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Abstract 

We describe an efficient, online goal selection algorithm 
and its use for selecting goals at runtime. Our focus is on the 
re-planning that must be performed in a timely manner on 
the embedded system where computational resources are 
limited. In particular, our algorithm generates near optimal 
solutions to problems with fully specified goal requests that 
oversubscribe available resources but have no temporal 
flexibility. By using a fast, incremental algorithm, goal 
selection can be postponed in a “just-in-time” fashion 
allowing requests to be changed or added at the last minute. 
This enables shorter response cycles and greater autonomy 
for the system under control. 

Introduction   

Consider the following properties of many autonomous 
systems: 
• embedded computing resources are typically scarce 
• response times can be critical 

In other words, our algorithms must be fast. In particular, 
for time-critical problems, we must be able to make 
guarantees on responsiveness. Also consider the following: 
• the time horizon is bounded (i.e. the autonomous 

system does not need to be indefinitely autonomous) 
• some parts of the planning problem (ones that can 

be well predicted) can be solved in advance 
This suggests that, in many cases, we are not trying to 
solve the general “planning problem”. For example, active 
spacecraft rarely operate for more than two weeks without 
ground communication. Therefore, onboard plans do not 
need to cover a large time frame. Also, parts of the 
planning problem can be solved well in advance (e.g. 
spacecraft orbit predictions) and pre-compiled solutions 
can be utilized by the onboard planner. Limiting the scope 
of the problem gives us some hope at finding efficient 
solutions. Our work focuses on a restricted planning 
problem with a tractable solution that has a guaranteed 
worst-case complexity. 
 Specifically, we address the problem of providing high-
level, goal-based autonomy for computationally limited 
robotic systems. We enable on-board and remote goal 
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triggering through the use of an embedded, dynamic goal 
set that can oversubscribe resources. From the set of 
conflicting goals, a subset must be selected that maximizes 
a given quality metric. 
 Our approach solves the following problem: 
•    Goals have fixed start times and durations (making 

this a goal selection problem rather than an NP-hard 
scheduling problem). 

•    Goals can have flexible sub-activities for execution but 
the selection of alternative branches or timings cannot 
require search (e.g. we may wait for an event, retry a 
fixed number of times, or branch based on a condition 
but no backtracking occurs).  This can be viewed as 
backtrack-free hierarchical task network planning.  

•    Goals can conflict by exceeding the limits of shared 
resources (e.g. oversubscription) with selection based 
on a strict priority ordering (i.e. a goal can never be 
pre-empted by any number of lower priority goals). 

•    Goals can be added, removed, or updated at any time, 
and the “best” goals will be selected for execution. 

 While these algorithms are general, we have 
implemented them as prototype extensions to the Virtual 
Machine Language (VML) [Grasso 2008] execution 
system. VML is advanced, multi-mission flight and ground 
software developed for NASA flown on a number of past 
and current missions including: The Spitzer Space 
Telescope, Mars Odyssey, Stardust, Genesis, Mars 
Reconnaissance Orbiter, Phoenix, and Dawn. The 
prototype goal and resource concepts are added to the 
language for both planning and execution purposes. 
Specifically, the Goal Manager (GM) maintains the set of 
requested goals, their priorities, and their interactions (i.e. 
shared resource constraints). When a goal is submitted, the 
GM quickly analyses the goal to determine whether or not 
it should be selected for execution. When the current time 
approaches the scheduled start time of a selected goal, the 
goal is committed and satisfied by spawning the 
corresponding VML sequences. 
 Our work is motivated by experience from space 
mission operations, such as autonomous operations of the 
Earth Observing One satellite [GSFC] and operations 
conducted by the Autonomous Sciencecraft (ASE) flight 
and ground software [Chien et al. 2005]. In ASE, events 
are detected on-board which trigger changes in goal 
requests. For example, images taken of the Earth can be 
processed on-board to detect interesting events such as 



