
Improving Performance and Interoperability of the ESTRACK Planning System

Alexander Hoffmann
Holger Dreihahn

Marc Niézette
VEGA Deutschland GmbH & Co. KG

Europaplatz 5, D-64293 Darmstadt, Germany
Firstname.Lastname@vega.de

Gerhard Theis
European Space Agency

Robert Bosch Straße 5, D-64293 Darmstadt, Germany
Firstname.Lastname@esa.int

Abstract

The ESTRACK Planning System (EPS) is a fully integrated
planning system dedicated to the automated centralized allo-
cation of ground station services to space missions. The EPS
is operationally used at the European Space Operations Cen-
tre in Darmstadt, Germany. Instead of assigning a ground sta-
tion statically to a mission, the EPS identifies ground stations
which can provide the required services at the required times
to a mission and plans the ground station allocation for all
participating missions. The produced plans are stored in the
ESTRACK Management Plan (EMP), which consists of a
set of booking periods of the ground stations by the missions
with the associated required services. This booking evolves
as the event timings are updated and as more and more mis-
sions are taken into account. The EMP is then used by the ES-
TRACK Scheduling System (ESS) to generate executable
ground station schedules.
Since its operational introduction, the EPS has been extended
by a range of new features improving its performance and in-
teroperability. Such new features as dynamic resource pro-
filing, interchangeable planning strategies and plan sta-
bilization are already now used operationally. A number of
further features, such as medium term planning (plan ranges
up to one year), long term load analysis, system aided plan
refinement, interchangeable optimization criterion and re-
quirement relaxation, are currently under development.

EPS Overview

Nine stations owned by ESA plus three cooperative stations
support ten operational ESA scientific missions and several
missions of external users, e.g. NASA. ESTRACK provides
services for data downlink and the uplink of commands to
satellites in orbit. In order to coordinate the increasing num-
ber of users and growing network size efficiently, an auto-
mated planning system has been developed. The EPS is one
of the building blocks of the ESTRACK Management System
(EMS), which in turn is a part of the ESA Ground Opera-
tions Software (EGOS) initiative. EGOS includes software
systems covering all relevant ground systems of a space mis-
sion, see www.egos.esa.int.
The EPS design is based on a layered planning approach as
depicted on Figure 1.

Figure 1: EPS Layered Structure

Pre-planning
Missions’ event files and service requirements configured in
each mission agreement will be processed during the pre-
planning phase, which generates facts, Service Opportunity
Windows (SOW) and Basic Standing Order Periods (BSOP).
In the remainder of this chapter we introduce three concepts
used in the pre-planning process of the EPS, namely fact,
SOW and BSOP. The EPS pre-planning phase is described
more detailed in (Damiani et al. 2006).

Fact
Facts represent temporal states of environment elements. An
environment element can represent a ground station, an op-
erator shift, some orbit event or some other event which has
to be taken into account during the planning session. Two
events of an event file can be combined to a fact. Facts can
also be created from a single event to support the import of
single events from event files. Each fact has start and end
times derived from events and a state, for example a fact can
have a state called visibility and start and end time points
corresponding to the ones of a particular visibility window.

Basic Standing Order Period
A BSOP is a period of time during which a service spec-
ified in the User Service of a mission agreement must be
provided. BSOP is defined in the Standing Order inside the

User Service. Roughly speaking, services required by a mis-
sion agreement have to be provided based on the interval
given by the Standing Order.

Service Opportunity Window
The missions participating in the EPS planning process feed
on a regular basis their predicted into the EPS. In that con-
text, predicted events are:

• Acquisition and loss of signal events for the satellite-
ground station combinations of a mission;

• Start and end of operator shifts;

• All other events relevant to planning of ground station al-
location.

According to mission specific rules, the predicted events will
be combined to SOWs. A SOW is a period of time, during
which a ground station can provide the set of required ser-
vices. SOWs will be created by so called SOW rules, which
are statements formulated in the Language for Mission Plan-
ning (LMP). LMP is a query and rule language designed for
processing temporal objects stored in a database and creat-
ing new objects from the queried ones. For details on LMP
please refer to (Noll and Steel 2005).

