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Abstract 
We demonstrate the use of compression techniques to 
accommodate scheduling of large swath coverage 
campaigns in the context of the Deformation, Ecosystem 
Structure, and Dynamics of Ice (DESDynI) mission. The 
underlying scheduler is a simple squeaky-wheel optimizer, 
which requires a greedy solver as a component. Normally, 
this approach poses no problems for conventional 
computers, but when attempting to schedule several years’ 
worth of observations in detail, the schedule alone fails to fit 
in memory, thus our use of compression techniques. 

 Introduction   
The DESDynI mission is an Earth orbiting mission flying a 
combination of SAR and LIDAR. The goal of the mission 
to gather data for science disciplines. These disciplines are 
Deformation, Ecosystem Structure, and Dynamics of Ice. 
 Our goal is to determine the timing of operating mode 
changes for the instruments onboard the spacecraft as well 
as pointing of the spacecraft such that the science goals of 
each discipline are met.  

Consider the problem of scheduling the orientation and 
on/off times of a spacecraft or collection of spacecraft such 
that we adequately cover as many target points as possible. 
But, we must not oversubscribe memory or energy.  

Many aspects of the problem need to be considered. 
• Cost in terms of battery and energy when the 

instrument is on or off. 
• Time to transition from one orientation to the 

next. 
• Rate, time, and duration of downlinks and sun 

exposures. 
For small versions of this problem, we can employ 

standard scheduling techniques. In our work, we are using 
a squeaky wheel optimizer.  

But as the problem size grows, standard propagation 
techniques are too costly, and even estimating the final 
quality of a partial schedule becomes practically 
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intractable. If the problem size increases such that it must 
be swapped out to disk, then even greedy solutions become 
intractable. 

The Scheduler 
We note that many of these problems are cyclic in 

nature. That is, for spacecraft, we often have “repeat 
passes” where we overfly the same points at some 
predetermined interval. If we can take advantage of this 
cyclic nature in our representations, then we can compress 
the problem into a single-cycle problem. Unfortunately, 
memory and energy profiles are not guaranteed to match 
any cyclic representation, and either must be represented 
explicitly or compressed as well. Also, some observation 
campaigns retain cyclic observation availability but not 
cyclic behavior—that is, the same observations are not 
taken at each repeat pass. Again, these must be 
compressed.  

Problem Representation 
In general, we assume a scheduling problem 

characterization as such: 
a set of points P,  
a set of observations opportunities O each o ∈ O 

consists of a start (o.start), and a duration 
(o.duration),  

a function obs(p ∈ P) that returns the subset of O 
whose elements positively affect coverage of p, 

a function coverage(p, sol ⊆ obs(p)) that determines 
the level of coverage of p given sol, 

a bound on coverage minQuality that must be met for 
a point to be considered covered, 

a bound on memory memory, 
a bound on energy energy, 
a rate at which memory is used while the instrument is 

on memRate, 
a rate at which energy is used while the instrument is 

on useWatts, 
a rate at which memory is recovered during a 

downlink downRate, 



a rate at which energy is collected while in sunlight 
sunWatts, 

a function that returns the minimum duration to 
transition from one observation orientation to 
another trans(o1 ∈ O, o2 ∈ O), 

a set of sun exposures S where each s ∈ S consists of 
a start (s.start) and a duration (s.duration), 

a set of downlinks D where each d ∈ D consists of a 
start (d.start) and a duration (d.duration). 

Our goal is to select p.sol subset of obs(p) for each p ∈ 
P such that the number of p ∈ P that coverage(p, p.sol) ≥ 
minQuality is maximized, yet at no time do we 
oversubscribe memory or energy. 

Since coverage is a black-box function, optimizing this 
in general is problematic. But if we make the assumption 
that coverage is monotone (adding another o to p.sol never 
makes it worse), then we can perform local optimization 
based on approximating that adding the o that gives us the 
best improvement now might give us good improvement 
overall.  

The squeaky-wheel optimization algorithm initially 
labels each target with a scheduling priority. This priority 
will increase as the scheduler fails to schedule the target. 

Then, iteratively, for each target in scheduler priority, 
the scheduler attempt to schedule the target. Any target not 
scheduled gets its scheduling priority bumped up. After 
each scheduling session, the quality of the current schedule 
is checked against the quality of the best schedule found 
thus far. If the current schedule quality exceeds that of the 
previous best schedule, then we replace the best schedule 
with the current schedule. 

If we run out of time or if the little improvement seems 
likely (stagnation), we stop optimization and return the 
best schedule as the solution. 

This process is illustrated in Figure 1. 
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Figure 1 Squeaky Wheel Optimizer 

Detecting Stagnation 
 As we iterate over various schedules, we see a pattern of 
increasing and decreasing quality over time of the current 

schedule. Figure 2 illustrates such a cycle. To estimate 
when stagnation has occurred, we set a limit of the number 
of quality cycles without improvement by the system, and 
when this limit is exceeded, we presume (possibly falsely) 
that the search is stagnant and not likely to lead to 
improvement. Of course, this is a heuristic and is provably 
incorrect, thus care should be taken before selecting quality 
cycle limits. 
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Figure 2 Schedule Quality over Time (Vertical is 

number of Points, Horizontal is Iteration) 
 

Schedule Compression 
In general, our technique for compression is to save a 

succinct uncompressed schedule and summarizations of 
profile data that are implied by the succinct schedule, up to 
available memory. 