volcanic eruptions. These detections can then trigger 
changes to upcoming goals such as increasing the priority 
of requests for images of the same volcano. On the ground, 
sensorweb processing may detect similar events and 
upload new goal requests in a short time frame.  
 We demonstrate our prototype implementation on these 
scenarios. In the Goal Manager (GM), goal selection is 
postponed until the latest possible time, allowing goals to 
be added, removed or changed just prior to execution. This 
dynamic goal set enables additional autonomy capabilities 
such as on-board and ground-based event triggering, 
similar to ASE. The GM, however, does not require a full 
planner and has theoretical guarantees on worst-case 
response time. In these scenarios, start times of goals are 
assumed to be fixed. This is a reasonable assumption due 
to the nature of a spacecraft in orbit – opportunities for 
communications and science observations occur at specific 
(repeating) times. Also, we have found that many 
spacecraft resource constraints can be abstracted to the 
goal level. For example, the EO-1 spacecraft can point 
science instruments to only one target at a time. Thus, for 
target locations in close proximity, we must choose one of 
possibly many observation goals. We take advantage of 
these assumptions to develop efficient algorithms that 
provide advanced onboard autonomy capabilities. 
 Finally, we build on previous work [Rabideau and 
Chien, 2008] by providing an empirical analysis that 
supports the theoretical results. In these experiments, the 
GM runs in polynomial time, generating schedules that 
rank near optimal. 

Resource Constraints 

The primary driver for goal selection comes from the 
constraints on resources shared by the goals. We define a 
resource constraint as a value and a bound on that value 
over a period of time. Resource constraints can exist as 
part of goals, activities, or sequences. A combination of 
effects of constraints on the same resource conceptually 
comprises a timeline (although we do not maintain an 
explicit representation of a timeline). Resource constraints 
have the following attributes: 
 
ResourceConstraint 

{ 

  IdType         id; 

  ResourceType   type; 

  TimeType       start; 

  TimeType       end; 

  ValueType      value; 

  ValueType      initial; 

  ValueType      min; 

  ValueType      max; 

}  

 
The id uniquely identifies the affected resource for the 
purpose of analyzing the interaction with other resource 
constraints. The type specifies the type of effect that the 

constraint has on the resource. The time range specifies the 
temporal scope of the constraint. The last four values 
specify, respectively: the constraint value, the initial value 
of the resource in the absence of all constraints, the 
minimum valid resource value, and the maximum valid 
resource value. 
 There are four fundamental types of resource 
constraints: Producer, Consumer, Assigner, 

and Requirement. A Producer adds the constraint 
value to the resource at the start of the time range and 
subtracts it at the end (where the end may be infinity). A 
Consumer subtracts at the start and adds at the end. An 
Assigner simply assigns the constraint value at a 
specific time point. A Requirement specifies only a 
constraint on the value of the resource over a period of 
time (i.e. it has no effect on the resource value). 
 A resource constraint can be defined for any type of 
value as long as the following set of operators is available: 
+, -, =, <, and ==. The arithmetic operators allow us to 
compute resource values from a set of interacting resource 
constraints, and the boolean operators are for testing the 
validity of computed resource values. For example, for a 
single producer, we would add the produced value to the 
initial value and compare the result to the maximum value. 
If the constraint check fails, the resource value is 
considered invalid (i.e. has conflicting constraints). 
 We have demonstrated four common types of resource 
values: int, double, string, set<string>. 
The definitions of the operators are intuitive for simple 
types such as integers, doubles, and strings. For sets, we 
define them as follows: addition (+) is set union, 
subtraction (-) is set subtraction, assignment (=) replaces 
all values in one set with values from another, less (<) is a 
lexicographical ordering on two sets, and equals (==) 
returns true if each element in one set is equal to exactly 
one element in the other set. 
 For set resources, we introduce another operator for set 
containment. This allows us to specify a constraint that 
requires the computed resource value (which is a set of 
values) to contain the constraint value.   