Planning
The aim of the planning session is to produce a valid plan
implementing the mission agreements for all missions in a
finite time range. Planning results are stored on the ES-
TRACK Management Plan as so called Operational Service
Sessions.

• An Operational Service Session (OSS) is a basic compo-
nent of an EMS plan, which represents a group of op-
erational service instances with their respective execution
timings, whose execution involves a single ground station,
together with relevant communication networks.

• A Candidate Operational Service Session (COSS) is an
OSS whose start and end times are time variables. The
following attributes are associated to each COSS: a par-
ent SSOW, a supporting SOW, position in the SSOW, and
variable start and end times.

• A Super Service Opportunity Window (SSOW) is a time
period in which a continuous service provisioning within
a particular BSOP can happen. SSOW is composed of
a sequence of overlapping SOWs and their associated
COSSes. The following attributes are associated to each
SSOW: related BSOP, start and end dates, a set of used
SOWs, a sequence of COSSes sorted by increasing start
date.

• In the mission agreement model, services requested by a
particular mission are gathered in an Operational Service
Group (OSG). Several OSGs can be associated to a User
Service Definition, which defines one of two mutually ex-
clusive user service levels, i.e. nominal or degraded.

In general it can be said, that a SSOW is required for each
implementation of an OSG. This implies that the number of
required SSOWs per mission and BSOP is the number of

Figure 2: User Service Definition

implemented OSGs multiplied by the required service rep-
etitions of each OSG. Only user service definitions which
require more service sessions at the same time on different
ground stations will have more than one OSG.
Based on the facts, SOWs and BSOPs prepared by the pre-
planning, the EPS planning process tries to assign to each
selected BSOP a set of OSSes implemented on SOWs such
that all requirements in the mission agreement and all re-
source constraints are respected.
A BSOP is considered to be planned if a set of COSSes has
been generated that implements the associated User Service
within the corresponding time slot. The start and end times
of a set of COSSes constitute a set of variables of a temporal
constraint network. The domains of these variables are de-
termined by the start and end times of the supported SOWs,
while the constraints between those variables are provided
by the corresponding User Service and inferred from the
used resources. Given that, a valid plan on a set of planned
BSOPs can be generated if and only if the underlying tempo-
ral constraint network is consistent. If a given constraint net-
work has been proven to be consistent, then COSSes, which
constitute the network, will be promoted to OSSes by the
simplex algorithm. The simplex algorithm fixes the start and
end points of COSSes ensuring at the same time the BSOP-
local optimality of the plan. The objective function for the
BSOP-local optimality is defined as a sum of OSS durations
for a space craft on a particular ground station multiplied by
the priority of using this ground station by the space craft,
i.e. ∑

OSSes

P (sc, gs) ·
(
OSS

(sc,gs)
end −OSS

(sc,gs)
start

)
(1)

where gs denotes a ground station, sc stands for a space craft
and P (sc, gs) is the corresponding priority.
Therefore, the general planning problem will be decom-
posed into two basic problems:
• generation of the COSSes for each BSOP;
• consistency checking of the underlying temporal con-

straint network.
The former can be modelled as a selection or planning prob-
lem and the latter as a scheduling problem.
As already mentioned, the planning process is guided by

the configurable priorities for pairs of ground stations and
spacecrafts, which allows the user to configure the EPS to
prefer certain ground stations for a particular spacecraft and
controls the way conflicting usages of ground stations are
resolved. In the case of a conflict, the set of so far generated
COSSes has to be changed. The EPS supports automated
repair, degradation of service requirements, and finally pro-
vides useful conflict information helping operators to manu-
ally eliminate conflicts. Finally, when the plan is completed
for the specified planning period the operator can produce
graphical or textual plan views to inspect the plan. If the plan
is alright and passes the inspection, the plan can be commit-
ted to the EMP.
If a created plan needs to be changed, e.g. event timings
have to be updated or more missions have to be taken into
account, the operator simply starts a new planning session
(or first pre-planning and than planning) with new require-
ments. When trying to implement new requirements on an
existent plan, it is desirable to fix the timings of the previ-
ously planned events. This can be achieved by assigning so
called plan stability constraints to each event time point. For
example, in order to fix the start time point of an event A one
has to issue two plan stability constraints

