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Abstract

We report on progress made on the development of a
real-time planning tool for multiple-mission Earth Ob-
servation Satellites (EOSs). The problem under consid-
eration is to decide which acquisitions are needed to
fulfill a series of criteria, such as the minimization of
the total acquisition cost or the maximization of the
area covered. Several models of increasing complex-
ity have been developed; the most basic models are
based on standard covering algorithms, which are ad-
equate for the case in which no dynamical constraints,
such as duty cycles, are imposed. The underlying Com-
putational Geometry problem has been reduced to the
computation of a matrix, which allows one to use stan-
dard Integer Programming tools and software. Given
the complexity of the problem and the requirements of
obtaining solutions in real time, heuristic algorithms,
yielding (possibly sub-optimal) solutions to the prob-
lem are needed. A greedy and a GRASP algorithm have
been implemented. Preliminary computational results
are presented, comparing the heuristic algorithms with
the exact solution.

Earth observation satellites (EOSs) are a class of geocen-
tric satellites whose task is to collect data of the Earth us-
ing advanced sensing technology. Such data are useful in
disciplines that study the Earth lands, oceans, and atmo-
sphere and their interaction, such as cartography, meteo-
rology, oceanography, biology, geology, geodesy, or atmo-
spheric science. The field of EOSs is quickly evolving and
new applications are emerging: fire detection, crisis manage-
ment or fishing zone identification. For these reasons, EOSs
have become an important resource for global Earth surveil-
lance and research. Nowadays, many countries and compa-
nies all over the world are actively developing and deploying
EOSs. However, although the fleet of EOSs is growing, their
number is not high enough to satisfy the ever-increasing
global requirements for remote sensing data. Hence, EOSs
resources have to be efficiently managed to obtain the max-
imum possible benefit.

Currently, most remote sensing activities require manual
coordination of satellites and observations by mission plan-
ners or shceduling algorithms (Sun, Wang, and Qin 2008;
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Muraoka et al. 1998; Chien, Smith, and Rabideau 1998).
However, with the existing number of EOSs and demands
for observation time, it is becoming unfeasible to man-
ually plan coordinated EOSs activities. Instead, observa-
tion requests should be processed by automatic planning
algorithms which select and schedule a subset of satellites
yielding the maximum profit under operational constraints,
such as satellite availability, power, thermal, data capacity,
clouds, duty cycles of the sensors and the limited time each
satellite spends over a target.

This problem has traditionally been studied for the case
of one single satellite. However, nowadays Earth Obser-
vation operations are increasingly moving towards multi-
satellite scheduling, looking for shorter revisiting times and
quicker access to space resources, which is crucial for appli-
cations like disaster management and systematic large area
mapping. Thus, since requests might be satisfied by several
satellites belonging to the same constellation or even to a
different mission, in more than one of their revolutions, the
problem is not separable by satellite or orbit. Instead, plan-
ning must be performed simultaneously for all satellites and
orbits considered.

In addition, many missions require rapid decision and
management (for instance, humanitarian assistance or dam-
age assessment), or they depend on rapidly changing data,
such as clouds. Hence, planning algorithms should ideally
find the optimal solution in (almost) real-time. However, tak-
ing into account the number of operating satellites, the total
number of observations they can perform, and the number
of existing constraints and options for each observation, the
search space for EOSs scheduling problems might become
too large. In general, exact algorithms cannot be expected
to be feasible for real-time operation and instead heuristic
algorithms have to be developed and applied. Taking advan-
tage of new mathematical techniques for handling data and
parallel computing, these algorithms are able to quickly find
an almost-optimal solution.

An explicit example generated with SaVoir (Swath Ac-
quisition Viewer, (Taitus 2011)) is shown in figures 1 and 2.
In this example, the region of interest is Italy, and it can be
seen how acquisitions from several satellites overlap, pro-
viding redundant images. The unoptimized solution in fig-
ure 1 is formed with acquisitions generated automatically
with a simple ”maximal-coverage” algorithm, with no mem-



ory. Each acquisition is planned independently of the others.
SaVoir selects the best sensor steering to maximize the cov-
erage. Because there is no memory the output tends to over-
lap previous data takes leaving many parts uncovered. The
results shown in figure 2 are selected with a similar strategy
but with memory. The sensor steering will be selected with
a ”maximal-coverage” criteria, but incrementally discarding
coverage of previous data takes. It produces a solution with
less acquisitions but not necessarily the best choice (in time,
coverage, cost or a combination of these criteria).

