSRMS) ! person  

• get-current-wif-adaptor(SSRMS) ! wif-adaptor  

• get-current-APFR(SSRMS) ! apfr  

• state(object) ! symbol  

• compute-movement-
duration(SSRMS,location,location) ! number  

• get-current-adco() ! person  

• get-current-mcs() ! person  

• get-current-ctg() ! person  

• get-current-cato() ! person  

• get-current-odin() ! person  

• get-etcs-loop(ddcu) ! etcs-loop  

• power-string(equipment) ! symbol  

• comms-state(equipment) ! symbol  

Predicates.   

• installed(equipment-site, equipment)  

• use(equipment) – not quite a unary resource. More like 
a critical section (think “busy”).  

• use(location) – as above.  

• use(crew) – as above.  

• has(object, object) One object is connected to another 
(either could be a person)  

• tethered(equipment, equipment) – one piece of 
equipment is fastened to another.  

• tethered(equipment, crew) – a piece of equipment is 
fastened to a crew member. Also, tethered(E,C) implies 
has(C,E)   

• tool-match(equipment, equipment) – match a 
(particular type of) tool to another piece of equipment. In 
the absence of a real object model, this is done by 
enumeration.   

• training(person, symbol)  

• connected(object, object) – generalization of tethered.  

• empty(equipment) 

Special Values and Constants. 

• Undefined -- part of ANML. Permits no inference to be 
drawn, positive or negative. There is a type issue 
involving this and other constants. We plan to use a 
separate constant for each type, e.g., undefined-boolean, 
undefined-equipment, etc.  

• *Nothing* -- Special value that matches no other 
member of the class, such as what equipment is at the site 
of a DDCU that has been removed. 
  
By the end of our first year of research we had modeled 
all of the scenario tasks in ANML and PRL to ensure that 
our modeling approach was complete.  

ANML as a Target Language 

Our choice of ANML as a target language for this project 
was made after consideration of a wide range of 
alternatives, and presented both advantages and 
disadvantages.  As discussed above, in this domain, 
having the ability to express both HTN and classical 
planning information in a uniform semantics is very 
useful.  Additional constructs available in ANML that 
have proved beneficial include a very flexible model for 
specifying temporal constraints and parameter co-
designation among subactions, and an explicit resource 
model. 
 As also previously mentioned, ANML is a relatively 
new language, and as such is still under development.  
The downside to this include the fact that there is 
currently no planner that accepts ANML as input, though 
that lack is currently being addressed on several fronts, 
including the ongoing development of ANML translators 
to PDDL and NDDL.  Another, less significant 
implication of using a language under development is that 
the syntax has changed under us.  The syntax used here is 
that given in (Smith & Cushing 2008).  Readers of more 
recent papers describing ANML will have encountered a 
different syntax, for which we are currently updating our 
models. 
 However, there are also benefits to being early 
adopters.  As the developers of one of the first significant 
planning models written in ANML, we have been in a 
position to push on what ANML can and cannot do, 
which has led to some small changes in both syntax and 
semantics, in ways that make the modelling task 
somewhat easier, for example, in defining the semantics 
of execution-time choices versus parameters that are 
determined when the plan is constructed. 

Summary 

Our key findings with regard to the potential of capturing 
and storing planning information online are as follows: 
• Through analysis of complex PHALCON and EVA 
procedures we determined that in fact, flight controllers 
plan with actions that are actually sub-procedures of the 
formal procedures maintained online. 
• After identifying the specific sub-procedures we were 
able to distill from them the key information with regard 
to time, resources and pre- and postconditions that could 
potentially be used by automated planning software 
• Further, we determined that such planning information 
could be given consistent semantics by developing a 
mapping from the PRL to a formal planning language, 
namely ANML. 
 Based on the above we hypothesize that planning 
software being developed under NASA funding should be 
able to use the new PRL files via an ANML translation to 
provide automated aids for flight controller mission 
planning.  Some planners use the New Domain 
Description Language (NDDL) (http://react.cs.uni-
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sb.de/mbt2007/slides/raimondi.pdf).  A partial ANML to 
NDDL translator for the Automation for Operations 
(A4O) program has already been implemented.  Many 
planners use the Planning Domain Description Language 
(PDDL) (Fox and Long 2003). An ANML to PDDL 
translator is now under development.  These efforts will 
greatly extend the number of planners that can be applied 
to domain models captured in ANML.  
 Our current efforts are focused on developing an 
interactive planning tool that uses the PRL planning 
information to automatically generate plans as good as the 
ones previously developed for the scenario described in 
this paper. 
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