Astart ≤ a ∧Astart ≥ a (2)

The plan stability constraints will be applied to a consistent
plan. Hence, in the case if some of them cause a conflict,
they can be simply removed in order to ensure plan con-
sistency at the price of changed timings of already planned
events.
The following state diagram shows the general structure of
the EPS planning algorithm. Note that two options were

Figure 3: Planning Algorithm

available BSOPs implementation:

• either plan all the BSOPs, then check the consistency
of the global underlying constraint network, and perform
some repairs if necessary;

• or plan one new BSOP, check the consistency of the un-
derlying constraint network, performing a repair if neces-
sary, then plan the following BSOP, and so on (incremen-
tal approach).

We chose the incremental approach essentially in order to
make the repairs easier. Thus, at each pass in step ”Select
an unplanned BSOP” of the general algorithm, a BSOP is
heuristically picked and removed from the set of unplanned
ones. In our implementation, the BSOPs are ordered by in-
creasing end time and put in a queue (earliest deadline first
heuristic), with the hope to limit the extent of the possible
repairs to the near past. Because of the repair procedure the
overall algorithm is not complete. It is possible that it re-
turns with a failure status while a valid plan actually exists.
It is worth to note that in addition to the standard way to
change a plan by planning additional missions, EPS pro-
vides features and tools to ”manually” edit a plan. It is ca-
pable to process standing order and OSS refinement files.
Standing order refinement files contain service requirement
changes for a particular set of BSOPs. For example, a de-
sirable number of passes can be changed or the contact han-
dover between different ground stations can be forbidden for
a particular space craft. The OSS refinement files are applied
to a given plan in order to commit, delete or add an OSS or
to modify an OSS in terms of time or configuration profile.

Planning Strategies
Now, we take a closer look at the module that generates a
set of COSSes for a chosen BSOP (highlighted yellowish on
the Figure 3). Currently, depending on the kind of mission
agreement, EPS uses two different approaches for genera-
tion of COSSes. The first approach is based on the dynamic
programming (Bather 2000) and suitable for mission agree-
ments with
• small number of SOWs in each BSOP;
• small number of required service repetitions;
• ”flexible” duration constraints, i.e. maximum and mini-

mum service durations are not equal.
The second approach is based on the local search. It per-
forms better than the one based on the dynamic program-
ming if either the number of SOWs in each BSOP or re-
quired service repetitions is high or a given mission agree-
ment has ”inflexible” duration constraints, i.e. maximum
and minimum service durations are equal. Moreover, the lo-
cal search approach must be used in the case when at least
two Operational Service Groups must be planned per BSOP,
and when they are not constrained to occur in sequence, i.e.
there is no distance constraint in between. For constella-
tion of satellites, e.g. Claster and Herschel-Planck, EPS uses
solely the local search planning strategy.

Dynamic Programming
Assembling SSOWs for a BSOP, we consider the given
BSOP as a sequence of decision instants defined by the start

and end times of each SOW in the BSOP. At each instant, we
can decide to keep contact with the current SOW or perform
a handover to another available SOW at this time. A SSOW
is then a finite sequence of such decisions:
• keep the contact with this SOW until the next decision

instant;
• choose an available SOW and contact it.
An example for generation of a SSOW, which is a set of
COSSes, is depicted on the Figure 4.

Figure 4: SSOW Generation

This is a first order Markovian sequential decision problem,
where decisions have to be made in successive steps. A de-
cision at one step depends only on the one from the previous
step. Decisions are made taking into account only ground
station preferences and the requirement of maximum possi-
ble contact duration with the ground station. For the mod-
elling purpose, a SOW s has:
• a start time sstart;
• an end time send;
• a priority P (s) taken from the priority table for pairs

”ground station - spacecraft”.
The gain of accessing to s for a duration T can be defined as

G (s, T) = (Tend − Tstart) · P (s) . (3)

Let S be the set of so far available SOWs.
• Steps: one for each start and end times of the SOWs of

the BSOP
• States: contact with one of the SOWs from current time

to the next step; the set of possible states at step i is

Xi = {x ∈ S | ti ∈ [xstart, xend) ∧ ti+1 ≤ xend} (4)

• Actions: stay connected to the current SOW until next
time step, then contact an available SOW taken from the
set Xi+1 or stop the SSOW.

