

Evolution of a Flexible Mission Planning and Scheduling System

for Complex Missions: flexplan

Alicia T. Kavelaars1, Assaf Barnoy1, Francisco Colmenero2, María Pereda2,
Juan Tejo2, Gonzalo Garcia1, Theresa W. Beech1

1 GMV Space Systems Inc., 1375 Piccard Dr., Suite 250, Rockville, MD 20850, USA, +1 (301) 216 3840

akavelaars@gmvspacesystems.com

2 GMV S.A., Calle Isaac Newton, 11, PTM-Tres Cantos, 28760 Madrid, SPAIN, +34 91 807 2100

Abstract
The space industry has evolved in the past decades with the
result that the main satellite operators are in charge of fleets
of spacecraft manufactured by different companies with
different characteristics. Additionally, many new scientific
missions have come up with the quest to reach Mars and the
Moon as well as a better knowledge of the Earth, with ever
improving instruments and increased data recordings. The
operation of multiple platform fleets or highly specialized
missions have one thing in common: they require a tool that
can plan and schedule while adapting to the ever changing
requirements and constraints driven by the mission. flexplan
is a COTS Mission Planning and Scheduling (MPS) product
that has matured in the past years while integrated in such
missions. Its primary goal of offering a flexible solution that
can adapt with minor operational impact has been achieved
and superseded by an increased focus on performance when
multiple platforms and complex operations are present. This
paper describes the latest upgrades as well as a sample
application of flexplan.

I. Introduction
Mission planning and scheduling is a very dynamic process
in spacecraft operations. It is the process by which inputs
from the spacecraft operator and user community requests
are gathered, managed and scheduled. This process is
complicated by the changing priorities, availability of
resources and operational constraints that are part of daily
operations. Some of the elements that must be managed by
the Mission Planning System include:

- Resource scheduling: The operations and maintenance of
on-board and ground resources must be managed to avoid delays
or losses due to the oversubscription of mission resources. The
availability of personnel must also be considered to ensure proper
support of mission critical events.

- Instruments operations: The on-board instruments
maintenance and science operations may vary according to target

of opportunity or the operational status of the instruments.
Requests from the various instrument teams must be prioritized,
scheduled and de-conflicted if necessary.

- Satellite operations: Satellite operation activities must be
managed according to the different phases of the mission and to
the availability of communication links to the spacecraft. It must
also be possible to incorporate changes in constraints,
permanently or temporarily, due to changes to the scientific
mission, or changes in the operational status of spacecraft
systems.

- Ground operations: Ground operations activities must be
managed as well as adapting to any changes in operations that
may occur in the course of the mission (e.g. new ground stations
added to the ground network, automation may be implemented).

The scope of the Mission Planning depends highly upon
the mission. Inputs and outputs can vary quite widely.
Some Mission Planning systems accept user requests,
while others do not. Some Mission Planning systems
generate only a high level plan, while others generate a low
level command procedure schedule, and yet others will
even monitor and control the execution of the schedule.
However, for all Mission Planning systems there is a
common point: they all follow the Mission Reference
Operations Plan (ROP), which describes the different
scenarios that the mission will encounter during its
execution. (Please see the next section for a more detailed
description of the ROP).
The ideal situation when implementing any software tool is
that the inputs and outputs are known beforehand
completely, and are frozen. The programmers can then
implement the SW in a straightforward way, without
necessarily having any specific detailed knowledge of the
mission.

However, this is not a realistic situation for most
Mission Planning systems. The main input for the Mission
Planning system is the ROP, and the ROP can evolve

mailto:akavelaars@gmvspacesystems.com

significantly over the development of the mission, as well
as during the mission lifetime. In addition, the design and
implementation of the Mission Planning may, and usually
does, start before the ROP has been fully written.
This situation leads to a problem. The challenge is to
develop a cost-efficient Mission Planning system whose
inputs are not completely known during development,
while not running into time-consuming and costly changes
in the SW for every change.
In order to address this problem, GMV has developed a
Generic Mission Planning kernel called flexplan.