Figure 1: A real-world example produced with SaVoir (Tai-
tus 2011). Swaths from different satellites produce a redun-
dant and overlapping set of acquisitions. Each acquisition is
planned independently of the others. SaVoir selects the best
sensor steering to maximize the coverage. Because there is
no memory the output tends to overlap previous data takes
leaving many parts uncovered.

This contribution formulates the swath acquisition prob-
lem (SAP) arising in multi-satellite and constellation man-
agement as a mathematical programming problem and pro-
poses a heuristic algorithm to provide a feasible solution.
Current approaches to solve SAP are mostly based on sim-
ple enumeration of possible solutions, which may be too
time consuming, mainly when different criteria or satellites
priorities are taken into account. Moreover, duty cycle con-
straints and other similar constraints of dynamic nature (bat-
teries, recorders, downlink capacity) are not frequently in-
corporated within the optimization process. Hence, the out-
put of existing procedures may be far from optimal. How-
ever, if these dynamical constraints are not relevant, an ade-
quate customization of well-known Mathematical Optimiza-
tion methods can yield several feasible algorithmic strategies
to address SAP.

We present our preliminary work, including a mathemati-
cal model for describing SAP, the study of several simplified
models, a heuristic algorithm to solve the problem, and some
preliminary results. Our ultimate goal is to design, develop
and implement a real-time tool for EOSs planning, which
includes several multiple-mission, multiple-constellation al-
gorithms able to handle realistic operational constraints and

Figure 2: Optimized solution with an heuristic two steps ap-
proach. The acquisitions are selected with a similar strategy
as in figure 1 but with memory. The sensor steering will be
selected with a ”maximal-coverage” criteria, but incremen-
tally discarding coverage of previous data takes. It produces
a solution with less acquisitions but not necessarily the best
choice (in time, coverage, cost or a combination of these cri-
teria).

its integration into SaVoir (Taitus 2011), a visual, simple-to-
use tool for satellite mission planning and management. One
of the advantages of using SaVoir is that its visual engine im-
plements computational geometry algorithms that can com-
pute (as in Figure 1) the subregions in which the region of
interest is divided by the different available swaths, and what
swaths cover each subregion. These computations are per-
formed with embedded GIS capabilities and 3-D geometry.
The geometrical algorithms include provisions to cope with
Earth ellipsoid singularities over the poles and line of date
(180 degree), such that the areas of interest may be posi-
tioned anywhere on the Earth without calculation or visual-
ization restrictions.

Methodology
Our approach towards an efficient, visual swath acquisition
planning algorithm can be summarized in four steps:

1. Formulating the EOSs planning problem in an adequate
mathematical setting, which allows us to use standard op-
timization algorithms.
Several models of increasing complexity have been devel-
oped. First, a simplified model is constructed for simple
regions, simplified satellite ground tracks, and fixed satel-
lite sensors. Later, real-world regions and ground tracks,
and steerable satellite sensors are included. Finally, com-
plex constraints such as maximum sun angle or duty cycle
limitations are included in the model.

2. Solving the involved computational geometry problem,
which implies calculating intersections between Earth re-
gions and different satellite swaths.



These problems are not difficult for the initial simplified
models, but their complexity increases with the model.
The algorithms should be fast and efficient, and they
should be able to handle complex regions, possibly non-
convex and with holes. The algorithms should be free of
projection distortion, and they should successfully work
with regions located anywhere in the world.

The computational geometry problem can be summarized
as the computation of all the subregions generated by the
intersections of the satellite swaths within the region of
interest. Based on such intersections, one can compute a
matrix Q, whose entry (i, j) takes the value 1 if subregion
i is covered by swath j, and takes the value 0 otherwise.

3. Implementation of exact and heuristic algorithms to solve
the problem.

Given the matrix Q from the previous step, the SAP can
be seen as a so-called set covering problem, (Schilling,
Jayaraman, and Barkhi 1993), solvable by means of stan-
dard Integer Programming software. However, it has been
shown that the swath segment selection problem is an NP-
hard combinatorial optimization problem (Cordone, Gan-
dellini, and Righini 2008), thus only small-size instances
are expected to be solved exactly in short time.

