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Abstract 
The development of the James Webb Space Telescope (JWST) 
long range planning system started in the fall of 2009 and is 
ongoing.  The planner is based on the SPIKE system that has 
been used to plan Hubble Space Telescope (HST) observations 
for the past 20 years.  This paper gives a status report on JWST 
long range planning development.  The paper first describes 
how long range planning fits into the larger JWST planning 
and scheduling architecture, and shows how lessons learned 
from HST are being applied to JWST.  The paper then 
describes the high-level software components and processes 
being used to build the JWST long-range planner while 
supporting HST operations.  The final section of the paper 
outlines several improvements being made to the planner 
including potential improvements to the least commitment 
resource model. 

 Introduction 
The James Webb Space Telescope (JWST), often referred 
to as the successor to the Hubble Space Telescope (HST), 
is an infrared-optimized space observatory with a 6.5-
meter mirror.  Launch is currently planned for 2014 to an 
orbit 1.5 million kilometers from Earth at the Lagrange 
point 2. JWST’s science operations process will be similar 
to HST’s, from observation selection to data distribution. 
Based on 20 years experience of operating HST, a 
Planning and Scheduling System is under development for 
JWST that builds upon and improves what has worked for 
HST.  
 
This paper focuses on the SPIKE long-range planning 
component of the JWST planning and scheduling system.  
The SPIKE long range planner uses a least-commitment 
approach of assigning windows of possible start times to 
each task, rather than assigning a discrete start time to each 
task, while taking preferences and resource usage into 
account. SPIKE has been used for the last 20 years for 
HST long range planning, and will be re-used in the same 
role for JWST. While SPIKE has been used for other 
Astronomy applications aside from HST, the least-
commitment component has not been utilized outside of 
HST. The code is therefore specialized towards HST and 
presents an interesting challenge in order to support the 

JWST mission while maintaining functionality and 
testability for the HST mission.  
 
This paper gives a status report on on-going JWST 
development for SPIKE and is organized as follows. The 
first section presents lessons learned from the HST 
mission.  The next section gives background on the JWST 
planning and scheduling system, and shows how we have 
addressed items in the lessons learned section. The next 
section describes the high level design of the JWST long-
range planner and the software engineering processes for 
refining the HST SPIKE legacy code to support the JWST 
mission. Following this, we describe enhancements to 
SPIKE for JWST including potential changes to the least-
commitment resource model. 

Learning from HST experience 
In [Hawkins et. al. 2009], we summarized some lessons 
learned from the Hubble experience:  
 

1. Provide scheduling information as early as 
possible, at the time of telescope time allocation, 
to achieve higher scheduling efficiency later. 

2. Provide observation preparation software that 
enables astronomers to construct feasible 
programs that do not need to be reworked during 
planning and scheduling. 

3. Implement a process that encourages astronomers 
to craft efficient  (i.e. increased scheduling 
efficiency) programs. 

4. Organize teams to increase effectiveness.  
5. Use a two phase planning and scheduling 

approach of long-range planning and short-term 
scheduling to achieve efficient usage of the 
telescope while maintaining a stable plan for 
observers.  

6. Identify efficiency drivers and model them 
appropriately. 

7. Keep the spacecraft model in one place. Instead of 
modeling spacecraft constraints in multiple 



subsystems, try to make one subsystem 
responsible for computing them. 

8. Design systems to be able to easily incorporate 
changes. 

 
Some of these lessons have already been applied to the 
HST process (i.e. 2-6), which we are using as a foundation 
for JWST.  Others are concepts that weren’t necessarily 
applied to HST, but are being developed for JWST (i.e. 7, 
8). 

JWST Planning and Scheduling  
The JWST planning and scheduling architecture is given in 
Figure 1.  Observers prepare observations at a remote site 
using the Astronomer’s Proposal Tool (APT) and submit 
their observations to the planning and scheduling database 
at the Space Telescope Science Institute (STScI).  The 
Proposal Constraint Generator reads observation data from 
the database, calculates windows for the observation’s 
physical and astronomer specified constraints, and writes 
the resulting windows to the database.   JWST scheduling 
is handled in a two-phase process by separate long-range 
planning and short-term scheduling systems. Both the 
long-range planner and short-term scheduler read 
observation data from the shared database and use the 
constraint windows produced by the proposal constraint 
generator. 
 