Figure 1. flexplan Architecture

II. flexplan Overview
flexplan is a highly configurable tool which can be
efficiently configured for different missions. It covers the
end-to-end loop of Mission Planning and Scheduling and
allows users to adapt the system to their requirements
quickly and easily.
 At the core of flexplan’s scheduling process is a Soft
Algorithm Generation engine that requires no recompiling
of the tool whenever flight rules change. This engine is
largely responsible for the ease of adaptability of flexplan
to the different mission phases, requirements, and styles of
planning and scheduling operations. This soft algorithm
generation engine can be used without needing to have any
programming background. The only operational constraint
is to be able to identify the rules that will plan the daily
operations of the spacecraft and the ground activities
during the different phases of the mission.
 flexplan’s modular architecture allows its components to
interact with each other via a database. This allows
different components to be run at different times or
concurrently by different operators. This architecture also
allows flexplan to be easily extended with additional
modules to support specific mission requirements or needs.

 Figure 1 shows a flexplan’s architecture. The following
sections briefly describe flexplan Mission Planning System
components. They are divided into two categories:
 - Core components: Modules responsible for the
generation of mission conflict free schedules.
 - Optional components: Modules supporting additional
features for the status awareness of planned activities.
A. Core Components
All interfaces between flexplan and the external world are
managed by this subsystem. It has a “pluggable”
architecture which uses an XML interface schema (which
is publicly available) to adapt easily to different types of
missions.
 1. Mission Environment Preparation (MEP). This
offline tool is used to configure the mission. Using the soft
algorithms embedded in the MEP, the user is able to define
the flight rules and mission rules for a specific mission,
along with the events, resources (including availability
profiles), tasks and operations of the mission. Using this
information, the MEP generates the Master Schedules
which define specific scenarios within the mission and
break the mission up into as many scenarios as the user
specifies. The MEP is primarily configured the beginning
of a mission and thereafter is run only whenever the
mission or flight rules change. All the elements involved in
the mission planning process can be defined and changed
by the operations team during the operational lifetime of
the mission.

Figure 2. flexplan Mission Environment Preparation
GUI (MEP)

 2. Planning Input Customization (PIC). During
mission operations, this flexplan subsystem gathers all
external inputs which may trigger events for the mission
planning system. These inputs include Flight Dynamics
events (i.e. eclipses, ground station acquisition and loss,
maneuvers), user requests from the scientific community,
and any user defined events as specified.

Figure 3. flexplan Planned Input Customization GUI
(PIC)

 3. Schedule Generator (SG). Using the inputs from the
PIC and a Master Schedule from the MEP, this flexplan
subsystem generates a mission schedule. This schedule
contains the operations that are linked to the events defined
by the user via the soft algorithms. The schedule generated
by this subsystem may or may not be conflict free.

Figure 4. flexplan Schedule Generation GUI (SG)

 4. Conflict Resolution (CR). In order to obtain a
conflict-free schedule, the user must execute this flexplan
subsystem. It provides tools to detect and resolve conflicts
raised by the Schedule Generator which may be due to
timeline constraints or over-consumption of resources.
Based upon the conflict-free schedule generated by this
subsystem, commands can be generated.
In addition, using the Soft Algorithm Generation engine
user defined constraint checks can be added to the CR to
ensure that mission specific parameters are not violated by
the schedule.

5. External Interfaces (EI). All interfaces between flexplan
and the external ground system elements are managed by this
component. It monitors the availability of scheduling products
and converts the input products to XML format for ingestion into
flexplan.

Figure 5. flexplan Conflict Resolution GUI (CR)

It has a “pluggable” architecture that uses an XML interface
schema (which is publicly available) to adapt easily to different
types of missions. Whenever the input products do not comply
with the XML schema, adapters are provided in the external
interfaces to parse in the various input formats used by the
mission.

