
A Status Report on the Development of
the JWST Long Range Planning System

Mark E. Giuliano, Robert Hawkins and Reiko Rager
Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21217, USA

{giuliano, rhawkins, rager}@stsci.edu

Abstract
The development of the James Webb Space Telescope (JWST)
long range planning system started in the fall of 2009 and is
ongoing. The planner is based on the SPIKE system that has
been used to plan Hubble Space Telescope (HST) observations
for the past 20 years. This paper gives a status report on JWST
long range planning development. The paper first describes
how long range planning fits into the larger JWST planning
and scheduling architecture, and shows how lessons learned
from HST are being applied to JWST. The paper then
describes the high-level software components and processes
being used to build the JWST long-range planner while
supporting HST operations. The final section of the paper
outlines several improvements being made to the planner
including potential improvements to the least commitment
resource model.

 Introduction
The James Webb Space Telescope (JWST), often referred
to as the successor to the Hubble Space Telescope (HST),
is an infrared-optimized space observatory with a 6.5-
meter mirror. Launch is currently planned for 2014 to an
orbit 1.5 million kilometers from Earth at the Lagrange
point 2. JWST’s science operations process will be similar
to HST’s, from observation selection to data distribution.
Based on 20 years experience of operating HST, a
Planning and Scheduling System is under development for
JWST that builds upon and improves what has worked for
HST.

This paper focuses on the SPIKE long-range planning
component of the JWST planning and scheduling system.
The SPIKE long range planner uses a least-commitment
approach of assigning windows of possible start times to
each task, rather than assigning a discrete start time to each
task, while taking preferences and resource usage into
account. SPIKE has been used for the last 20 years for
HST long range planning, and will be re-used in the same
role for JWST. While SPIKE has been used for other
Astronomy applications aside from HST, the least-
commitment component has not been utilized outside of
HST. The code is therefore specialized towards HST and
presents an interesting challenge in order to support the

JWST mission while maintaining functionality and
testability for the HST mission.

This paper gives a status report on on-going JWST
development for SPIKE and is organized as follows. The
first section presents lessons learned from the HST
mission. The next section gives background on the JWST
planning and scheduling system, and shows how we have
addressed items in the lessons learned section. The next
section describes the high level design of the JWST long-
range planner and the software engineering processes for
refining the HST SPIKE legacy code to support the JWST
mission. Following this, we describe enhancements to
SPIKE for JWST including potential changes to the least-
commitment resource model.

Learning from HST experience
In [Hawkins et. al. 2009], we summarized some lessons
learned from the Hubble experience:

1. Provide scheduling information as early as
possible, at the time of telescope time allocation,
to achieve higher scheduling efficiency later.

2. Provide observation preparation software that
enables astronomers to construct feasible
programs that do not need to be reworked during
planning and scheduling.

3. Implement a process that encourages astronomers
to craft efficient (i.e. increased scheduling
efficiency) programs.

4. Organize teams to increase effectiveness.
5. Use a two phase planning and scheduling

approach of long-range planning and short-term
scheduling to achieve efficient usage of the
telescope while maintaining a stable plan for
observers.

6. Identify efficiency drivers and model them
appropriately.

7. Keep the spacecraft model in one place. Instead of
modeling spacecraft constraints in multiple

subsystems, try to make one subsystem
responsible for computing them.

8. Design systems to be able to easily incorporate
changes.

Some of these lessons have already been applied to the
HST process (i.e. 2-6), which we are using as a foundation
for JWST. Others are concepts that weren’t necessarily
applied to HST, but are being developed for JWST (i.e. 7,
8).

JWST Planning and Scheduling
The JWST planning and scheduling architecture is given in
Figure 1. Observers prepare observations at a remote site
using the Astronomer’s Proposal Tool (APT) and submit
their observations to the planning and scheduling database
at the Space Telescope Science Institute (STScI). The
Proposal Constraint Generator reads observation data from
the database, calculates windows for the observation’s
physical and astronomer specified constraints, and writes
the resulting windows to the database. JWST scheduling
is handled in a two-phase process by separate long-range
planning and short-term scheduling systems. Both the
long-range planner and short-term scheduler read
observation data from the shared database and use the
constraint windows produced by the proposal constraint
generator.