The two phase scheduling process for JWST will be 
similar to the process used for the Hubble Space Telescope 
[Giuliano 1998]. In the first phase, the long-range planner 
assigns observations to overlapping least commitment plan 
windows that are nominally 60 days long. Plan windows 
are a subset of an observation’s constraint windows and 
represent a best effort commitment to schedule within the 
window. In the second phase, plan windows are used to 
create successive short-term schedules for 22-day upload 
periods.  This two phase process allows a separation of 
concerns in the scheduling process: plan windows globally 
balance resources, are stable with respect to schedule 
changes, and provide observers with a time window so 
they can plan their data reduction activities. The short-term 
scheduler provides efficient fine-grained schedules to the 
telescope. 
 
We now describe how this architecture addresses some of 
the concerns described in lessons learned 7 and 8. 
 
Shared constraint modeling  
 
In HST, scheduling constraints involving the telescope’s 
orbit or engineering restrictions are calculated by three 

different scheduling subsystems including SPIKE. These 
systems were developed over time and have different users 
and fidelity requirements. Aside from the extra cost of 
maintaining three separate constraint calculation systems, 
there is potential for inconsistencies between the systems.  
Inconsistent constraint data can cause rework in operations 
often at the last minute when rushing to prepare an 
observation for flight. For JWST, there is a single 
subsystem called the Program Constraint Generator (PCG) 
that calculates constraint windows for all the scheduling 
tools, including the program preparation tool (i.e. APT), 
the long-range planner (i.e. SPIKE) and the short-term 
scheduler. The PCG has detailed models of the telescope 
and its orbit and calculates all physical and observer 
specified constraints for a single observation. In other 
words, PCG calculates what the possible start times are for 
an observation as if it is the only observation to schedule 
on the telescope. With PCG, there will be no modeling 
mismatch between subsystems.  This approach also frees 
JWST SPIKE from the detailed constraint modeling it has 
to do for HST.  

 
 
 

 
Another benefit of using PCG is the ability to give 
observers more detailed information on physical 
constraints involving guide stars. A guide star is a star near 
the target coordinate that can be tracked using the Fine 
Guidance Sensor (FGS) to keep the telescope stably 
pointed at the target region.  Guide stars may only be 

Figure 1 : JWST Planning and Scheduling 
Architecture 

 



available at certain telescope orientations resulting in a set 
of time windows that constrain the observation. With HST, 
the availability of guide stars for a particular observation is 
not checked until the observation program has been 
submitted to STScI and the operation staff runs the guide-
star system. With JWST, guide-star availability is checked 
by PCG. An observer will be able to access guide star 
availabilities from PCG through APT. If no guide star is 
available, the observer can modify his or her observation to 
fix the problem prior to submission.  

 
Shared database interface 
 
For the HST planning and scheduling systems, the 
interface between different subsystems is implemented 
inconsistently - through files, databases and other media. 
Each system has a partial view of the state of an 
observation. In order to collect the data on one observation, 
staff may need to look in various directories as well as 
query databases. Some data are redundant, as different 
formats are used in the interface between each subsystem, 
and so the same data may appear in different files or 
database tables.  
 
For JWST, the decision was made that the interface 
between planning and scheduling subsystems would be 
through one shared database.  Each planning and 
scheduling subsystem reads a consistent view of the 
observation specification and writes their output products 
to the database.  This strategy removes redundancy in file 

formats, and removes the potential for inconsistency.  
While we believe the potential benefits of a shared 
database are significant, sharing database tables introduces 
increased complexity in coordinating database schema 
changes. As such, tools and processes have been developed 
to implement schema changes more smoothly. All the 
information on a database table, such as field names, type, 
description and the usage, are kept in a XML file that is 
version controlled.  A tool then uses these XML files as 
input to automatically install database schema changes and 
web documentation.  