Hence, given the complexity of the problem and the need
of obtaining solutions in real time, the use of exact algo-
rithms is, in general, unfeasible. Therefore, heuristic algo-
rithms have to be developed and implemented to rapidly
find a (possibly sub-optimal) solution to the problem. To
measure the quality of the solutions provided by those
heuristic algorithms, it would be important to implement
methods that produce the exact solution, though with a
much higher computational cost. Then, comparisons be-
tween the solutions provided by exact and heuristic algo-
rithms can be carried out to give an idea of what is lost in
terms of costs when heuristics are used.

4. Integration of the planning algorithms in the SaVoir visual
satellite simulation environment.

Once the problem has been modeled and solved, the de-
veloped algorithms should be integrated in a visual satel-
lite simulation tool, friendly for users (satellite planners).
The tool should allow one to to select a set of real satel-
lites, a region to be observed, a cost index and a set of
constraints, and it should give in real time the optimal (or
almost-optimal) subset of time-observation frames for the
satellites. To do this, the tool will use realistic propaga-
tors to compute future satellite orbits based on existing
orbital elements, solve the involved computational geom-
etry problems, and apply the previously developed heuris-
tic algorithms to find a good solution.

In our opinion SaVoir gives a perfect match to the require-
ments above, since it is easy to use, inexpensive com-
pared with other solutions in the market, and it already
implements a computational geometry engine which can
be used to compute the matrix Q.

Formulation of the EOSs planning problem
In this section we introduce several mathematical models
that aim at describing the problem introduced before. We
begin with several definitions of the key concepts that play
a role in our model. Then, we show how to express differ-
ent versions of the EOSs planning problem as optimization
problems. We start with a simplified model, in which the
involved satellites have fixed sensors; this model clarifies
the integer programming formulation of the problem. The
model is illustrated with several simple examples. Next, a
straightforward extension in which satellites have steerable
sensors follows. The last model describes a more realistic
situation in which sensors can be used for a limited period
of time only. Finally we comment on an heuristic approach
to the solve the problem.

Statement of the problem and notation
To formulate the EOSs planning problem, the following con-
cepts are defined:

• R is the region of interest, i.e., the region of the Earth that
needs to be covered. No assumptions are imposed on the
shape ofR.

• T is the time-frame for the planning problem. T is as-
sumed to be an interval [T0, Tf ] given by initial the and
final times T0 and Tf .

• S is the set of satellites considered in the planning prob-
lem. To avoid dealing with orbit propagators, it is assumed
that the position of each satellite in S is known and it can
be computed with enough precision for each time instant
in T .

• For each satellite s ∈ S, Ps is the set of possible sensor
angle positions for s.

• Given a satellite s ∈ S, a sensor position p ∈ Ps and
a time interval [t0, t1], an acquisition a(s, p, t0, t1) is de-
fined as the surface of the Earth covered by the swath of
satellite s during [t0, t1] in its position p. Define also the
cost of the acquisition a as ca > 0.

• A is the set of all possible acquisitions given the set
of satellites, their possible sensor positions and the time
frame T ,

A = {a(s, p, t0, t1) : s ∈ S, p ∈ Ps, [t0, t1] ⊂ T}.

• Subregions SR: The intersection of the set A with the
regionR defines a set of subregions whose union is equal
to the region of interest.

Several concepts from these definitions are illustrated in Fig-
ure 4.

Based on these concepts, we now define admissibility of
acquisitions for the EOSs planning problem. We say a selec-
tion of n acquisitions {ai(si, pi, ti0, ti1), i = 1, . . . , n} ⊂ A
is admissible if:

• Each individual satellite s in the selection is not used
more than once for any given time instant, i.e., ∀ i, j =

1, . . . , n, si = sj ⇒ [ti0, t
i
1] ∩ [tj0, t

j
1] = ∅.



• If a satellite s in the selection is used more than once
with different sensor positions, a time ∆tps is needed to
change its sensor position, i.e.,

∀i, j = 1, . . . , n, si = sj , pi 6= pj ⇒

[ti0, t
i
1 + ∆tpi] ∩ [tj0, t

j
1 + ∆tpj ] = ∅.