Goals 

We define a goal to represent the request for execution of 
an activity or set of activities. Goals have the following 
attributes: 
 
Goal 

{ 

  IdType                  id; 

  PriorityType            priority; 

  TimeType                start; 

  TimeType                end; 

  set<ResourceConstraint> constraints; 

} 

 
The id is used to uniquely identify the goal. The goal 
priority is used to rank goals. The start and end 



values specify the expected temporal scope of the goal. 
Due to system uncertainties at the time the goal is 
requested, the start and end times contain only the 
requested or expected values. Goals also maintain a set of 
resource constraints that must hold for the goal to execute. 
Similar to the start and end times, resource constraints 
contain the requested or expected values for the resources. 
 The goal attributes are used for selecting and dispatching 
goals for execution. In addition, a goal must specify what 
is to be done when it is dispatched. Typically, this involves 
spawning a sequence to start execution at a given time. 
Essentially, we define goals as a summary of the intent and 
effects of one or more sequences. 

Example: Onboard File System 

When defining goals and resources, we worked to find a 
balance between a representation that is general and 
powerful, but also has the details required for efficient 
resource analysis and goal selection. We show the power 
of the representation with an example: managing an 
onboard file system. This example is of particular interest 
to us because many spacecraft (including EO-1) must deal 
with data products stored on an onboard file system. 
Typically, science activities write data to a file while 
engineering procedures read and downlink files, deleting 
them when appropriate to free up space. 
 We can model this file system with five goals and four 
resources. The goals represent file system requests: create, 
delete, read, write, and format. The resources shared by 
these goals are: a set of file handles (100), limited disk 
space (1024K), a current directory listing, and finally an 
exclusive use of the file system by certain operations. 
 Each goal instance creates and adds the resource 
constraints for that goal type. Creating a file consumes one 
of the 100 available file handles, and produces a file with 
the specified unique ID. Deleting a file produces a file 
handle while consuming the file with the specified unique 
ID. It also produces disk space equal to the size of the file. 
Writing to a file consumes available memory equal to the 
size of the data written. Both writing and reading require 
that the unique file ID is a member of the set of available 
file IDs, and that no other reads or writes occur at the same 
time. 
 Each goal type also defines the required method for 
executing the goal. For example, creating a file would call 
fopen() on a Unix operating system. 

Goal Selection Algorithm 

We present an algorithm for selecting goals with 
oversubscribed resources. The pseudo-code for the core of 
the algorithm (updating the set of selected goals) is shown 
in Figure 1. The algorithm can be categorized as a repair-
based approach with no search – the constraints and 
priorities define exactly which goals to choose. We focus 
on the re-selection that is required when the requested goal 

set changes, either by adding a new goal or removing an 
existing goal1. While making selections, goal parameter 
values (e.g. start times) are assumed to be fixed. The result 
is a set of non-conflicting “best” goals that have been 
selected for execution. After selections are made, 
conflicting goals are retained for additional consideration 
in the event of future changes to the goal set. In this 
implementation, conflicts are defined by shared resource 
interactions, and choices are made among conflicting goals 
using a strict priority rule. Only the highest priority goals 
are selected, with ties broken by earliest request time (i.e. 
first-come-first-served). 
 The Goal Manager (GM) maintains data structures that 
enable efficient goal selection and dispatch. One set of 
goals is sorted by priority so that the algorithm can 
efficiently perform goal selection. The goals are also sorted 
by start time so that it can quickly find the next selected 
goal to dispatch for execution. For each goal, the GM 
maintains a set of interacting goals (i.e. goals that share a 
resource) to assist resource reasoning. According to the 
priority rule, a goal will be selected and dispatched for 
execution if and only if it does not conflict with a higher 
priority goal, which does not conflict with an even higher 
priority goal, etc. For example, in Figure 2 we assume that 
overlapping goals conflict. Goal C is highest priority and is 
selected. Goal B is not selected because it conflicts with C. 
Because B is not selected, goal A is selected even though it 
is lower-priority than B. Therefore, goals A and C are the 

                                                 
1Changing parameters of a goal (e.g. start time, priority) 

can be implemented by removing the goal and adding it 

back with new values. 