JWST SPIKE Development 
JWST Spike long range planning development began in 
earnest in the fall of 2009 and is planned to complete in 
2013 to support pre-launch verification and validation 
testing.  The system is being developed in a series of 
formal builds to the JWST project: 

- 10/2010 – Model JWST domain  
- 10/2011 – Define generic SPIKE planner 
- 10/2012 – Implement JWST planning capabilities 
- 5/2013   - Release to verification and validation 

We have completed the JWST domain model and are now 
working on refactoring the SPIKE planner. 
 
An initial issue tackled was the relationship between JWST 
and HST development.  How should the two missions 
share code?  Ideally, our approach should maintain the 
stability of the HST SPIKE Planning System while 

Figure 2:  SPIKE Package 
Hierarchy 



allowing JWST SPIKE enhancements to be used in HST 
when possible.  A related issue was whether to separate the 
HST and JWST SPIKE applications, or to have them use 
one shared model and run concurrently as a single 
application.  We chose to separate the applications as this 
would decouple the build and test procedures, and there 
was no compelling use case to support both missions in a 
single application.   To support sharing of code between 
missions, we will utilize an object oriented approach and  
will use a multi-step code refactoring process as described 
below. 
 
A first step was to implement a package hierarchy that 
enables controlled sharing of functionality between the 
core generic components, and the HST and JWST SPIKE 
applications. As shown in Figure 2, the package hierarchy 
includes a core suite of generic code (green box) that is 
further broken down into domain, scheduler and utilities 
sub-packages.  The domain sub-package contains models 
of objects in the space-mission planning domain: 
observations, targets and constraints as well as supporting 
infrastructure like link-constraint propagation. The 
scheduler sub-packages contains planning and scheduling 
routines, resource management and interface support. The 
package structure for applications is parallel to that of the 
generic core. The initial applications envisioned are HST 
(blue) and JWST (red).  Additionally, database support 
routines are separated into a package outside this hierarchy 
(orange box). 
 
Once the initial package hierarchy was defined, the HST 
code was factored into its internal sub-packages of domain, 
scheduler and utilities (i.e. the green box in Figure 2). The 
majority of the utility code was sufficiently generic and 
was moved into the generic utilities sub-package. 
 
After completing the initial component breakdown for the 
HST SPIKE application, the domain components were 
refactored, moving core classes (or creating superclasses) 
and supporting functionality into the generic domain sub-
package. The domain features described above were  
refactored, allowing the modeling of any space telescope 
mission using this generic domain.  During this refactoring, 
the HST-specific functionality was carefully maintained in 
the HST domain object models.  
 
Following the delivery of HST SPIKE with this initial 
refactoring, the development of the JWST SPIKE domain 
model began, reversing the process and creating the 
appropriate subclasses and structures required to model the 
specific needs of the JWST application domain. 
 
Further developments in the first year of JWST SPIKE 
added new features to generic SPIKE that were not part of 

HST.   This included a new database package that checks 
the consistency between the database schema and the 
SPIKE code accessing the database.  Several additional 
developments are described later in the LRP enhancements 
section.  
 
Currently, refactoring efforts are focused on moving the 
core plan window assignment routines to the generic 
SPIKE scheduler package.  These routines find the best 
possible plan window assignments for sets of observations 
linked by timing constraints.   The existing routines march 
over time examining potential plan windows and selecting 
the best potential window. The process uses three software 
mechanisms: critics, criteria, and filters [Giuliano 2008]. 
 

- Critics heuristically ensure that the high-value portion of 
the search space is explored. The search space for plan 
windows is huge and theoretically consists of every subset 
of a observation’s constraint windows.   Critics limit the 
potential solutions to be considered to those that are most 
likely to give a high value solution. 
- Criteria are used to compare potential plan window 
assignments for an observation. The search process will 
select the potential plan window with the highest criteria 
value. 
- Filters provide for efficient execution by partitioning the 
search space into a list of time intervals such that if a 
solution is found in one time interval the next interval is 
pruned from the search and is not examined. 