• The reward function for the action that passes from x ∈
Xi to y ∈ Xi+1 ∪ Ei+1

v (x, y) = G (y, ti+2 − ti+1) (5)

where Ei = {z ∈ S | zend = ti+1} is the set of following
possible states to which no more action can be applied.
These states terminate the SSOW.

• Preference relation on the rewards: ≥
The optimal gain for each step i and each state x ∈ S, de-
noted Vi (x), is the maximal reward that can be obtained in
state x at time ti. Initial conditions:

∀i ∀x ∈ S Vi (x) =
{

0 if ti = xstart

−∞ else
(6)

The Bellman equation allows us to compute the optimal
gains:

Vi (x) = max
x̃∈Xi−1

{v (x̃, x) + Vi−1 (x̃)} (7)

The SOW that provides the best reward if the spacecraft uses
it at time ti−1 and uses the SOW x at time ti is

previ (x) = arg max
x̃∈Xi−1

{v (x̃, x) + Vi−1 (x̃)} (8)

If Xi−1 = ∅, then previ (x) = null. When all the partial
optimal gains Vi (x) are computed, we determine the best
global reward, that is

V = max
S

Vi (x) (9)

We pick up the associated step i and state x and build the op-
timal plan from the last step to the first using the previ (x).
This approach is sound, which means that on success re-
turned plan is valid. The worst case time complexity of this
algorithm is O

(
|S|3

)
.

Local Search
The second strategy implemented in the EPS to generate the
SSOW is the local search algorithm, which is intended for
elimination of drawbacks due to complexity of the dynamic
programming. The main idea of this approach is to gener-
ate SSOWs randomly and assign them values. Eventually, a
solution with the best value will be chosen. Looking for a so-
lution with the best value we start from a candidate solution
and then iteratively move to a neighbor solution. The search
space in our case consists of all possible sets of SSOWs in
a BSOP. As we already mentioned, a set of SSOWs can be
seen as a solution only if it has a SSOW associated to each
service repetition of each OSG. In order to implement the
local search planning strategy on a set of SSOWs, we have
to define a neighborhood relation on this set. We say that
two sets of SSOWs are neighbors if they differ only in one
SSOW. Having found a solution, we compute its value by
running simplex algorithm on the underlying constraint net-
work, and then we try to replan a randomly chosen SSOW
ensuring that it consist of different set of SOWs. The SOWs,
which are forbidden for the next pass, will be stored in a tabu
list.

Note that the dynamic programming used for SSOW gener-
ation is a deterministic algorithm, which means that it will
always give the same result for given time bounds and for-
bidden SOWs. Hence, the degrees of freedom that one has
when trying to plan all SSOWs are only the following:

• the choice of the SSOW to plan/unplan next;

• the SOWs that are forbidden when planning a SSOW.

Another degree of freedom is the number of service repeti-
tions, when several values are allowed.
The local search approach requires a termination criterion
in order to avoid an infinite loop caused by its random be-
haviour. Hence, the local search algorithm is sound but
not complete, in contrast to the dynamic programming ap-
proach, which is sound and complete. Figure 5 depicts the
transition from one solution to another for an example where
only one service repetition for each of two OSGs, blue and
green, is required.

Figure 5: Local Search: Two Neighbor Solutions

Resource Profiling
In the initial planning algorithm, the SSOWs were generated
independently for each BSOP, using the SOWs that overlap
the BSOP time range. The only exception was when a con-
flict had occurred between the OSSs of two BSOPs, then a
complete SOW was explicitly forbidden, thus removed from
the list used for SSOW generation. As OSSs from different
BSOPs might already have booked the stations, this often
resulted in conflicts or in solutions with bad quality.
Before generating the SSOWs for a BSOP, it was necessary

to remove all the parts of the SOWs for which it was pos-
sible to infer that the corresponding station or satellite was
already used, and then to generate the SSOWs using those
”filtered” SOWs.
There are two kinds of constraints that are not directly taken
into account during the SSOW generation:

• the distance constraints with the previous and the next
BSOP of the same User Service;

• the resource constraints:

– ground station booking: a station can be used by at
most one OSS at the same time;

– satellite communication: a satellite can be associated
to at most one OSS at the same time, except for OSSs
implemented for the same BSOP (same User Service
Definition);

– exclusive operational ground station services: two
OSSs on different stations implementing services de-
fined as exclusive cannot overlap.