01  void updateSelectedGoals(g) 

02    for each Goal gs in selectedGoals 

03        with priority <= priority of g 

04      remove gs from selectedGoals 

05    for each Goal gi in allGoals 

06        with priority <= priority of g 

07        in decreasing priority order 

08      if wasStarted(gi) 

09        or isBestGoal(gi, selectedGoals) 

10        add gi to selectedGoals 

11 

12  bool isBestGoal(g, selectedGoals) 

13    for each interacting Goal gi of g 

14      if gi is in selectedGoals 

15         and gi conflicts with g 

16        return false 

17    return true 

 

Figure 1: Incrementally updating the set of selected goals 

 
Figure 2: Goals A and C are selected 



“best” goals. 
 Adding and removing goals involves three steps: 
updating the sets of interacting goals, updating the sorted 
goal sets, and updating the selected goal set. This last step 
is the most interesting and is shown in pseudo-code in 
Figure 1. In this step, we first de-conflict the schedule by 
removing all goals with lower priority than the goal being 
added or removed (lines 2-4). Higher priority goals are 
unaffected and can remain selected. Next, we re-evaluate 
each of the lower-priority goals (lines 5-9). Evaluating a 
goal g involves adding the resource effects of g to the 
effects of all selected (i.e. higher-priority) goals that 
interact with g (lines 13-18). If the combined resource 
effects are invalid, then g will not be selected (lines 19-
20). Finally, dispatching goals within a given time range 
simply involves finding selected goals that fall in that 
range. The dispatch function is intended to be called 
periodically with a small time range covering the near 
future. 
 It is important to note that the low-priority conflicting 
goals are retained so that changes to the goal set can be 
made at any time (goals added, removed, or updated), and 
goals will be dispatched from the latest set of selected 
goals. Once a goal has started executing (determined by the 
“wasStarted” function on line 8) it will thereafter be 
selected regardless of priority. A goal expires if it is 
unselected and falls in the past, or if it is selected and all of 
its interacting goals completely fall in the past. Expired 
goals are periodically removed from the goal sets. As a 
final note, the definition of “interacting” and “conflicting” 
can be arbitrary boolean operators. In this work, resources 
define which goals interact and resource calculations are 
performed to determine conflicts. 

Algorithm Analysis  

We now describe the run-time computational complexity 
of our goal selection algorithms. Selecting the best goals 
and updating the cache (lines 21-39) is: 
 
   O(MlgM + N(lgM + Xi(lgM + Si))) 

 
where N is the number of all goals, M is the number of 
selected goals, Xi is the number of interacting goals for 
goal i, and Si is the number of resources shared by goal i. 
Goals are stored in tree data structures with a log-based 
lookup. The first term comes from removing lower-priority 
goals from the selected goals (lines 22-24). The longer 
second term comes from re-selecting the best goals (lines 
25-39). 
 Assuming worst case, where each goal interacts with 
every other goal (Xi == N for all i), each goal uses all 
resources (Si == R for all i), and all goals are selected 
(M == N): 
 
   O(NlgN + N(lgN + N(lgN + R))) 

 
Or: 

 

   O(NlgN + NlgN + N2lgN + N2R) 

 
Since N2lgN dominates NlgN: 
 
   O(N2lgN + N2R) 

 
And assuming that R is constant (defined by the domain), 
we have: 
 
   O(N2lgN) 

 
This is a theoretical worst case complexity. In practice, 
each goal will typically use a subset of the resources, and 
many of the goals will not be selected for execution. More 
importantly, goals interact with a small number of other 
goals (Xi is constant) due to the temporal scope of the 
resource constraints (i.e. effects on resources have limited 
extent). This gives us: 
 
   !(NlgN) 

 
Our empirical analysis (discussed in a later section) 
supports this average case bound. 
 Once we have cached the best goals, checking a specific 
goal is a simple lookup in the set. Dispatching a selected 
goal for execution is: 
 