 
Each of these mechanisms was initially coded as part of the 
HST scheduler and is currently being refactored so that 
they can be used in both missions.  As stated above, a goal 
in this refactoring work is to maintain current SPIKE 
behavior when possible.  However, we do not want to  
hamper the addition of new and improved capabilities. 
Refactoring these routines is a particular challenge with 
respect to maintaining current behavior, as these routines 
are the core of the planner. To mitigate this issue, the task 
of refactoring the planner core has been broken down into 
a series of incremental steps that start with infrastructure 
that is unlikely to change behavior and end with the 
potentially more volatile portions of the planner. The idea 
is to be able to regression test as much of the porting as 
possible against the current HST behavior. 

SPIKE LRP Improvements 
While refactoring SPIKE for JWST, we are making 
multiple improvements to SPIKE including:  

‐ Making SPIKE more transparent as to what actions it 
has taken.   

‐ Adding a multi-objective component to SPIKE. 
‐ Making improvements to SPIKE’s least commitment 

resource model. 



Some of these improvements will be coded generically and 
will benefit HST, while others will remain JWST only.   
The main features of the improvements are discussed 
below. 

Making SPIKE more Transparent 
The SPIKE system includes multiple steps to plan 
observations including making an initial assignment, 
resource leveling, and adjusting linked observations for 
execution times. Each of these steps has numerous 
parameters that can be set per observation or per session 
including criteria weights, nominal plan window size, and 
planning start or end dates.  While SPIKE currently 
provides tracking at a coarse level, more detailed 
information is needed by end-users to understand why a 
given action was or was not performed.  In order to solve 
this problem, several new tracking capabilities are being 
added to SPIKE. 
 
First, we are adding a command logger that keeps a history 
of all high-level user commands.  In addition, the logger 
keeps track of all plan window assignments and un-
assignments including the source of the assignment (e.g. 
manual, initial assignment, resource repair, adjusting 
links).   This history log spans a SPIKE user session 
(which can be saved and restored), and allows users and 
other SPIKE software components access to the key steps 
taken during a scheduling session.  
 
Second, we have formalized the definition of SPIKE 
planning parameters.  A planning scenario is a named set 
of parameters stored in the planning database that includes 
all user options for controlling SPIKE.    When executing 
the SPIKE planner, users specify a named planning 
scenario to be used.   Many times, users want to use a 
named scenario except for a given parameter (e.g. 
changing the nominal plan window size from 60 to 50 
days). To simplify this process, the system allows users to 
modify a parameter within a SPIKE session and for SPIKE 
to automatically store a new planning scenario with the 
modified planning parameter(s).     
 
Finally, we are updating our long-range plan status 
tracking relations.  The SPIKE long range planning process 
occurs throughout an HST or JWST observing cycle. At 
the start of a cycle, the long-range planner creates a plan 
integrating all the new observations for the cycle with any 
unexecuted observations from previous cycles.  During the 
execution of the cycle, the long-range planner is run daily 
and will modify the plan based on new observations added 
to the plan, changes to existing observations, and execution 
times of planned observations. The long range planning 
process can be put into an equation: 

Observations to plan + Input Long range plan = 
Output Long range plan 

In other words, SPIKE takes as input a set of observations 
to plan and an input long-range plan and uses planning 
algorithms and interactions with the end user to produce a 
new long-range plan as output.   Both observation data and 
long range plans are stored in database relations for JWST. 
A primary goal of the planning process is to maintain 
stability.  In general, if an observation is planned in the 
input plan, it should have the same plan window in the 
output plan.  Although stability in the plan is a goal, 
changes from plan-to-plan will occur and SPIKE needs to 
provide for tracking.  These database records will allow 
users to trace the history of an observation’s plan window 
and to know the planning scenario used to create each 
window. 