The two phase scheduling process for JWST will be
similar to the process used for the Hubble Space Telescope
[Giuliano 1998]. In the first phase, the long-range planner
assigns observations to overlapping least commitment plan
windows that are nominally 60 days long. Plan windows
are a subset of an observation’s constraint windows and
represent a best effort commitment to schedule within the
window. In the second phase, plan windows are used to
create successive short-term schedules for 22-day upload
periods. This two phase process allows a separation of
concerns in the scheduling process: plan windows globally
balance resources, are stable with respect to schedule
changes, and provide observers with a time window so
they can plan their data reduction activities. The short-term
scheduler provides efficient fine-grained schedules to the
telescope.

We now describe how this architecture addresses some of
the concerns described in lessons learned 7 and 8.

Shared constraint modeling

In HST, scheduling constraints involving the telescope’s
orbit or engineering restrictions are calculated by three

different scheduling subsystems including SPIKE. These
systems were developed over time and have different users
and fidelity requirements. Aside from the extra cost of
maintaining three separate constraint calculation systems,
there is potential for inconsistencies between the systems.
Inconsistent constraint data can cause rework in operations
often at the last minute when rushing to prepare an
observation for flight. For JWST, there is a single
subsystem called the Program Constraint Generator (PCG)
that calculates constraint windows for all the scheduling
tools, including the program preparation tool (i.e. APT),
the long-range planner (i.e. SPIKE) and the short-term
scheduler. The PCG has detailed models of the telescope
and its orbit and calculates all physical and observer
specified constraints for a single observation. In other
words, PCG calculates what the possible start times are for
an observation as if it is the only observation to schedule
on the telescope. With PCG, there will be no modeling
mismatch between subsystems. This approach also frees
JWST SPIKE from the detailed constraint modeling it has
to do for HST.

Another benefit of using PCG is the ability to give
observers more detailed information on physical
constraints involving guide stars. A guide star is a star near
the target coordinate that can be tracked using the Fine
Guidance Sensor (FGS) to keep the telescope stably
pointed at the target region. Guide stars may only be

Figure 1 : JWST Planning and Scheduling
Architecture

available at certain telescope orientations resulting in a set
of time windows that constrain the observation. With HST,
the availability of guide stars for a particular observation is
not checked until the observation program has been
submitted to STScI and the operation staff runs the guide-
star system. With JWST, guide-star availability is checked
by PCG. An observer will be able to access guide star
availabilities from PCG through APT. If no guide star is
available, the observer can modify his or her observation to
fix the problem prior to submission.

Shared database interface

For the HST planning and scheduling systems, the
interface between different subsystems is implemented
inconsistently - through files, databases and other media.
Each system has a partial view of the state of an
observation. In order to collect the data on one observation,
staff may need to look in various directories as well as
query databases. Some data are redundant, as different
formats are used in the interface between each subsystem,
and so the same data may appear in different files or
database tables.

For JWST, the decision was made that the interface
between planning and scheduling subsystems would be
through one shared database. Each planning and
scheduling subsystem reads a consistent view of the
observation specification and writes their output products
to the database. This strategy removes redundancy in file

formats, and removes the potential for inconsistency.
While we believe the potential benefits of a shared
database are significant, sharing database tables introduces
increased complexity in coordinating database schema
changes. As such, tools and processes have been developed
to implement schema changes more smoothly. All the
information on a database table, such as field names, type,
description and the usage, are kept in a XML file that is
version controlled. A tool then uses these XML files as
input to automatically install database schema changes and
web documentation.

JWST SPIKE Development
JWST Spike long range planning development began in
earnest in the fall of 2009 and is planned to complete in
2013 to support pre-launch verification and validation
testing. The system is being developed in a series of
formal builds to the JWST project:

- 10/2010 – Model JWST domain
- 10/2011 – Define generic SPIKE planner
- 10/2012 – Implement JWST planning capabilities
- 5/2013 - Release to verification and validation

We have completed the JWST domain model and are now
working on refactoring the SPIKE planner.