Figure 6. flexplan Core Process Architecture

B.Additional Components
The modules described in this section capture the
additional planning and scheduling functions that can
support missions:
 1. Load Builder (LB). The Load Builder module is
responsible for converting flexplan schedules and tasks
into stored command loads for the spacecraft, following
the CCSDS tele-command standard. In addition, the load
builder will process ephemeris files generated by the Flight
Dynamic System (FDS) and convert them into flight
software loads.
 2. Schedule Execution (SE). The SE is used to visualize
the real time execution of the planned tasks scheduled by
use of status messages provided by the Real Time System
(RTS). The SE can be used to change the schedule in
almost real time as well as modify the currently executed
schedule based on contingencies.

Figure 7. flexplan Schedule Execution GUI (SG)

3. Memory Model (MM). The Memory Model module

maintains an image of all the files uplinked to the spacecraft and
their status as used by the onboard computer. All files in the
memory model are archived by category. Its inputs are messages
from the RTS, which specifies the name of the memory file and
the action performed on that file (e.g. uplink, activate, dump). The
output of the Memory Model is a set of reports with the various
statuses of the memory files.
 4. Activity Plan (AP). The Activity Plan is a web-based
client that displays all or a configurable set of scheduled
activities and inputs. It allows the user to view execution
status of all planned activities based on feedback messages
received from the RTS. Several MPS reports such as the
onboard stored command load and the ground pass plans
are also made available to the user.

 Figure 8. flexplan Activity Plan Web Interface (AP)

5. Report Query Tool (RQT). The Report Query Tool
allows the user to define MPS reports in ASCII, XML or
HTML format, containing any information stored in the
flexplan database and distribute them via email, hard copy
or soft copy.
 6. Tailored Events Generator (TEG). The TEG
module is used as an extension of the MEP and the PIC to
generate custom events specific to a mission constrained to
requirements not generally applicable to other missions. It

is typically used in missions that require an additional level
of planning algorithms for complex planning scenarios.
 7. Slew Planning Tool (SPT). This module is similar to
the CR module described above, but it implements
configurable constraint checks unique to the scheduling of
slew maneuvers. The inputs to this module are typically
requests from the scientific or earth observation
community for slew of an instrument to observe different

rate the mission schedule,
resolve any conflicts, and finally export the conflict-free
schedul

rators to feel free to
im

ents specifications.

s to the mission and flight right up to launch
an

 as any
sp

A. Client-server architecture and multiple access levels
pr

targets of interest and the output is a conflict-free slew plan
provided to the Attitude Ground System (AGS).
 A user will typically interact with the MEP when
configuring the mission and only rarely thereafter. The
daily mission planning loop includes the PIC, SG and CR
components. The user will typically start interacting with
the PIC by importing the external events (flight dynamics,
user requests …), then gene

e to the control center.

III. flexplan Strengths
flexplan development has been a change in the approach
given to the Mission Planning system concepts in terms of
responsibilities sharing. Because of this, communication
between Operators and Developers has been reduced to a
set of programmatic issues (GUI, interfaces with external
systems …). This allows the ope

plement what they need without having to translate it
into requirem

The following have been found to be particular benefits
of flexplan:

- The Soft Algorithm Generation makes flexplan easy to
reuse and adapt both during a mission and also potentially
expanding it to other missions. Not needing to recompile the
system after changes to the mission rules is very highly valued.
Significant change

d even during the various phases of the mission have been very
easily carried out.

- The open XML schema for external interfaces provides a
clean, well-documented interface to external entities.

- Low Cost & Rapid Deployment: The ability to meet very
tight and demanding schedules at a reasonable price was decisive
factors in the selection of flexplan for missions by Eumetsat,
ESA, USGS and NASA. The low amount of specific coding
needed for each new mission (typically interfaces, as well

ecific requirements or additional, optional modules), as well as
the associated validation, means that costs are kept lower.

- Multi-mission and Multi-user: The ability to accept inputs
from multiple ground system facilities (and even different ground
systems on different continents) and multiple satellites, and
integrate them easily has been particularly valued by Eumetsat
and NAS

ovide an additional layer of configurability and versatility to the
system.