The succinct schedule data structure consists of a map 
keyed by time of instrument modes. 

Energy, battery level, and duty cycle profiles are 
summarized. In general, the schedule is iteratively divided 
starting from the beginning and each spanned area is 
summarized with the appropriate characteristics. The 
summaries are updated when scheduling occurs without 
being recomputed until we detect a potential false negative 
scheduling result. Then the actual profile is computed from 
the nearest waypoint to determine legal scheduling options. 
This “uncompression” of the schedule can be costly, and in 
the worst case can induce a walk of half of the succinct 
schedule, which in turn can take up to hundreds of 
megabytes. Thus, we leverage the fact that we know that 
the squeaky-wheel optimizer will be looking in detail at 
earlier candidate times for observation schedules.  

What results is a characteristic dynamic trading-off of 
abstract schedule information for detailed information in 
the current context of observation scheduling. 

DESDynI Domain 
As mentioned previously, the DESDynI domain consists 

of scheduling observations in support of 3 science 
disciplines: 

Deformation: Surface deformation is linked directly to 
earthquakes, volcanic eruptions, and landslides. 
Observations of surface deformation are used to forecast 



the likelihood of earthquakes occurring as a function of 
location, as well as predicting both the place and time that 
volcanic eruptions and landslides are likely. Advances in 
earthquake science leading to improved time-dependent 
probabilities would be significantly facilitated by global 
observations of surface deformation, and could result in 
significant increases in the health and safety of the public 
due to decreased exposure to tectonic hazards. Monitoring 
surface deformation is also important for improving the 
safety and efficiency of extraction of hydrocarbons, for 
managing our ground water resources, and, in the future, 
providing information for managing CO2 sequestration. 
Example targets are illustrated in Figure 3. 

 
Figure 3 Deformation Targets 

Ecosystem Structure: Radar and lidar measurements will 
help us understand responses of terrestrial biomass, which 
stores a large pool of carbon, to changing climate and land 
management. Benefits would include the potential for 
development of more effective land-use management, 
especially as climate-driven effects become more 
pronounced. Example targets are illustrated in Figure 4. 

 
Figure 4 Ecosystem Structure Targets 

Dynamics of Ice: The poorly-understood dynamic 
response of the ice sheets to climate change is one of the 
major sources of uncertainty in forecasts of global sea level 
rise. DESDynI's InSAR measurements of the variations in 
ice flow patterns and velocities provide important 
constraints on their dynamic response to climate change. 
This knowledge will help to determine how fast society 
must adapt to sea level changes - knowledge crucial in 
planning how to allocate scarce resources. Example targets 
are illustrated in xxx. 

 
Figure 5 Dynamics of Ice Targets 

 As can be seen from our figures, we use Google Earth 
KML files to communicate targets and scheduling 
solutions to our systems and to our scientists. 

These files are processed and result in a combined set of 
targets, as seen in Figure 6. 

 
Figure 6 Combined Targets 

Results 
Our system then decomposes the entire set of targets 

into a set of target points, and attempts to gather each point 



using the squeaky wheel optimization technique. We have 
already seen in Figure 2 the evolution of quality over time. 
Not surprisingly, the smaller the schedule, the faster 
reasoning takes place, thus it is faster to solve schedules 
that are of low quality than it is to solve schedules of 
higher quality. This is illustrated in Figure 7. 
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Figure 7 Solution and Setup Times (Vertical axis is 
minutes and horizontal axis is iteration) 

Figure 8 illustrates a solution, with the gathered points 
being represented by pins. 

 
Figure 8 Solution 

When solving the larger problem of the entire schedule 
over 330 days (30 cycles), we see that all possible points 
that can be covered are, and this solution only requires 15 
minutes to setup and solve. This is a greater than 20 fold 
increase in speed over using non-compressed 
representations and an even greater speed-up over using 
other systems that require about a week to produce a single 
schedule. 

Related Work 
[Knight 2005] solves smaller problems of this sort 

optimally using a combination of branch and bound 
techniques combined with flow network approximations. 

For a good example of a polyhedral solution to a 
combinatorial optimization problem having to do with 
satellite scheduling (formulated as a pick-up and delivery 
problem), see [Ruland 1986].  

[Oddi 2003] solves a constrained-memory domain with 
fewer types of constraints called the Mars Express Memory 
Dumping Problem.  The system uses a portfolio approach 
to solving the problem as formulated in a constraint-based 
framework. The portfolio consists of a tabu search strategy, 
a random sampling strategy, and a greedy strategy. 

More general constraint-based frameworks for 
scheduling that have been applied to spacecraft operations 
include that of [Dungan 2002], [Ghallab 1994], and [Chien 
2000]. In each of these, the problem is expressed as a set of 
constraints to be satisfied. In the case of [Dungan 2002], 
and [Ghallab 1994], the systems search the feasible space 
of domains in the constraint space. In the case of [Chien 
2000] the system searches both the infeasible and feasible 
space of value assignments, using randomized local search. 
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