An initial issue tackled was the relationship between JWST
and HST development. How should the two missions
share code? Ideally, our approach should maintain the
stability of the HST SPIKE Planning System while

Figure 2: SPIKE Package
Hierarchy

allowing JWST SPIKE enhancements to be used in HST
when possible. A related issue was whether to separate the
HST and JWST SPIKE applications, or to have them use
one shared model and run concurrently as a single
application. We chose to separate the applications as this
would decouple the build and test procedures, and there
was no compelling use case to support both missions in a
single application. To support sharing of code between
missions, we will utilize an object oriented approach and
will use a multi-step code refactoring process as described
below.

A first step was to implement a package hierarchy that
enables controlled sharing of functionality between the
core generic components, and the HST and JWST SPIKE
applications. As shown in Figure 2, the package hierarchy
includes a core suite of generic code (green box) that is
further broken down into domain, scheduler and utilities
sub-packages. The domain sub-package contains models
of objects in the space-mission planning domain:
observations, targets and constraints as well as supporting
infrastructure like link-constraint propagation. The
scheduler sub-packages contains planning and scheduling
routines, resource management and interface support. The
package structure for applications is parallel to that of the
generic core. The initial applications envisioned are HST
(blue) and JWST (red). Additionally, database support
routines are separated into a package outside this hierarchy
(orange box).

Once the initial package hierarchy was defined, the HST
code was factored into its internal sub-packages of domain,
scheduler and utilities (i.e. the green box in Figure 2). The
majority of the utility code was sufficiently generic and
was moved into the generic utilities sub-package.

After completing the initial component breakdown for the
HST SPIKE application, the domain components were
refactored, moving core classes (or creating superclasses)
and supporting functionality into the generic domain sub-
package. The domain features described above were
refactored, allowing the modeling of any space telescope
mission using this generic domain. During this refactoring,
the HST-specific functionality was carefully maintained in
the HST domain object models.

Following the delivery of HST SPIKE with this initial
refactoring, the development of the JWST SPIKE domain
model began, reversing the process and creating the
appropriate subclasses and structures required to model the
specific needs of the JWST application domain.

Further developments in the first year of JWST SPIKE
added new features to generic SPIKE that were not part of

HST. This included a new database package that checks
the consistency between the database schema and the
SPIKE code accessing the database. Several additional
developments are described later in the LRP enhancements
section.

Currently, refactoring efforts are focused on moving the
core plan window assignment routines to the generic
SPIKE scheduler package. These routines find the best
possible plan window assignments for sets of observations
linked by timing constraints. The existing routines march
over time examining potential plan windows and selecting
the best potential window. The process uses three software
mechanisms: critics, criteria, and filters [Giuliano 2008].

- Critics heuristically ensure that the high-value portion of
the search space is explored. The search space for plan
windows is huge and theoretically consists of every subset
of a observation’s constraint windows. Critics limit the
potential solutions to be considered to those that are most
likely to give a high value solution.
- Criteria are used to compare potential plan window
assignments for an observation. The search process will
select the potential plan window with the highest criteria
value.
- Filters provide for efficient execution by partitioning the
search space into a list of time intervals such that if a
solution is found in one time interval the next interval is
pruned from the search and is not examined.

Each of these mechanisms was initially coded as part of the
HST scheduler and is currently being refactored so that
they can be used in both missions. As stated above, a goal
in this refactoring work is to maintain current SPIKE
behavior when possible. However, we do not want to
hamper the addition of new and improved capabilities.
Refactoring these routines is a particular challenge with
respect to maintaining current behavior, as these routines
are the core of the planner. To mitigate this issue, the task
of refactoring the planner core has been broken down into
a series of incremental steps that start with infrastructure
that is unlikely to change behavior and end with the
potentially more volatile portions of the planner. The idea
is to be able to regression test as much of the porting as
possible against the current HST behavior.

SPIKE LRP Improvements
While refactoring SPIKE for JWST, we are making
multiple improvements to SPIKE including:

‐ Making SPIKE more transparent as to what actions it
has taken.