The idea of the SOW filtering is to infer information from
those constraints, by propagation. Currently the SOW filter-
ing only takes the resource constraints into account.
The resource constraints are modelled in EPS as disjunctions
of binary temporal constraints, linking the start and the end
times of every two OSSs which should not overlap although
their SOWs overlap. All the other constraints are either bi-
nary or linear. By propagating all the binary constraints, it
is possible to infer the tightest bounds for the start and the
end of each OSS, whatever the relative ordering of OSSs
that must not overlap may be. From those bounds, in the
case when the latest start time of an OSS is before its ear-
liest end time, one can deduct that the OSS necessary takes
place at least between those two time points. This means
that the resources that the OSS needs, i.e. a station or a satel-
lite, are necessary unavailable for any other OSS in this time
range. Consequently, before generating the SSOWs for a
BSOP, this time range can be subtracted from all the SOWs
sharing at least one of the resources. One more important
feature of the resource profiling is that it takes priorities be-
tween space crafts and ground stations into account. Imag-
ine, that an OSS for space craft A had been implemented
on a ground station G, and the priority for A on G is p1. If
during the next planning session another space craft, say B,
is entitled to the same ground station with a higher priority
p2, so that the SOW generated for the B on G overlaps the
A′s OSS on G, then it is desirable to create a conflict on G
in order to generate a new SSOW with higher priority than
before. More details on resource profiling can be found in
(Muscettola 2004).

Consistency Validation
As we already mentioned, in order to check the plan con-
sistency, temporal relations between plan elements derived
from the dynamic input to the EPS and its configuration will
be expressed as a constraint network which will be exam-
ined on having a feasible solution. In such a way, the gen-
eration of a feasible contact profile will be turned into the

Figure 6: Resource Profiling

Constraint Satisfaction Problem (CSP), which contains bi-
nary constraints, linear constraints and disjunctions of bi-
nary constraints.
• Linear constraints are the algebraic expressions of the

form ∑
i

aiti ≤ b. (10)

They are widely studied in Linear Programming (Dantzig
1962). In the EPS context, linear constraints are used to
restrict the overall duration of several events, e.g. Aend−
Astart + Bend − Bstart ≤ d, or to enforce a particular
temporal ratio between two events, e.g. Aend −Astart ≤
r (Bend −Bstart).

• Binary constraints are linear constraints of the form

ti − tj ≤ b, (11)

where ti and tj are the variables and b is a constant. Bi-
nary constraints are widely studied in Simple Temporal
Problems (STP) (Dechter 2003). The consistency check
of the associated network is a cubic function of the num-
ber of variables. This class of constraints is used to en-
force a particular order between events or to restrict a
time gap between them. For instance if an event A has
to precede some other event B then this relation can be
expressed as Aend −Bstart ≤ 0.

• Disjunctive binary constraints have the following form

ti1 − tj1 ≤ b1 ∨ . . . ∨ tin
− tjn

≤ bn. (12)

This type of constraints is widely studied in the context of
Disjunctive Temporal Problems (DTP) (Tsamardinos and
Pollack 2002). These problems are NP-complete. In EPS,
disjunctive binary constraints are used to ensure exclusive

ground station usage by satellites. For example, the fol-
lowing disjunctive constraint Bend ≤ Astart ∨ Aend ≤
Bstart will prevent communication sessions A and B to
happen simultaneously on the same ground station.