   O(lgN + lgM) 

 
The first term is from the lookup for goals due for 
execution which we assume to be small (typically one). 
The second term is from the lookup in the set of selected 
goals. Assuming worst case where all goals are selected (M 
== N), we get: 
 
   O(lgN) 

 

Finally, we take a look at the expected quality of the output 
of the algorithm. Our primary claim is that the algorithm is 
optimal for the given priority rule. In other words, a goal 
with priority P will always be selected in place of any 
number of goals with priority less than P. Intuitively, this 
follows from the decreasing priority order in which goals 
are selected. Now consider scoring the selected goal set 
with a weighted sum using weights sufficiently large at 
priority P to outweigh all goals at priority less than P. Our 
goal selection algorithm will maximize this score, but only 
when the requested goals are assigned unique priorities. If 
goal priorities are not unique, the overall weighted sum of 
priorities depends on the order in which we select goals 
with equal priority. In our implementation, the goal 
submitted first is selected first. This goal, however, may 
use more resources than the other goals with the same 
priority, accommodating fewer goals at lower priorities, 
and producing an overall lower score. Our initial empirical 
analysis, however, shows that our solutions do not fall far 
from the maximum score. 



Algorithm Assumptions, Limitations, and 

Requirements  

We make several assumptions to keep the goal selection 
algorithm simple and efficient.  
•   We do not solve the general planning problem.  We 

only decide which high level goals should be selected. 
We do not search for alternate methods of achieving 
the high level goals. While less powerful, this tends to 
be more accepted by spacecraft engineers who prefer 
consistency and predictability. The tasks of goal 
decomposition and command execution are left to an 
executive or sequencing engine (e.g. VML). These 
systems can be very expressive and allow goals to be 
expanded in a complex, context-dependent manner. 

•   We do not solve the general scheduling problem. We 
only decide on which subset of requested goals and 
activities to add to the plan, not on when they should 
be scheduled. Goals and activities must be submitted 
with predetermined start times. As an example, for an 
orbiting spacecraft with repeating science 
opportunities, this restricted form of planning can 
select which observation to perform on a specific 
orbit, but can not select alternate overflights for a 
particular observation.  

•   We are only reasoning at the goal level. Resource 
reasoning is performed on goal resources which are 
assumed to be abstractions of the expected use of 
resources by the lower-level commands. We found 
this abstraction useful for many of the EO-1 resource 
constraints  

•   We also assume that goals are ranked using the strict 
priority rule. In other words, any number of low-
priority goals can be preempted by a high-priority 
goal. When goals have equal priority, the goal that was 
requested first will take precedence (i.e. first-come-
first-served). EO-1 scientists were most comfortable 
with this simple priority scheme. 

It is worth pointing out that even with these restrictive 
assumptions, the goal replacement capabilities we are 
offering far exceed what is available on typical spacecraft 
today, whether implemented in general commanding 
capabilities or custom flight software. 
 To benefit from these capabilities, however, users must 
encode some additional knowledge when defining goals 
compared to defining activities or sequences strictly for the 
purpose of execution. First, users must provide some form 
of selection criteria. In our case, this is a priority for the 
goal. The user must also specify a summary of the 
expected resource usage for each goal. Where resource use 
at runtime may be intricate or even implicit, goal resources 
force the user to define resource use in an explicit and 
predictable way. Finally, users must provide an expected 
start and end time for the activity or sequence requested by 
the goal. This is necessary for predicting the temporal 
scope of the resource use. 