‐ Adding a multi-objective component to SPIKE.
‐ Making improvements to SPIKE’s least commitment

resource model.

Some of these improvements will be coded generically and
will benefit HST, while others will remain JWST only.
The main features of the improvements are discussed
below.

Making SPIKE more Transparent
The SPIKE system includes multiple steps to plan
observations including making an initial assignment,
resource leveling, and adjusting linked observations for
execution times. Each of these steps has numerous
parameters that can be set per observation or per session
including criteria weights, nominal plan window size, and
planning start or end dates. While SPIKE currently
provides tracking at a coarse level, more detailed
information is needed by end-users to understand why a
given action was or was not performed. In order to solve
this problem, several new tracking capabilities are being
added to SPIKE.

First, we are adding a command logger that keeps a history
of all high-level user commands. In addition, the logger
keeps track of all plan window assignments and un-
assignments including the source of the assignment (e.g.
manual, initial assignment, resource repair, adjusting
links). This history log spans a SPIKE user session
(which can be saved and restored), and allows users and
other SPIKE software components access to the key steps
taken during a scheduling session.

Second, we have formalized the definition of SPIKE
planning parameters. A planning scenario is a named set
of parameters stored in the planning database that includes
all user options for controlling SPIKE. When executing
the SPIKE planner, users specify a named planning
scenario to be used. Many times, users want to use a
named scenario except for a given parameter (e.g.
changing the nominal plan window size from 60 to 50
days). To simplify this process, the system allows users to
modify a parameter within a SPIKE session and for SPIKE
to automatically store a new planning scenario with the
modified planning parameter(s).

Finally, we are updating our long-range plan status
tracking relations. The SPIKE long range planning process
occurs throughout an HST or JWST observing cycle. At
the start of a cycle, the long-range planner creates a plan
integrating all the new observations for the cycle with any
unexecuted observations from previous cycles. During the
execution of the cycle, the long-range planner is run daily
and will modify the plan based on new observations added
to the plan, changes to existing observations, and execution
times of planned observations. The long range planning
process can be put into an equation:

Observations to plan + Input Long range plan =
Output Long range plan

In other words, SPIKE takes as input a set of observations
to plan and an input long-range plan and uses planning
algorithms and interactions with the end user to produce a
new long-range plan as output. Both observation data and
long range plans are stored in database relations for JWST.
A primary goal of the planning process is to maintain
stability. In general, if an observation is planned in the
input plan, it should have the same plan window in the
output plan. Although stability in the plan is a goal,
changes from plan-to-plan will occur and SPIKE needs to
provide for tracking. These database records will allow
users to trace the history of an observation’s plan window
and to know the planning scenario used to create each
window.

Multi-Objective Scheduling
SPIKE currently provides a mechanism to evaluate the
quality of a plan window assignment for an individual
observation. The JWST long range planning requirements
dictate that SPIKE provide the ability to evaluate a long
range plan as a whole with respect to a set of criteria
including minimizing momentum buildup, minimizing
schedule gaps, grouping observations from the same
program together, and balancing resources. To meet these
requirements, SPIKE will support a multi-objective
approach to scheduling. In a traditional single objective
approach, individual criteria are combined in a weighted
fashion. In contrast, in a multi-objective search, individual
criteria are kept separate during scheduling. The result of
a multi-objective search is a Pareto-surface of schedule
solutions where no solution on the surface is strictly
dominated by another solution in terms of all criteria. A
multi-objective infrastructure has been added to generic
SPIKE that supports global plan criteria and maintaining a
Pareto-surface of potential solutions. Tools and techniques
for displaying and reasoning about Pareto-surfaces are
described in [Giuliano and Johnston 2010, Giuliano and
Johnston, 2011].

Least Commitment Resource Models
A primary goal of long range planning is to distribute
resource usage evenly across a planning interval so that
efficient short-term schedules can be created. SPIKE
currently uses two techniques to measure resource conflicts
during long range planning called classical plan window
resources, and validation scheduling of observations to
orbits. While investigating prototype resource metrics, it
was observed that the existing models have issues and that
other models are possible. The existing models are
described below and issues with the models are discussed.
An alternate model that falls in-between the two models is

then presented. For ease of presentation the discussion
below is given in terms of orbits as applied to HST. The
same also applies to scheduling to precise times as will be
done for JWST.