• Depth of coverage dj : if a subregion of R, SRj , is spe-
cially relevant, it is advisable to have it recorded more
that once. Parameter dj is a non-negative integer which
allows these “specially interesting” regions to be acquired
more than once. It also allows to include subregions with
dj = 0, which means that they are “not so interesting”,
and therefore not required to be acquired at all.

• Duty cycle constraints: For each satellite s there is a set of
ns subintervals T s

1 , T
s
2 , . . . , T

s
ns

such that ∪ns
j=1T

s
j = T ,

and a number ds ∈ [0, 100] such that s can be used in each
T s
i only a percentage d of the time, i.e.,

∀ s ∀ j = 1, . . . , ns,∑
si=s

length([ti0, t
i
1] ∩ T s

j ) ≤ dslength(T s
j ).

With this notation we are in position to formulate the
EOSs planning problem as follows.

EOSs planning problem: Find an optimal selection
of admissible acquisitions {ai(si, pi, [ti0, ti1]) ∈ A, i =
1, . . . , n} such that R ⊂ ∪ni=1ai. If some of the subregions
SRj are marked as not so interesting through the depth of
coverage parameter dj = 0, the last condition should be
changed to ∪j:dj 6=0SRj ⊂ ∪ni=1ai.

The selection is optimal in the sense that a certain function
F ({a1, . . . , an}) is minimized; F can have different defini-
tions according to the objective, for instance:
• F = n (minimal number of acquisitions).
• F =

∑n
i=1 cai (minimum cost of acquisitions).

• F = maxi=1,...,n t
i
1 (minimal final time).

• A combination of any of the above.
Alternatively, the objective could be to maximize the surface
covered having a threshold value for the final time and/or
maximum budget, etc.

Simplified model I: q-satellites and fixed sensor
The first model to be studied involves q-satellites with a
fixed sensor, without duty cycle constraints; then the com-
plete swath of the satellite can be used, and the set of use-
ful acquisitions is a finite set consisting of the intersec-
tions of the complete swath with R. In this case, given a
maximum operation time Tmax, we consider a time frame
T = [0, Tmax]. The goal is to select acquisitions during T
so that the region of interest R is covered at a minimum
cost. Let a1, ..., an be the set of possible acquisitions, in-
creasingly sorted in time. Then, an is the last acquisition
that can be used, that is, an+1 would occur after Tmax. As
input data, the time in which acquisition ai starts scanning
R and the time in which it gets out ofR, respectively t0i and
t1i , are known. Note that, for the model to be meaningful, we

need to assume that t0i ≤ t1i , t0i ≤ t0i+1 ∀ i, t01 ≥ 0, and
t1n ≤ Tmax.

As a simplified example of this situation consider the
case depicted in Figure 3. The region of interest is the

R

a2

a1 a3 a4

Figure 3: Simplified example of swath acquisition problem.
The region R of interest (solid rectangle) is being covered
by 4 acquisitions {a1, a2, a3, a4} sorted in arriving time. Ac-
quisitions a3 is redundant and should not appear in the opti-
mal solution.

solid black rectangle R, the four possible acquisitions are
{a1, a2, a3, a4} (thin rectangles) sorted in arriving time.

We could think of a very simple algorithm that would first
choose a1, since it covers a certain area of the region of in-
terest. Then, it would iteratively pick acquisitions a2, a3 and
a4, since all of them cover a certain new area of the rectan-
gle. This algorithm would stop as soon as the whole region
of interestR is covered.

With this process, the four acquisitions are necessary to
cover the whole region of interest. Note that this example has
been introduced just to show that any ad hoc non-optimal
approach will certainly provide feasible solutions (if enough
acquisitions are available), but the best one may not be ob-
tained.

In order to solve our problem optimally, we formulate it as
a mathematical programming (MP for short) problem. For a
complete introduction on MP see (Bazaraa, Jarvis, and Sher-
ali 1990; Wolsey 1998).

Let xi be a binary variable (i.e., it can only take the values
0 and 1) saying if acquisition ai is to be used (xi = 1) or
not (xi = 0), and let ci be the cost of using acquisition ai
(ci > 0). Then, the EOSs planning problem can be posed as

min

n∑
i=1

cixi

s.t.
⋃

i:xi=1

ai ⊃ R

xi ∈ {0, 1}, ∀ i = 1, 2, . . . , n.