Multi-Objective Scheduling 
SPIKE currently provides a mechanism to evaluate the 
quality of a plan window assignment for an individual 
observation.  The JWST long range planning requirements 
dictate that SPIKE provide the ability to evaluate a long 
range plan as a whole with respect to a set of criteria 
including minimizing momentum buildup, minimizing 
schedule gaps, grouping observations from the same 
program together, and balancing resources.  To meet these 
requirements, SPIKE will support a multi-objective 
approach to scheduling.  In a traditional single objective 
approach, individual criteria are combined in a weighted 
fashion.  In contrast, in a multi-objective search, individual 
criteria are kept separate during scheduling.   The result of 
a multi-objective search is a Pareto-surface of schedule 
solutions where no solution on the surface is strictly 
dominated by another solution in terms of all criteria. A 
multi-objective infrastructure has been added to generic 
SPIKE that supports global plan criteria and maintaining a 
Pareto-surface of potential solutions. Tools and techniques 
for displaying and reasoning about Pareto-surfaces are 
described in [Giuliano and Johnston 2010, Giuliano and 
Johnston, 2011]. 

Least Commitment Resource Models 
A primary goal of long range planning is to distribute 
resource usage evenly across a planning interval so that 
efficient short-term schedules can be created.    SPIKE 
currently uses two techniques to measure resource conflicts 
during long range planning called classical plan window 
resources, and validation scheduling of observations to 
orbits.  While investigating prototype resource metrics, it 
was observed that the existing models have issues and that 
other models are possible. The existing models are 
described below and issues with the models are discussed. 
An alternate model that falls in-between the two models is 



then presented.  For ease of presentation the discussion 
below is given in terms of orbits as applied to HST. The 
same also applies to scheduling to precise times as will be 
done for JWST. 
 
Classical plan window resources are tracked at a 
granularity of a day. The resources used by an observation 
are divided equally across all the days in the plan window. 
For example, Figure 3 gives an example of resource 
calculation for three observations O1 (2 orbits long), O2 (4 
orbits long) and O3 (3 orbits long). The plan windows of 
the observations stretch from day 2 to 3, day 2 to 5 and day 
3 to 5, respectively. Here, we assume there are two orbits 
per day. The orbits required for each task are divided 
equally across the number of days in their plan windows. 
The bottom two rows of the chart show the amount of 
resources consumed and available for each day.  The 
example shows that day 3 is oversubscribed, days 1, 6 and 
7 are undersubscribed, whereas days 2, 4, and 5 are 
subscribed to full capacity. Although the classical plan 
window resource model captures the resource load over 
time and tracks resource failures, it allows both false 
positives and false negatives as illustrated below. 
 

 

Figure 4 shows an example of classical plan window 
resource consumption with a false positive. Here, a false 
positive means that the model shows no resource 
oversubscription yet the scenario is not schedulable. The 
figure shows the resource consumption of four 
observations across their respective plan windows. The 
total orbit limit for each day is 4 and the total consumption 
shows no oversubscribed days. However, an actual 
schedule of observations cannot be generated. The problem 
lies with observation O2. There are not enough orbits to 
schedule it either before or after task O1. The intuition 
behind this false positive is that the resource model 
implicitly allows observations to be executed in a non-
contiguous manner during scheduling. However, this is not 
the case for HST or JWST scheduling. 
 

Figure 5 gives an example of classical resource 
consumption with a false negative. Here, a false negative 
means the model shows resource over-subscription yet the 
scenario is schedulable with no over-subscription. Each 
day has 2 total orbits. Day 3 and day 4 are oversubscribed 
in the classic resource model. However, a schedule can be 
obtained by placing O1 in days 2 and 3, O2 in day 1, and O3 
in day 4. The false negative occurs because the resource 
model assumes that the resource consumption is evenly 
divided across the plan window. 
 

The classical plan window resource model shows a 
probabilistic picture of demand for resources, but may 
result in false positives and false negatives. With the 
classical plan window resource model, it is hard to pinpoint 
which observations are likely to fail due to over-
commitment, or which time of the year HST orbits are 
underused. To account for the false positives and 
negatives, the SPIKE tool creates a separate resource 
validation schedule that assigns observations to specific 
orbits [Ferdous, 2006]. This process identifies times where 
the plan windows cannot be realized as a short-term 
schedule. The main problem with the validation approach 
is that it removes the least-commitment nature of the plan, 
as it only shows that a single scheduled time is good and 
does not validate the entire plan window. 
 
As noted above, the classical SPIKE plan window resource 
model makes two assumptions: 

− Observations can be broken into as many pieces as 
desired. 