Classical plan window resources are tracked at a
granularity of a day. The resources used by an observation
are divided equally across all the days in the plan window.
For example, Figure 3 gives an example of resource
calculation for three observations O1 (2 orbits long), O2 (4
orbits long) and O3 (3 orbits long). The plan windows of
the observations stretch from day 2 to 3, day 2 to 5 and day
3 to 5, respectively. Here, we assume there are two orbits
per day. The orbits required for each task are divided
equally across the number of days in their plan windows.
The bottom two rows of the chart show the amount of
resources consumed and available for each day. The
example shows that day 3 is oversubscribed, days 1, 6 and
7 are undersubscribed, whereas days 2, 4, and 5 are
subscribed to full capacity. Although the classical plan
window resource model captures the resource load over
time and tracks resource failures, it allows both false
positives and false negatives as illustrated below.

Figure 4 shows an example of classical plan window
resource consumption with a false positive. Here, a false
positive means that the model shows no resource
oversubscription yet the scenario is not schedulable. The
figure shows the resource consumption of four
observations across their respective plan windows. The
total orbit limit for each day is 4 and the total consumption
shows no oversubscribed days. However, an actual
schedule of observations cannot be generated. The problem
lies with observation O2. There are not enough orbits to
schedule it either before or after task O1. The intuition
behind this false positive is that the resource model
implicitly allows observations to be executed in a non-
contiguous manner during scheduling. However, this is not
the case for HST or JWST scheduling.

Figure 5 gives an example of classical resource
consumption with a false negative. Here, a false negative
means the model shows resource over-subscription yet the
scenario is schedulable with no over-subscription. Each
day has 2 total orbits. Day 3 and day 4 are oversubscribed
in the classic resource model. However, a schedule can be
obtained by placing O1 in days 2 and 3, O2 in day 1, and O3
in day 4. The false negative occurs because the resource
model assumes that the resource consumption is evenly
divided across the plan window.

The classical plan window resource model shows a
probabilistic picture of demand for resources, but may
result in false positives and false negatives. With the
classical plan window resource model, it is hard to pinpoint
which observations are likely to fail due to over-
commitment, or which time of the year HST orbits are
underused. To account for the false positives and
negatives, the SPIKE tool creates a separate resource
validation schedule that assigns observations to specific
orbits [Ferdous, 2006]. This process identifies times where
the plan windows cannot be realized as a short-term
schedule. The main problem with the validation approach
is that it removes the least-commitment nature of the plan,
as it only shows that a single scheduled time is good and
does not validate the entire plan window.

As noted above, the classical SPIKE plan window resource
model makes two assumptions:

− Observations can be broken into as many pieces as
desired.

− Resources are divided evenly across the days in a plan
window

In contrast, the validation schedule makes neither of these
assumptions. The first assumption causes false positives in
the classical resource model as it ignores the bin packing
aspect of making a schedule. The second assumption
causes false negatives in the classical resource model due
to observations with short plan windows. The HST and

1

Figure 3: Example of classical resource model

2

Figure 4: Classical resource model with false positive

2

1

F

JWST scheduling domains were examined with respect to
the causes of false positives and false negatives. HST is in
low Earth orbit and is impacted by the South Atlantic
Anomaly (SAA) in 9 of its 15 orbits for a day. The SAA
impacts create a complex bin-packing problem as an

observation can be scheduable in the 6 SAA free orbits and
in some, or none, of the SAA impacted orbits. In contrast,
JWST, at L2, will not have earth occultation and SAA
impacts. As a result of the orbit differences, JWST is
expected to have less bin packing problems than HST
resulting in less false positives in the classical resource
model. JWST, like HST, will have observations with
short plan windows resulting in false negatives in the
classical model. Since JWST will have less opportunities
for false positives, but will still have false negatives, we
investigated and coded a third resource model that supports
removing the false negatives found in the classical model.