(1)



Note that this problem can be infeasible. For instance, if
there is a subregion of R not covered by any of the acquisi-
tions available, then the constraint of (1) can never be satis-
fied.

To be able to compute the solution of (1), we model
this problem as an Integer Linear Programming (ILP) prob-
lem (Bazaraa, Jarvis, and Sherali 1990; Wolsey 1998). To
that end, the constraints in (1) must be expressed as linear
constraints. We show now how to do it. Let {SRi, ..., SRm}
be the subregions in whichR is divided considering all inter-
section of the acquisitions ai withR and among themselves.
From this set of subregions, we obtain a matrix Q, whose en-
try qij takes the value 1 if subregion SRj is covered by ac-
quisition ai, and 0 otherwise. With this new matrix, Problem
(1) can be formulated as

min

n∑
i=1

cixi

s.t.
n∑

i=1

xiqij ≥ dj , ∀ j = 1, ...,m

xi ∈ {0, 1}, ∀ i = 1, 2, . . . , n.

(2)

Taking advantage of this formulation, in the constraints of
(2) we have included depth of coverage constraints, forcing
each subregion SRj to be covered by at least dj different
acquisitions.

We will now apply our ILP model (2) to the example of
Figure 3, showing that some of the acquisitions might not
be needed. We consider that all costs are equal and there-
fore, by the linearity of the problem, we can set ci = 1 for
all i = 1, ..., 4. In this example, the region of interest R is
subdivided in 18 subregions as shown in Figure 4.
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Figure 4: Subregions generated in R by the intersection of
the acquisitions with each other and with the region of inter-
est. In this simple example 18 subregions are generated.

Matrix Q results:

Q =



0 1 0 0
0 1 0 1
0 1 1 1
0 1 1 0
0 1 0 0
1 1 0 0
1 1 0 1
1 1 1 1
1 1 0 1
1 1 0 0
1 0 0 0
1 0 0 1
1 0 1 1
1 0 0 1
1 0 0 0
1 0 1 0
0 0 1 1
0 0 0 1


Let us explain the meaning of rows and columns. The first

row states that subregion SR1 is only covered by acquisition
a2. In contrast, the third column says that acquisition a1 cov-
ers subregions SR3, SR4, SR8, SR13, SR16 and SR17.

Note that matrix Q can be simplified by merging all
identical rows into one row only (which implies joining
the corresponding subregions). The same can be done with
columns. For instance, rows 12 and 14 are identical, mean-
ing that subregions SR12 and SR14 are covered by the same
satellites, and they can therefore be treated as one single sub-
region. This way the size of the ILP problem is reduced.
Whether or not this reduction is worthy is still an open ques-
tion.

The computational complexity of matrix Q could become
a bottleneck of the algorithm, even bigger than the ILP,
and an efficient implementation of computational geometry
operations (union, intersection, subtraction) is needed. Be-
sides, a well structured area accounting system should be in-
troduced to deal with frequent area related constraints in the
applications (acquisitions with negligible covering should
not be included, for instance).

Setting dj = 1 ∀ j, the solution to Problem (2) with the
data of this example is x3 = 0, x1 = x2 = x4 = 1,
which means that, as we had anticipated, acquisition a3 is
not needed to cover the area of interest.

Simplified model II: q-satellites and steerable
sensor
Assume now that the satellites have a steerable sensor, that
is, the sensor angle with respect to the nadir can be changed
in a certain range in order to better acquire the region of
interest. In the simplified model, we assume that the mode
(angle) of the satellite’s sensor can be changed for each rev-
olution, but it has to be maintained during all the period that
the satellite is scanning the region of interest. We also as-
sume that the sensor has K possible discrete modes (typi-
cally K ≤ 256). The previous simplified model (2) can be
easily adapted to this case just by adding a superscript k that
specifies the mode and a set of constraints that avoid the



change of mode along the same acquisition. Therefore, let
xk
i be a binary variable, which takes the value 1 if acquisi-

tion i is chosen with the sensor in position k, and 0 other-
wise. We now have to build the subregions ofR, taking into
account that every satellite revolution generates up to K dif-
ferent acquisitions (at most one of which is to be chosen).
Matrix Q now becomes a 3-dimensional matrix. Its entry qkij
is 1 if subregion SRj can be photographed by acquisition
ai using its kth position and it takes the value 0 otherwise.
Therefore, Problem (2) becomes

min

K∑
k=1

n∑
i=1

cix
k
i

s.t.
K∑

k=1

n∑
i=1

xk
i q

k
ij ≥ dj , ∀ j = 1, . . . ,m

K∑
k=1

xk
i ≤ 1, ∀ i = 1, . . . , n

xk
i ∈ {0, 1}, ∀ i = 1, . . . , n, ∀ k = 1, 2, . . . ,K.