- Lower Overhead: Having a well-documented COTS, which
requires a low amount of specific coding for a particular mission,

reduces the managerial overhead both for GMV and the
Customer. This is particularly notable in the area of SW
modifications, since with flexplan they are almost always related
to purely SW issues/modifications and not to actual operations.
Th

ecoming highly stable and
reliable. No software anomalies have been identified in the
fl

h

and Command (T&C) System and finally Section H

eduling outputs.

eam will use the MEP to configure flexplan to
. There are four mission elements to be

rocess or modify the characteristics of existing
l

sequence

nces and pass scripts. Tasks are

explan. Each command can be

by the Mission Team to support various space
and ground operations, during the different phases of the

his grouping allows

. New events are added, existing events

 tasks linked to inputs that are
no longer present. Tasks affected by new or updated events

fter the

from any of the

is also results in a fewer change requests and modifications to
the system (with all of their implications in schedule and budget).

-Robustness and reliability: The flexplan core modules have
been implemented in all the missions where flexplan has been
deployed. This means that the flexplan core has been largely
validated for different scenarios b

explan core for the last two years.

IV. Sample flexplan Operations
T is section describes the Mission Planning and
Scheduling process for a Sample Mission using flexplan.
 Sections A to D describe the scheduling process based
on flexplan’s modules. Section E is a sample operational
scenario. Section F describes how flexplan is implemented
for automated operations. Section G describes the typical
feedback loop between flexplan and the Mission Telemetry

describes some examples of flexplan’s sch

A. flexplan Configuration (MEP)
Prior to launch during the mission preparation phase, the
Mission T
support the mission
defined:

• Resources
• Input Events
• Output Tasks
• Master schedules (scheduling rules)

The Resources are configured to keep track of the
resource usage and avoid scheduling of conflicting tasks.
The Resources can represent physical (e.g. solid state
recorder) or logical (e.g. availability of personnel)
elements. The user can define the minimum and maximum
capacity of each resource as well as whether any use of the
resource permanently or temporarily affects its availability.
 Planning inputs to be ingested by flexplan are defined in
the MEP as Events belonging to a configurable category,
and having certain parameters and attributes. This gives the
Mission Team the flexibility to add new planning inputs to
the MPS p
p anning inputs without having to modify the MPS
software.
 Output tasks are also defined in the MEP as a
of subtasks to be place in the schedule and are ultimately
the output commands and procedures of flexplan.
 The tasks are defined under specific platforms to
designate them as spacecraft or ground tasks so as to
distinguish between them when generating the so
spacecraft command seque

made up of four hierarchies: sequences, mini-sequences,
activities and commands.
 Spacecraft commands and ground procedures are
defined in XML database files received from the T&C
system and ingested by fl
associated to the use of one or more resources along with
the consumption profile.
 Finally, master schedules defined as a set of rules that
identify conditions based on planning inputs to trigger the
scheduling of tasks. The rules can be easily defined and
modified

mission.

B.Scheduling Inputs (PIC)
flexplan implements a single open XML schema for all
planning inputs, of any type. The schema structure
provides a flexible XML message that easily maps to any
information of the planning inputs. The schema captures
the source of the input, the time period for which the input
file applies and detailed information regarding each input.
 Planning inputs are grouped into different types, each
usually corresponding to an input product (i.e. file) in
which they are sent to flexplan. T
flexplan know which set of products is being updated each
time planning inputs are received.
 Changes to the scheduling inputs such as updates to
forecast products resulting from more accurate orbit
knowledge can be received at any time. flexplan will use
the start and end times of the new scheduling input file to
update all of the events belonging to the category of the
file being ingested
are updated and obsolete events are excluded from the
event time space.
 In addition, flexplan can receive updates and changes to
an already received schedule due to last minute changes
requested by the Mission Team for upcoming special
events, anomalies such as a ground station site going
offline or sudden unavailability of a ground station(s) from
another spacecraft declaring an emergency. flexplan will
notify the user of scheduled

are also listed for the user.