Planning and Execution with VML  

Designed as a multi-mission application, VML is one of 
the most advanced onboard execution systems in 
widespread use for NASA missions [Grasso 2004]. 
Missions currently using VML include Odyssey, Spitzer, 
Dawn, MRO, and Phoenix. On these missions, VML has 
been used for a wide range of sequencing functions 
including: launch routines, orbit insertion, entry-descent-
and-landing, science acquisition, and fault response. 
 We have implemented goals, resources, and the goal 
selection algorithm as prototype extensions to VML. A 
new thread/task, the Goal Manager (GM), implements the 
goal selection algorithm and invokes the dispatch function 
periodically. Finally, new user interface functions are 
added to allow goals to be added, removed, or changed. 
 At runtime, we ultimately need a set of executable 
commands that achieve the selected goals. Using existing 
VML 2.0 sequencing capabilities, we define a general 
pattern to the language to enable goal achievement with 
flexible and robust execution. Specifically, the language 
pattern consists of defining hierarchies, preconditions and 
effects familiar to the AI planning community. To 
implement a hierarchy, a VML sequence for a goal or 
activity can spawn other VML sequences for sub-activities, 
eventually breaking down to executable commands. When 
appropriate, sequence execution can be delayed to wait for 
the preconditions to be met, allowing more flexible 
execution. Finally, effects of the commands are monitored 
and appropriate responses can be defined to recover from 
failures and provide more robust execution. 

Autonomous Spacecraft Operations 

Our work was motivated by scenarios taken from the 
Autonomous Sciencecraft Experiment (ASE) used in 
operating the Earth-Observing 1 (EO-1) satellite. In these 
scenarios, the science team starts by providing a set of data 
collect requests that oversubscribe spacecraft resources. A 
baseline set of collects and alternates are selected and 
uplinked. During execution, on-board science processing 
may generate new goal requests [Chien et al., April 2005]. 
Ground-based sensorweb processing may do the same 
using uplinked commands [Chien et al., June 2005]. A 
prototype Goal Manager was implemented and tested on 
these scenarios. The EO-1 model consists of VML 
sequences that implement activities for operating EO-1, 
including collecting and downlinking science data. The 
system was run on a typical EO-1 collect-downlink cycle 
where on-board resources (e.g. science data storage) are 
oversubscribed. At runtime, a simple spacecraft simulator 
was used to mimic command behavior, including effects 
on resources. Goal request changes were simulated using a 
time-tagged file containing the change specifications. 



 We also studied 
planning and 
sequencing problems 
from the Mars 
Reconnaissance 
Orbiter (MRO) and 
the Mars Exploration 
Rover (MER) 
missions. From these, 
we identified several 
scenarios that might 
benefit from this 
technology. For 
example, in data relay 
scenarios an anomaly 
can either trigger a 
request for an 
emergency relay 
communication goal, 
or create a relay 
opportunity from a 
failed goal that 
releases resources. In 
addition, goal 
selection could be 
used to maximize the 
use of onboard data 
storage. Rejected science goals, which at first seem to 
oversubscribe this highly-contended resource, could be 
selected at runtime if more data storage is available than 
originally expected. 

Empirical Analysis 

The motivation for our experiments is to: 
• Quantitatively present the difference between our 

solutions and optimal solutions. 
• Quantitatively present the difference between our 

solutions and solutions generated by a greedy, 
forward dispatch algorithm. 

• Empirically show that the run-time of the algorithm 
matches the theoretical analysis. 

Experiments were run on two problem sets: 
• Randomly generated problems for randomly 

generated domains 
• Randomly generated problems for the EO-1 domain 

For the randomly generated domains, we identified several 
domain parameters that affect performance, including: 
number of goal types (G), number of resource types (R), 
and number of resources per goal (RPG). These parameters 
impact the level of interaction between goals. We expect 
higher levels of interaction to result in slower runtimes, but 
a higher potential for quality improvements when 
compared to greedy solutions.  
 When generating random problem sets for either a 
random domain or the EO-1 domain, we looked at the 
following parameters: number of goal instances (N), 
number of goals per goal type (NPG), number of goals per 