(3)
The first set of constraints states that all subregions must
be covered by at least one acquisition at one of its possible
modes. The second set of constraints forces that the same
acquisition cannot be used in more than one position.

Constrained model I: q-satellites, fixed sensor and
duty cycle constraints
Assume further that each acquisition ai can only be used for
a limited period of time SLOTi. Variables are now func-
tions of time and constraints become integrals and sums.
This way, xt

i is 1 if acquisition ai is used at instant t and
0 otherwise, and qtiy is 1 if acquisition ai can photograph
point y ∈ R at time t. The problem is much more difficult
because we have to find functions instead of just the values
of variables. Now the model becomes:

min

n∑
i=1

ci

∫ t1i

t0i

xt
idt

s.t.
∫ t1i

t0i

xt
idt ≤ SLOTi, ∀ i = 1, . . . , n

n∑
i=1

∫ t1i

t0i

qtiydt > 0, ∀ y ∈ R

1

A(R)

∫
R
qtiydy ≤ xt

i, ∀ t ∈ [0, Tmax]

xt
i ∈ {0, 1},∀ i = 1, . . . , n, ∀ t ∈ [0, Tmax].

(4)

The first set of constraints ensure that acquisitions are not
used more than what is needed. The second set of constraints
forces that each point of the region of interest is acquired by
at least one acquisition for at least one nondegenerate inter-
val. Note that this way we avoid the paradox of acquiring
only a finite set od instants, having the whole area of interest

scanned at zero cost. The third set of constraints says that if
point y ∈ R is to be covered by acquisition ai at time t, then
xt
i must be 1.

Heuristics
Due to the complexity of the problems to be solved, and the
need to obtain a “good” solution in a relatively short time,
heuristic and/or metaheuristic algorithms apply. A heuristic
algorithm is a method used to rapidly obtain a solution that is
hoped to be close to an optimal solution. See (Michalewicz
and Fogel 2000) or (Vazirani 2001) for an introduction to
heuristics.

In this work we will apply to the EOSs planning problem
a GRASP algorithm. GRASP algorithms (Greedy Random-
ized Adaptive Search Procedure) have been widely used for
solving large-scale optimization problems since the pioneer-
ing work by Feo and Resende (Feo and Resende 1989).

A GRASP procedure consists of randomly adding ele-
ments to the problem’s solution set out of the set of k ∈ N
elements that individually yield the largest improvement in
the objective function when added to the previous solution.
This procedure is repeated, and each of the (possibly) differ-
ent obtained solutions form a set of feasible solutions. The
final solution chosen by GRASP is the best out of the fea-
sible solution set previously obtained. When k = 1, that is,
when we choose at each iteration the element that individu-
ally yields the largest improvement in the objective function,
the procedure obtained is a greedy algorithm.

We have used the algorithm for problem (2), although the
same philosophy could be used to handle problems (3) or (4)
after small modifications.

EOSs planning GRASP algorithm:
Input data: Q, k,R, {a1, ..., an}.
Set Reg = R, Aq = {a1, ..., an}, Sol = {}

1. If |Aq| ≤ k, set Fq = Aq. Else, Fq is the set consti-
tuted by the k acquisitions in Aq whose strips individually
cover the maximum area of Reg.

2. Randomly pick one acquisition ai in Aq. Sol = Sol ∪
{ai}. Set Aq = Aq−{ai} and Reg = Reg \Si (Si is the
region covered by acquisition ai).