C. flexplan Schedules (SG)
Scheduling products are delivered to flexplan and
converted them to XML format. The Mission Team can
choose to have the products automatically ingested by
flexplan, or can manually ingest each product. A
inputs are ingested the Mission Team can modify or delete
the inputs events or add new ones via PIC module.
 The scheduling rules defined by the Mission Team will
identify conditions based on the occurrence or no-
occurrence of specific events or requests and will insert
tasks in the schedule. These tasks can be defined with
default values or use information

scheduling inputs to further define tasks parameters such as
durations, offset, command values etc.
 Once the Mission Team is satisfied with the scheduling
inputs, the schedule generation begins. There are three
types of schedules. They are the Schedule Generation (SG)

ly as needed. In

conflict

 format and

nk to the Spacecraft. Figure 9 below summarizes
the schedule the Mission
Team.

s

urable constraint checks to ensure there

 as events to trigger slew activities

o produce a schedule for based on
this scenario follows.

schedule, the Conflict Resolution (CR) schedule, and the
Executable Schedule (ES).
1. SG Schedule. The SG schedule is generated using
ILOG Rules to trigger sequences based on specific events.
The SG schedule can contain both spacecraft activities and
ground activities or the SG schedule can only contain
activities related to spacecraft or ground on
the SG schedule, the Mission Team can manually add,
modify or delete sequences as necessary.
2. CR Schedule. After SG schedule completed, a CR
schedule is generated from the SG to perform
checks. If there are conflicts in the CR schedule, the
Mission Team can resolve them or override them.
3. ES Schedule. The last step in completing the daily
schedule is to designate it as “Executable”. This can be
done when the CR schedule does not have any conflicts or
conflicts have been overridden. The ES uses the latest
events and the latest MEP definition to create a temporary
schedule. The temporary schedule is compared with the ES
to ensure that the ES is consistent with the latest events and
MEP definitions. If there are any discrepancies, the
Mission Team receives the warning messages and can use
the temporary schedule in the SG to make a new ES. The
ES makes a schedule and pass scripts in ASCII
stores them in a temporary directory. Once the ES is made,
the ES can be viewed but cannot be modified.
 The ES contains activities for both the spacecraft and for
ground operations. Upon exporting the ES, all ground
activities are placed into pass scripts for the T&C system,
and all spacecraft activities are sent to the Load Builder.
The Load Builder converts them to a binary command load
for upli

generation process followed by

Figure 9. Scheduling Proces

D. Conflict Resolution (CR)
flexplan will nominally perform automated operations (see
below) where no conflict resolution will be needed other
than for Slew Maneuver Requests. The Mission Team will

receive off-nadir slew requests from various instrument
Science Operations Centers (SOCs). The Slew Planning
Tool (SPT) will schedule the various slew requests (off-
nadir slew requests or special slew requests) and apply a
set of user config
are no conflicts.
 Once the slew schedule is conflict-free the SPT will
export a slew to be sent to AGS to compute quaternion
commands. These quaternion commands are then sent back
to flexplan and ingested
in the daily schedules.

E. Sample Operational Scenario using flexplan
This section provides an example operational scenario
where flexplan provides functionality through each of its
components. The Figure below is a summary of an
operational scenario. A description of the different steps
followed in flexplan t

Figure 10. flexplan Sample Operational Scenario

Step 1. User defines the mission scenario in the MEP
(Mission Environment Preparation module):
- Resources defined: Mission Manager, Engineer-1,
Engineer-2, Meeting Room, Simulator, Test Satellite
Control Center.
- Events defined: Maneuver request.
- Tasks defined: Maneuver sequence as follows:

− simulation activity 30 days prior to maneuver
− maneuver authorization meeting 5 days prior to

maneuver
− maneuver firing activity including:

• maneuver preparation activities
• maneuver execution activities
• maneuver reconfiguration activities

− maneuver analysis and report generation
- Master Schedule defined: Scheduling rules as follows:

− When there is a maneuver request
− Then schedule maneuver sequence

Step 2. FDS system sends a request to perform a
maneuver.
Step 3. flexplan ingests the maneuver request in the PIC
module (Planning Input Customization module). External
data is ingested through the External Interfaces (EI).
Step 4. User generates a schedule in the SG module
(Schedule Generation module). flexplan will apply mission
rules to the input events to add the maneuver sequence to
the schedule.
Step 5. User views the schedule in the CR module
(Conflict Resolution module) to ensure that there are no
conflicts. If any of the resources required (personnel,
simulators, etc.) to perform the maneuver activities are
unavailable, then the conflicting tasks will be identified
and the user must resolve the conflict or override it.
Step 6. User exports the schedule as a set of command
procedures and timelines.