time unit (NPT), and number of goals per priority level 
(NPP). Again, the first three parameters impact the level of 
goal interaction. More goals in a smaller time range will 
have more shared resources that interfere. The last 
parameter, number of goals per priority level (NPP), was 
used to show that our solutions are optimal when 
guaranteed (NPP = 1) and do not stray far from optimal 
otherwise (NPP > 1). 
  Experiments were generated using a random problem 
generator. Specifically, random domains include 20 
resource types and 20 goal types with each goal type using 
10 resources. The EO-1 domain contains 7 resource types 
and 5 goal types with each goal using about 3 resources on 
average. Goals are defined for collecting, processing, and 
downlinking data. Shared resources are defined for the 
onboard data recorder and file system. For both random 
and EO-1 domains, we generated 300 problems sets 
containing 300 goals each. 
 Three algorithms were used to generate solutions from 
the problems sets: 
• Goal Manager (GM) 
• Optimal (OPT) 
• Greedy Forward Dispatch (GFD) 

GM runs the algorithm described in this paper. OPT is a 
variant of this algorithm that tries all possible orderings for 
adding goals with equal priority. This is meant to find 
better solutions that may have been missed by GM which 
breaks ties using a first-come-first-served rule. In GFD, 
goals with earlier requested start times are selected first, 
ignoring the interactions with unselected goal requests. 
This simplifies the resource reasoning by removing the 
need to propagate resource values into the future. Also, 



rejected goals are not maintained for future consideration, 
reducing the number of interactions that must be analyzed. 
GFD is used as a representative algorithm that is simple 
and fast, but more naïve at selecting goals, giving a lower 
bound on both runtime and solution quality. All algorithms 
were implemented in C++ and run on a Sun workstation 
configured with two 2.6 GHz AMD Opteron™ 252 
processors, 16 GBytes of RAM, and the 64-bit Red Hat 
Enterprise Linux operating system. 
 The graphs show the average runtimes (Figure 3 bottom) 
and scores (Figure 3 top) for adding a single goal to an 
increasing baseline goal set for the EO-1 domain (Figure 3 
right) and random domains (Figure 3 left) . The CPU times 
reported are for adding one new goal to a set of N goals 
plotted on the x-axis. The scores reported are for the 
resulting set of selected goals. The score of a single goal is 
calculated using the function GPPmax

(p – Pmax) where 
GPPmax is the maximum goals per priority level, p is the 
priority of the goal, and Pmax is the maximum priority of all 
goals. The score for a set of goals is the sum of scores for 
all goals in the set. This function ensures that the score for 
any number of goals at a lower priority will not sum up to 
more than the score of a single goal at a higher priority. 
 In these runs, start times and priorities were chosen at 
random from an increasing range of values, representing 
typical scenarios where NPT and NPP are relatively 
constant. This corresponds to the average case complexity 
analysis, and the data for random domains support the 
!(NlgN) result. The NlgN fit to the GM data is shown in 
the graph. The EO-1 domain demonstrates the worst case 
where nearly all goals share the same resource (the 
onboard file system), and we see a best fit to an N2 curve. 
The exponential runtime of OPT is due to our naïve 
implementation that considers all possible ordering of 
goals with equal priority. The graphs also show GM 
producing solutions with scores at or slightly lower than 
OPT (plotted on top of each other), but with GM and OPT 
both scoring much higher than GFD. The 95% confidence 
intervals (using standard error of the mean) are shown, but 
are very small for OPT and GM. The scores produced by 
GFD are noisy due to its preference for selecting goals 
with earlier start times instead of higher priority. 
 In other experiments we looked at performance on 
problems that added larger sets of goal requests. We also 
examined algorithm behavior along individual dimensions 
such RPG, NPT, and NPP. The details of these 
experiments are beyond the scope of this paper, but 
preliminary results support the theoretical analysis. 
 In summary, we have empirically shown our goal 
selection algorithm to: 

• Exhibit low-order polynomial runtime behavior 
with respect to the size of the problem 

• Generate solutions near optimal and much better 
than a greedy approach 

In other words, with a few restrictions, we show that it is 
possible to preserve alternative goal sets and (when the 
need arises) re-consider previously rejected goals in a 
timely fashion in order to maintain high quality solutions. 