3. If Reg = ∅, STOP. Sol is a feasible solution. Else, go to
1.

This procedure gives a feasible solution to our problem,
Sol1, that is, a set of satellites whose strips cover the whole
region of interestR. In order to explore the feasible solution
set, we repeat this problem until we run out of computational
time, or we have calculated a fixed maximum number of so-
lutions. Let {Sol1, ...., Solm} be the set of feasible solutions
calculated. If Costj denotes the cost of solution Solj , that
is, Costj =

∑
i∈Solj

ci, our algorithm finishes by choosing
the best feasible solution among all that have been calcu-
lated. That is, the final solution is Solj∗ , where j∗ is such
that minj=1,...,n Costj = Costj∗ .

In case the acquisitions have different costs, in step 1 we
could choose the acquisitions that maximize the ratio (area
covered/cost of acquisition).



Inst. n K m OPT GR(1) GR(2) GR(3) TQ
1 28 20 5966 5 8 6 6 784
2 22 6 2503 9 9 9 9 51
3 22 7 2900 8 9 8 8 70
4 23 10 4020 7 11 7 7 161

Table 1: Preliminary results.

Preliminary Results
We have implemented and solved the second model (a num-
ber of satellites and steerable sensor) for four relatively large
random instances: the number of satellites (n) ranging from
22 to 28, the number of possible modes that each satellite
could work (K) ranging from 6 to 20, and the number of
subregion in which the region of interestR was divided, de-
noted by m, ranging from 2503 to 5966. The computational
effort goes more to calculating matrix Q rather than to solv-
ing the ILP, which was done using CPLEX 11 and the mod-
eling system GAMS 23. The GRASP procedure we have de-
signed was implemented in MATLAB. The results obtained
in this preliminary experience are shown in Table 1. The first
four columns denote the instance label, its number of avail-
able satellites, number of available modes for each satellite
and number of subregions generated inR, respectively. Col-
umn OPT is the minimum number of satellites needed to
cover the whole region (optimal, calculated with CPLEX).
Columns GR(1), GR(2) and GR(3) are the number of satel-
lites of the best solution found by by our GRASP algorithms
for k = 1, 2, 3. Note that GRASP(1) is the classical greedy
algorithm. The last column, TQ, is the time needed to com-
pute the Q matrix, the bottleneck of the process.

In all instances but the first one, the GRASP algorithm
found the optimal solution for k = 2, 3, whereas the greedy
algorithm only found the optimal solution in one instance.
This reinforces the idea that, greedy algorithms are not an
accurate option and therefore other more elaborated heuris-
tics (such as the GRASP algorithms we present here) are
needed in order to obtain good solutions.

Concluding Remarks
In this work, we have modeled an EOSs planning problem
in a mathematical setting which allows us to use well-known
optimization algorithms. Several models of increasing com-
plexity have been developed. The underlying computational
geometry problem has been reduced to the computation of
a matrix Q, and we have shown how to formulate the prob-
lem as a standard Integer Programming problem. However,
given the complexity of the problem and the need of ob-
taining solutions in real time, heuristic algorithms have to
be designed and implemented. We have developed a greedy
and a GRASP algorithm to solve the problem.

Preliminary tests with greedy and GRASP algorithms
have yielded encouraging results. We plan to test other
heuristic methods, such as genetic algorithms, tabu search
or variable neighborhood search. Exhaustive computational
experiments on real data sets are planned to learn which pro-
cedure is the most suitable for different scenarios (possibly
depending on features such as region size, or geometrical

properties of the region). We also plan to include duty cy-
cle constraints in the optimization algorithms. Since it does
not seem easy to reduce the resulting optimization problem
to well-studied models such as the set covering problem, we
will adapt the heuristic algorithms developed for the prob-
lem without duty cycle constraints. The insight obtained will
guide us to decide which heuristic(s) will be chosen and how
constraints should be modeled.

The heuristics yielding the best performance in terms
of quality of the solutions and speed will be integrated in
SaVoir. SaVoir currently provides an engine capable of per-
forming the necessary computational geometry calculations
and an approximated solution based on a simple sequential
search of a valid solution that avoids repeated area acquisi-
tions as much as possible. This algorithm is reliable and rel-
atively fast, but lacks any capabilities of tuning and configu-
ration to optimize given criteria. We expect that integrating
the developed heuristic algorithms in SaVoir will result in a
visual tool to solve the EOSs planning problem (including
realistic constraints) that can be extremely useful to mission
planners worldwide, for a large number of scenarios.
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