F. Automated Operations
Automation of nominal supports is driven by pass scripts
generated with flexplan. Activities for real-time operations
are exported by flexplan in the form of pass scripts that
conform to formats for example from the Satellite Test and
Operations Language (STOL) used by the Mission T&C
system. The T&C system will read in the pass scripts using
a STOL procedure developed by the Mission Team. The
read-in STOL procedure will run in a continuous loop
using the network schedule on contacts as a means to
identify which pass script needs to be open and read. The
pass scripts generated y flexplan and the network schedules
are the only two input products required to run automated
activities. Once the pass script is read successfully, the
T&C system will queue each of the scheduled activities as
defined in the pass script.
 flexplan can be configured by the Mission Team to
designate each pass script as “automated” or “manned”.
The Mission Team has control of a global setting for all
pass scripts but can also specify the automation setting on a
per pass script basis. Pass scripts for nominal contacts will
generally be automated, whereas pass scripts containing
special activities may be configured to be executed
manually by the Mission Team. The automatic execution
of pass scripts can always be disabled by the Mission Team
to continue with manual execution procedures if necessary.
 Pass scripts will be used nominally on every contact by
the T&C system to execute the planned real-time activities
that were scheduled in flexplan. The planned activities can
either be STOL procedures or Spacecraft commands.
Using the pass scripts for manned operations whenever
automation is not adequate will cut down on operator error
by requiring less typing and real-time decision making in
the selection of the proper procedure options. Pass script
activities will include everything from start to finish
including the procedures to setup the ground system prior
to a real-time contact and to clean up the ground system
following the contact.

G. The Feedback Loop
In order to update and report the status of all planned
activities and of the MPS Memory Model a feedback loop
is implemented between flexplan and the T&C system. The
Mission Team uses a message generation function in the
STOL procedures executed by the T&C system to write
messages to a post-pass report file detailing the execution
status of pass script activates, and also detailing any
changes to the onboard memory (e.g. new memory file
uplinked) done during the pass.

1. Updating the Activity Map
 All Pass scripts will reference the name of the executable
flexplan schedule from which the pass scripts were created.
In addition, all activities in the pass scripts are assigned a
task ID included in a feedback message to flexplan to
identify activity and it execution status.
 Each message contains the name of the pass scripts,
execution time, procedure unique ID of the procedures and
the status. The status of the procedures can be pending,
completed or failed. flexplan ingests the messages
automatically and uses the name of the pass scripts and the
unique ID to identify the activity and update its status as
indicated in the messages. The Mission Team can then
view the status of all planned activities in the Activity
Plan.

2. Updating the Memory Model
Each change commanded by the Mission Team to modify
the status or content of the onboard memory will generate a
message for the Memory Model.
 The MPS ingests the messages automatically and
updates the status in the Memory Model. The main use of
the Memory Model is to determine what was activated in
RAM if power-on reset of processor occurs and to track of
what load files are loaded and activated.
 Prior to launch the Memory Model will be initialized
with a file listings done via spacecraft command. Once
initialized with launch image, the Memory Model will be
updated by ingesting the messages from the feedback log
generated by the T&C system after each pass with the
Spacecraft.

H. Scheduling Outputs
Sample flexplan outputs are spacecraft stored Command
Loads and reports, Pass Scripts, Activity Plan, and
Memory Model Reports.

1. Spacecraft Stored Command Loads and Reports
flexplan is responsible for generating the two types of
stored command loads: Absolute Time Command
Sequences (ATS) and Relative Time Command Sequences
(RTS). ATS loads will be generated daily and uplinked to
the Spacecraft. They are generated by the load builder from
a conflict free schedule of activities exported by flexplan.
RTS loads are defined by the Mission Team using the MEP
module of flexplan. Whenever necessary these RTS
definitions will be exported from flexplan and the built into
loads by the load builder. Both types of loads will have a

load report detailing the content of the loads and
characteristics of the load files.