Related Work 

Much of the research in planning and goal selection has 
focused on more general, intractable problems. For 
example, [Smith 2004] looks at the more general problem 
that includes selecting goals and choosing their order when 
resource usage depends on the order of the goals (e.g., for a 
traveling rover). Both the Squeaky Wheel Optimization 
[Joslin and Clements 1999] and the Task Swapping 
[Kramer and Smith 2004] algorithms have been shown to 
improve oversubscribed schedules by re-scheduling tasks 
to allow more goals to fit. Instead, we look at a more 
constrained problem that can be solved in polynomial time, 
while still providing advanced autonomy capabilities 
useful for many embedded applications. 
  Tractable planning solutions typically take one of the 
following three approaches: 

1) focus on average case performance  

2) use domain-specific knowledge to simplify the 

general problem 

3) apply general restrictions to the problem to make 

planning tractable 

In the first approach average case performance is 
considered for difficult applications when occasional 
failures are acceptable (e.g. with the use of heuristics 
[Bonet and Geffner 2001]). When relying on average-case 
performance, one must accept the fact that the algorithm 
may not efficiently solve some problems. In the second 
approach, domain-specific knowledge is used to encode 
problem-specific solutions when possible including the use 
of hierarchies [Tate et al. 1994, Erol et al. 1994, Nau et al. 
2003] or context-dependent effects [Wilkins and 
DesJardins 2001]. A knowledge-based solution, however, 
is a one that is tailored for a particular problem and can be 
difficult to formally verify. Our work is most closely 
related to the third approach, which is supported by 
theoretical work showing how the efficiency of planning is 
related to the expressivity of the planning domain 
language. For example, [Bylander 1994] and [Erol et al. 
1995] examine limited forms of STRIPS-style operators 
and the effect on planning complexity. [Erol et al. 1994] 
investigates restricted HTN planning. [Jonsson and 
Backstrom 1998] examine how structural restrictions on 
state transition graphs impact planning complexity for the 
SAS+ formalism (a state variable representation). In the 
goal selection problem we describe, goals have fixed start 
times and durations. In all cases, different levels of 
restrictions result in different guarantees on the worst case 
performance of planning. For applications that can meet 
sufficient restrictions, planning becomes verifiably 
tractable. 
 A considerable amount of work has been done in the 
area of online planning and execution. We list some of the 
implemented systems here. For example, SCL [ICS] 
provides a procedural language for spacecraft commanding 
similar to VML.  ESL [Gat 1996] is an execution language 
for autonomous agents, implemented as an extension to the 
Common Lisp programming language. TDL [Simmons et 



al.] extends the C++ programming language to include the 
concept of a task. Like ESL, programs in TDL can take 
advantage of the generic language on which they are based. 
The tradeoff, however, is that it can be much more difficult 
to verify programs written in an expressive language. 
Model-based executives such as Titan [Williams et al. 
2003] and Kirk [Kim et al. 2001] use a declarative 
specification of system behavior (plant model) to track 
system state and compute desired sequences of control 
actions. The focus of these executives is primarily on the 
execution and monitoring of goals, while ours is on the 
selection of goals prior to execution. 
 Finally, our goals and resources are similar to the 
concepts of goals and state variables that are central to 
JPL’s Mission Data System (MDS). MDS [Dvorak et al. 
1999, Barrett et al. 2004] is a comprehensive approach to 
systems engineering and a methodology for the design and 
development of control system applications. Goal selection 
is a core capability required by many such applications. 

Conclusions 

We have described a carefully constrained set of resource 
and priority reasoning capabilities designed to enable run-
time goal selection within a limited computational 
environment. These capabilities enable fast re-optimization 
of goal sets which oversubscribe available resources and 
have a strict priority ranking. We have presented both a 
theoretical and an empirical analysis of our algorithm as 
well as described its application to a number of typical 
spacecraft operations scenarios. 
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