Given that binary constraints are the majority of the con-
straints, and that STPs are far easier to solve than LPs, a
sensible approach is to solve the DTP part of our problem,
and check the linear constraints with LP only if a successful
leaf is reached. Thus, the consistency of the overall con-
straint network is checked in two steps. First the DTP part
is solved using a conflict-directed backjumping tree search
algorithm with no-good recording called Epilitis (Tsamardi-
nos and Pollack 2002). Epilitis checks the consistency of a
meta Constraint Satisfaction Problem. The variables of this
meta-CSP are the disjunctions, the domain of each variable
is the associated set of disjuncts, and the constraints between
the variables are implicit. Thus an assignment to some vari-
ables is consistent if and only if the associated simple prob-
lem, i.e. STP or LP, is consistent. The search for a solution
consists in the exploration of a tree, each node representing
a partial assignment of the meta-CSP. The Epilitis algorithm
was adapted for decomposed networks in order to limit the
constraint propagation within the consistency checking pro-
cess.
The remaining linear constraints are processed using the
simplex algorithm, or more precisely using the Phase I of
the simplex algorithm, which gives us a feasible but in gen-
eral not optimal solution.
In case of failure, we need to pinpoint the set of culprit con-
straints in order to derive the incriminated COSSes, thus to
identify the incriminated BSOPs. Conflict directed strate-
gies are clearly well suited to this as they use discovered
conflicts to guide the search. Note that the meta-CSPs in
the EPS context are dynamic CSPs. Each time a new BSOP
is planned and COSSes are generated (resp. a COSS is re-
moved consequently to a repair action), new time variables
may be added (resp. removed), thus modifying the implicit
constraints of the meta-CSP.

Plan Repair
As already mentioned, COSSes are generated without any
guarantee that the former underlying constraint network
augmented with the new variables and constraints is con-
sistent. If it is not the case, the incriminated COSSes must
be detected and a repair action (to modify the COSSes from
one BSOP) chosen.
When the meta-CSP is proven to be inconsistent, then the
aim for a repair is to identify at least one Minimal Unsatisfi-
able Subset (MUS) (Liffiton and Sakallah 2004) of the tem-
poral constraints. A MUS is a set of conflicting constraints
such that as soon as one of these constraints is removed, the
resulting set is no longer conflicting. In our case, remov-
ing a COSS whose start or end time is involved in a MUS
enables to solve the conflict identified by this MUS. See
(Chinneck and Dravnieks 1991) and (Liffiton et al. 2005)
for algorithms to generate MUSes for DTPs and LPs.
Among the COSSes identified in a MUS, one must be re-
moved. This choice takes into account general preferences

such as mission to ground station priorities in case of a con-
flict on a resource, and heuristics favoring the stability of the
network in order to avoid endless repairs.
The repair process mentioned above is local, thus it is not
guaranteed to end with a solution. To prevent an endless
repair loop, a termination criterion is provided, such as a
maximum number of repairs, or a maximum time spent in
repair. If this limit is reached, the system reports a failure
to the EPS operators together with a set of User Services
the degradation of which should allow solving the extracted
conflicts.

Constraint Network Decomposition
Having the well studied and widely used CSP decompo-
sition methods (Russell and Norvig 2002; Dechter 2003),
we still decided to develop another one decomposition ap-
proach. Why complicate things? There are two main rea-
sons for this. The first one is the structure of the problems
we solve. As one can see on the Figure 7 (other missions or
their combinations have similar kind of structure) our prob-
lems can be often represented as a set of loosely connected
cliques of highly connected nodes, which corresponds to
the structure of the graphs representing real-world problems.
Therefore, trying to find a cycle cutset will usually amount
to nothing. Collapsing nodes in order to get a tree-shaped
CSP will create a tree with just a few nodes comprising a lot
of nodes from the initial CSP, which leads to an intolerable
increase of number of constraints.
The second reason is that our aim is to reduce the constraints
propagation run time and not to achieve a backtrack-free
search on a CSP problem. That’s why we are interested in
the first place in a decomposition on the STP level.
Nodes of a meta-CSP graph represent DTP’s meta variables
whose values are the constraints. Hence, two nodes of a
meta-CSP graph are linked by an edge if and only if they
share a time point, e.g. nodes representing meta variables
N1 : x − y ≤ a and N2 : x − z ≤ b will be linked.
The meta-CSP graphs of the planning problems we deal with
have very high vertex connectivity, which is caused by the
BSOP-based constraint model, where a lot of time points
have to be constrained relatively to the start time point of the
planning range. Removing the start point on the STP level
amounts to the STP decomposition and at the same time to
the meta-CSP graph decomposition.
As we already mentioned, a set of constraints will be in-
ferred for each BSOP during the planning process. The start
and end of each BSOP can be represented as a time point
arising as a result of summing up the start time of the plan-
ning range and a particular offset. Thus, constraints ensur-
ing that each COSS lies inside of a BSOP or a SOW al-
ways involve the time point corresponding to the start of the
planning range. This constraint model implies that in the
distance graph of the constraint network all time points are
connected to the start point. Due to the context we work in, it
is reasonable to make the assumption that the time points of
remotely located BSOPs are just rarely linked by a constraint
directly. Hence, the only time point keeping a distance graph
connected is the start time point, whose removal will break
the distance graph into several parts having no time point in