2. Pass Scripts
flexplan generates Pass Scripts used by the Mission Team
in conjunction with the T&C system to automate the real-
time activities on the ground. Pass Scripts are a listing of
all activities, either ground procedure or Spacecraft
commands, that get executed by the T&C system. A
separate Pass Script is generated for each pass.

3. Ephemeris Loads and Reports
The Load Builder module of flexplan will also generate
ephemeris load files from ephemeris data computed by the
Flight Dynamics System. Ephemeris loads will be
generated daily and uplinked to the Spacecraft. An
ephemeris load report is also generated by the Load
Builder including the ephemeris data, and other
information regarding number of data point, time step, etc.

4. Activity Plan
The AP is a combination of activities from the ATS daily
load and the Pass Script, displayed on a web-based
timeline. The Mission Team can configure which activities
and scheduling inputs are displayed in the Activity Plan. It
will be used daily by the Mission Team and external
groups to view past, current, and future operational
activities and their status as reported by the real-time
system feedback messages to flexplan. Access to certain
MPS reports and input files are also available via the
Activity Plan as links associated to timeline elements.

5. Memory Model Reports
The Memory Model will track all movements of memory
files onboard the spacecraft in order to provide the Mission
Team any load file status. Several reports can be generated
by the Memory Model containing information about the
different categories of load files, the current status of the
on-board memory, historical information, etc. The primary
purpose of the memory model is to generate a listing of the
onboard files and of the active files in the Spacecraft
memory space at any given time in the mission,
specifically prior to any processor anomalous reset.

V. Conclusion
flexplan is a robust solution for flexible Planning and
Scheduling that has supported complex missions for the
European Space Agency (ESA) and the European
Organization for the Exploitation of Meteorological
Satellites (EUMETSAT) and soon the Lunar
Reconnaissance Orbiter (LRO) Mission for the National
Aeronautics Space Administration (NASA) and LDCM for
NASA and the US Geological Survey (USGS).
 The use of flexplan as a MPS solution validates the use
of flight proven COTS in efficient, lower cost ground
systems.
 flexplan supports any CONOPS for daily scheduling of
on-board, real-time and imaging slew planning activities,
while allowing the Mission Team to implement
modifications to the nominal plan whenever necessary.

 As a single point for all mission scheduling, flexplan
provides the global awareness of the schedule requests and
status of activities from the various groups that define the
mission daily life.
 flexplan allows missions like Eumetsat, LRO or LDCM
to automate the repetitive and predictable daily activities as
well as to provide a single point of collection for all
mission elements contributing to the daily schedule of the
spacecraft. It maximizes the time that is available to the
Mission Team for ensuring the health and safety of one to
multiple spacecraft, ground stations and schedule events
accommodating the dynamic needs of the mission and user
community.

References
GMV Team, 2009. flexplan Technical Overview. GMV
Space Systems, Inc.

GMV Team, 2009. flexplan Generic Architecture
Document. GMV Space Systems, Inc.

	Step 2. FDS system sends a request to perform a maneuver.
	Step 3. flexplan ingests the maneuver request in the PIC module (Planning Input Customization module). External data is ingested through the External Interfaces (EI).
	Step 4. User generates a schedule in the SG module (Schedule Generation module). flexplan will apply mission rules to the input events to add the maneuver sequence to the schedule.
	Step 5. User views the schedule in the CR module (Conflict Resolution module) to ensure that there are no conflicts. If any of the resources required (personnel, simulators, etc.) to perform the maneuver activities are unavailable, then the conflicting tasks will be identified and the user must resolve the conflict or override it.
	1. Updating the Activity Map
	2. Updating the Memory Model
	1. Spacecraft Stored Command Loads and Reports
	2. Pass Scripts
	3. Ephemeris Loads and Reports
	4. Activity Plan
	5. Memory Model Reports