When refactoring the SPIKE resource model, we added a
resource assignment map that specifies how resources are
consumed over a plan window. By default, resources are
divided evenly, but the assignment map provides the
ability to explore alternative resource allocations over time.
This implementation leads to a resource assignment
problem. Given a set of plan windows for observations,
can resource assignment maps be defined for all
observations so that no resources are oversubscribed? For
example, Figure 6 shows a resource-conflict free
distribution of resources for the example given in Figure 5.
Even for this simple example, there are many ways in
which the resources could be assigned to remove conflicts.
The figure shows a distribution where observations O2 and
O3 both reduce their usage to 0.25 orbits in days 3 and 4
and increase their usage to 0.75 in days 1 and 4. The idea
here is that we can redistribute resources yet keep the
window nature of the model. We are currently exploring
heuristic methods for incrementally solving the resource
assignment problem.

If a resource assignment problem is not solvable then we
know that the corresponding resource validation orbit
assignment problem is unsolvable. If we cannot solve the
problem allowing observations to be broken into arbitrary
pieces, then the problem cannot be solved if each
observation has to be executed in a non-interruptible
fashion. On the other hand, solving a resource assignment
problem does not ensure that we can assign observations to
orbits with no resource conflicts. A solvable resource
assignment problem may not have an orbit assignment due
to bin packing concerns.

The resource assignment problem is a mid-point between
the classical plan window resource model and validation
scheduling to orbits. An advantage of the resource
assignment model is that it retains the window nature of
the classical plan window resource model. There may be
many resource usage assignments that do not violate any
resource limits. The resource assignment search
mechanism will have a metric that measures how even the
resource usage is over the plan window. The search will
use the metric to prefer solutions that keep resource usage
evenly spread out over the observation plan windows as
much as possible as opposed to solutions that fragment
resource usage for an observation. In this way, the
resource assignment model retains a least-commitment
component.

The three resource models are compared and contrasted in
Table 1. The ability to assign alternative resource maps
has been coded for the resource assignment model.
However, only simple engines to generate alternate maps
have been prototyped. The results have been promising
and we are currently investigating alternative search
techniques for making resource assignments. Based on our
findings, we will decide which resource models will be
used in JWST operations.

Figure 5: Classical resource model with false negative

Figure 6 : False negative example repaired by adjusting
resource usage

Conclusions

Development of JWST long range planning capabilities for
SPIKE is ongoing and expected to complete in May of
2013. This paper gave a status report describing the
context for JWST development, a software engineering
process that allows code to be shared with HST SPIKE,
and improvements to core planning capabilities for least
commitment planning.

References
Hawkins, R., Jordan, I. and Giuliano, M.E., 2009. Applying
Lessons Learned in Planning and Scheduling the Hubble Space
Telescope to the James Webb Space Telescope. International
Workshop on Planning And Scheduling for Space (IWPSS).
Pasadena, California.
Ferdous, N., and Giuliano, M.E., 2006. Validating Resource
Usage in Least Commitment Planning. International Workshop
on Planning And Scheduling for Space (IWPSS). Baltimore,
Maryland.
Giuliano, M.E., and Johnston, M.D. 2010. Visualization Tools
For Multi-Objective Algorithms. Demonstration: International
Conference on Automated Planning and Scheduling (ICAPS),
Toronto, Canada.
Giuliano, M.E., and Johnston, M.D. 2011. Developer Tools for
Evaluating Multi-Objective Algorithms. Interatnional Workshop
on Planning and Scheduling for Space (IWPSS). Darmstadt,
Germany
Giuliano, M.E. 1998. Achieving Stable Observing Schedules in
an Unstable World. In Astronomical Data Analysis Software and
Systems VII. 271-274.
Giuliano, M.E., 2008. Handling Oversubscribed Orbital
Resources in Hubble Space Telescope Operations. Workshop on
Oversubscribed Planning and Scheduling, at the International
Conference on Automated Planning and Scheduling (ICAPS),
Sydney Australia.

Table 1: Comparison of least commitment resource models