common. Since we cannot completely take out of considera-
tion the start time point, we simply consider the STPs having
only this time point in common as disjoint STPs. Figures 7
and 8 depict the decomposition effect on the constraint net-
work of the Cluster planning session for one week time rage.

Figure 7: Meta-CSP Graph

Figure 8: Decomposed Meta-CSP Graph

Having several STPs instead of a single one amounts into

different approaches of constraint propagation, forward
checking and meta variable subsuming. Let C : x− y ≤ a
be a constraint which is about to be propagated. Three dif-
ferent cases can be now distinguished:

• x and y belong to the same STP;

• both or either time points are not yet in the constraint net-
work;

• x and y belong to different STPs.

The propagation strategy in the first two cases is the same
as it was without decomposition, i.e. one of the path consis-
tency algorithms can be used (Dechter 2003). The latter case
has to be handled differently. Assume that distance graphs,
and so STPs, are represented by matrices, where the item in
the ith row and jth column denotes the distance between ith

and jth time points.
Propagating a constraint, whose time points belong to dis-
joint STPs, can be performed in the following way: first,
put the given STPs together, and then propagate the con-
straint as usual. Assume, STPs A (n× n) and B (m×m)
don’t have any time point in common, then the operation of
putting them together amounts into trivial copying of their
entries into a new matrix, C ((m + n)× (m + n)) and fill-
ing the corresponding (m + n)× (m + n)−m×m−n×n
entries with ∞ indicating that no arc exists between these
nodes.
If the only node connecting the given two STPs is the start
node, then the entries of the resulting matrix depending on
this node have to be filled properly. We illustrate the pro-
cess of merging of two STPs in the Figure 9. Suppose that

Figure 9: Matrix Merging Operation

the start time point has index i in the matrix A and in index
j the matrix B, then entries of the resulting matrix which
lie in the dark-brown-colored areas have to be composed as
following:

ck,l =
{

ai,l + bp,j , l 6= i if k > n, l < n

ak,i + bj,p, k 6= i if k < n, l > n
, where

p =
{

k − n if k − n < j

k − n + 1 if k − n > j

The reason for this is that the start node, s, connects nodes
x1 and x2 from different STPs, and so the distance between
x1 and x2 in the resulting matrix is the sum of distances
between s and x1, and s and x2. Other parts of the result-
ing matrix can be simply copied from matrices A and B as
shown on the Figure 9. The merging operation performs
n + m + 2 (m− 1) n arithmetical operations, assuming that

A is an n×n matrix and B has dimension m×m. Therefore,
the complexity of the merging operation is O (mn). Af-
ter the matrices A and B have been merged, the constraint,
which time points belong to A and B, can be propagated as
usual. Since the disjuncts of constraints we deal with involve
at most two time points, no more than two STPs will be
merged in one Epilitis call. Note that the distance between
two time points from different STPs can be now found by
adding the distances between these time points and the start
time point, which is available in every disjoint STP (Hoff-
mann 2008).
Operational tests showed significant improvements in the
average run time of constraint propagation and consistency
checking for the Epilitis version working on the decomposed
STP. Moreover, the version using decomposition consumes
much less memory than the one without decomposition. The
figures below represent the run time and memory consump-
tion comparison between Epilitis with and without STP de-
composition for a planning session of the ENVISAT mis-
sion. The green graphs correspond to the results for the
version with decomposition, the red ones to the results for
the version without decomposition. Horizontal axis in each
of the three cases represent the size of the given constraint
network. The vertical axis in the first case represents the
amount of memory used in kilobytes, and in the second and
third cases it represents the amount of time in seconds spent
on consistency checking or constraint propagation respec-
tively.