− Resources are divided evenly across the days in a plan 
window 

 
In contrast, the validation schedule makes neither of these 
assumptions.  The first assumption causes false positives in 
the classical resource model as it ignores the bin packing 
aspect of making a schedule.  The second assumption 
causes false negatives in the classical resource model due 
to observations with short plan windows.  The HST and 
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Figure 3: Example of classical resource model  
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Figure 4: Classical resource model with false positive 
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JWST scheduling domains were examined with respect to 
the causes of false positives and false negatives. HST is in 
low Earth orbit and is impacted by the South Atlantic 
Anomaly (SAA) in 9 of its 15 orbits for a day.  The SAA 
impacts create a complex bin-packing problem as an  

 
observation can be scheduable in the 6 SAA free orbits and 
in some, or none, of the SAA impacted orbits.  In contrast, 
JWST, at L2, will not have earth occultation and SAA 
impacts.   As a result of the orbit differences, JWST is 
expected to have less bin packing problems than HST 
resulting in less false positives in the classical resource 
model.   JWST, like HST, will have observations with 
short plan windows resulting in false negatives in the 
classical model.   Since JWST will have less opportunities 
for false positives, but will still have false negatives, we 
investigated and coded a third resource model that supports 
removing the false negatives found in the classical model. 
 
When refactoring the SPIKE resource model, we added a 
resource assignment map that specifies how resources are 
consumed over a plan window.  By default, resources are 
divided evenly, but the assignment map provides the 
ability to explore alternative resource allocations over time.   
This implementation leads to a resource assignment 
problem.  Given a set of plan windows for observations, 
can resource assignment maps be defined for all 
observations so that no resources are oversubscribed?   For 
example, Figure 6 shows a resource-conflict free 
distribution of resources for the example given in Figure 5.  
Even for this simple example, there are many ways in 
which the resources could be assigned to remove conflicts.  
The figure shows a distribution where observations O2 and 
O3 both reduce their usage to 0.25 orbits in days 3 and 4 
and increase their usage to 0.75 in days 1 and 4. The idea 
here is that we can redistribute resources yet keep the 
window nature of the model.  We are currently exploring 
heuristic methods for incrementally solving the resource 
assignment problem.  
 

If a resource assignment problem is not solvable then we 
know that the corresponding resource validation orbit 
assignment problem is unsolvable.  If we cannot solve the 
problem allowing observations to be broken into arbitrary 
pieces, then the problem cannot be solved if each 
observation has to be executed in a non-interruptible 
fashion.   On the other hand, solving a resource assignment 
problem does not ensure that we can assign observations to 
orbits with no resource conflicts.  A solvable resource 
assignment problem may not have an orbit assignment due 
to bin packing concerns.  
 
The resource assignment problem is a mid-point between 
the classical plan window resource model and validation 
scheduling to orbits. An advantage of the resource 
assignment model is that it retains the window nature of 
the classical plan window resource model.   There may be 
many resource usage assignments that do not violate any 
resource limits.  The resource assignment search 
mechanism will have a metric that measures how even the 
resource usage is over the plan window.  The search will 
use the metric to prefer solutions that keep resource usage 
evenly spread out over the observation plan windows as 
much as possible as opposed to solutions that fragment 
resource usage for an observation.  In this way, the 
resource assignment model retains a least-commitment 
component. 

 

The three resource models are compared and contrasted in 
Table 1.  The ability to assign alternative resource maps 
has been coded for the resource assignment model.  
However, only simple engines to generate alternate maps 
have been prototyped.  The results have been promising 
and we are currently investigating alternative search 
techniques for making resource assignments.  Based on our 
findings, we will decide which resource models will be 
used in JWST operations. 
  

Figure 5: Classical resource model with false negative  

 

Figure 6 : False negative example repaired by adjusting 
resource usage 

 



Conclusions 
 
Development of JWST long range planning capabilities for 
SPIKE is ongoing and expected to complete in May of 
2013.  This paper gave a status report describing the 
context for JWST development, a software engineering 
process that allows code to be shared with HST SPIKE, 
and improvements to core planning capabilities for least 
commitment planning.  
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