Figure 10: Memory Consumption Comparison

Note that in order to enable the backjumping, every recur-
sive call of Epilitis has to store the STP it works with. It
means that even if a small part of an STP has been changed,
and the rest remains the same as in the previous Epilitis call,
the whole STP has to be stored, which is a reason for the
high memory consumption of the Epilitis version without
decomposition. A significant improvement in this sense was
achieved by the introduced STP decomposition. The version
with decomposition maintains an array of disjoint STPs and
stores only those STPs which have been changed in the cur-
rent Epilitis call. Thus, the STP decomposition enables to
avoid storing redundant information saving in this way a lot
of memory.

Figure 11: Consistency Checking Time Comparison

Figure 12: Propagation Time Comparison

Future Work
In addition to the already existent local optimization capa-
bility of the EPS, a customizable objective function allow-
ing operators to choose between several local optimization
criteria is currently under development. Another research
area concerning the plan optimization in the EPS context
deals with deployment of the dynamic simplex algorithm.
Currently, for each BSOP the underlying LP will be solved
from scratch, which can be sometimes avoided by using the
”warm start” feature of simplex. Having a solution to an LP
P1, one can use it to solve another LP, say P2, consisting
of slightly different objective function and an extended set
of constraints. A faster solution to P2 can be obtained by
starting with the basis in the optimal solution to the P1. In
our case the extended set of constraints corresponds to the
constraint network of the extended set of BSOPs.
Sometimes, it is impossible to generate a valid plan meeting
the given communication requirements. The only reason for
this are strictly formulated constraints in the mission agree-
ment. Therefore, allowing formulating requirements with
different level of strictness, will improve chances on finding
a consistent plan. Our approach is to implement the con-
straint network relaxation feature based on the concept of

soft constraints, which can be removed if they cause a con-
flict.
In addition, the current EPS development phase involves
implementation of the medium term planning feature, i.e.
creating one year plans for up to ten space missions in less
than 36 hours, and implementation of the long term load
analysis feature, which allows creating resource profiles of
the ground station load on a station and mission basis for
time periods up to ten years. The new features will provide
analysis of the ESTRACK utilisation helping to estimate its
general capability to support further missions over their en-
tire life cycles.

References
Bather, J. 2000. Decision Theory: An Introduction to Dy-
namic Programming and Sequential Decisions. New York,
NY, USA: John Wiley & Sons, Inc.
Chinneck, J. W., and Dravnieks, E. W. 1991. Locating min-
imal infeasible constraint sets in linear programs. ORSA
Journal on Computing 3(2):157–168.
Damiani, S.; Dreihahn, H.; Noll, J.; Nizette, M.; and Cal-
zolari, G. P. 2006. Automated allocation of esa ground
station network services. In Proceedings of the 5th Inter-
national Workshop on Planning and Scheduling for Space.
Dantzig, G. B. 1962. Linear Programming and Extensions.
Princeton: Princeton University Press. ISBN: 978-0-691-
05913-6.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann. ISBN 1-55860-890-7.
Hoffmann, A. 2008. Solving dynamic scheduling problems
with unary resources. Master’s thesis, Darmstadt Univer-
sity of Technology.
Liffiton, M., and Sakallah, K. 2004. On finding all mini-
mally unsatisfiable subformulas. In Proceedings of the 8th
International Conference on Theory and Applications of
Satisfiability Testing (SAT-2005), 173–186.
Liffiton, M.; Moffitt, M.; Pollack, M.; and Sakallah, K.
2005. Identifying conflicts in overconstrained temporal
problems. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence.
Muscettola, N. 2004. Incremental maximum flows for
fast envelope computation. In Proceedings of International
Conference on Automated Planning and Scheduling, 260–
269.
Noll, J., and Steel, R. 2005. Eklops: An adaptive ap-
proach to a mission planning system. In Proceedings of
IEEE Aerospace Conference.
Russell, S., and Norvig, P. 2002. Artificial Intelligence: A
Modern Approach. Prentice Hall, 2 edition. ISBN: 0-137-
90395-2.
Tsamardinos, I., and Pollack, M. E. 2002. Efficient so-
lution techniques for disjunctive temporal reasoning prob-
lems.

