
A Local Search Solution for the INTEGRAL Long Term Planning

Matthew Kitching and Nicola Policella
European Space Agency, Darmstadt, Germany

name.lastname@esa.int

Abstract

The ESA INTEGRAL mission aims at observing gamma-ray
emissions from the universe using several scientific instru-
ments. The unique functionality of this spacecraft results in
significant interest from the scientific community. Each year,
the mission management team at ESA posts an announcement
of opportunity (AO) to which scientists can submit observa-
tion requests. This results in an over-constrained schedul-
ing problem where the objective is to perform each observa-
tion as much and as well as possible, while respecting the
different spacecraft, flight dynamic, and observations con-
straints/preferences.
This work discusses the use of a local search approach based
on a novel model of the original problem. This led to a search
procedure more focused on the objectives of problem while
keeping an high level coverage of the search space.

Introduction
The goal of the ESA INTEGRAL observatory is to gather
the most energetic radiation in the Universe: Gamma rays.
Gamma radiation from space cannot be tracked from the
ground because it is blocked by Earths atmosphere. That
is why INTEGRAL has to be a satellite-based observatory.1
The satellite uses two specially designed gamma-ray tele-
scopes to register these elusive rays. One telescope (IBIS)
takes pictures of the gamma rays and the other measures
their energy (SPI). The gamma-ray telescopes are supported
by an X-ray monitor (Jem-X) and an optical camera (OMC).
All four instruments point to the same region of the sky and
take observations simultaneously.

The unique functionality of this spacecraft results in sig-
nificant interest from the scientific community. Each year,
the mission management team at ESA posts an announce-
ment of opportunity (AO) to which scientists can submit
observation requests. This results in an over-constrained
scheduling problem where the objective is to perform each
observation as much and as well as possible, while respect-
ing the different spacecraft, flight dynamic, and observations
constraints/preferences.

(Pralet and Verfaillie 2009) first formalized this problem
and provided a solution based on local search. The specific

1More details can be found at the mission overview website,
http://www.esa.int/science/integral

algorithm was developed on top of the APSI planning frame-
work (Cesta and Fratini 2008) and was integrated into the
AIMS tool. This initial tool has been integrated with the
local infrastructure and it is now operational in the ESA IN-
TEGRAL Science Planning group.

This work introduces an alternative solution based on a
novel model of the original problem. Two algorithms are
introduced which both modify the variables of the problem
in order to dynamically and efficiently change the neighbor-
hoods explored in the local search. Varying the neighbor-
hoods allows a large coverage of the search space, while still
allowing focused exploration of the search space near local
optima.

The paper is organized as it follows: first we recall the In-
tegral problem, and describe a novel solving approach. Then
we empirically evaluate this new solution against the one
proposed by (Pralet and Verfaillie 2009) in particular. We
conclude by analyzing the current solution and how this can
be further improved and generalized.

Related works
In the past decades, the space domain has been a fertile area
to efficiently apply automated planning and scheduling so-
lutions. The problem presented in this paper is an over-
subscribed problem, i.e., a problem in which the resources
available (e.g., time, capacity) are not sufficient to accom-
plish all stated tasks or goals. The basic objective is to max-
imize the number of tasks accommodated or goals satisfied.
Similar problems can arise in satellite domains such as the
ones described in (Bensana, Lemaitre, and Verfaillie 1999;
Verfaillie and Lemaitre 2001). Both works concern a set of
Earth observation operations to be allocated over time un-
der a set of mandatory constraints such as: no overlapping
images, sufficient transition times (or setup times), bounded
instantaneous data flow, and limited on-board recording ca-
pacity. In (Knight 2006) the author instead focuses his at-
tention on the case of swath segment (i.e., fixed trajectory
observations) scheduling for orbiting spacecraft, investigat-
ing different algorithms to obtain optimal solutions. Other
examples can be found in different areas from rover task
(Smith 2004) to military airlift allocation (Kramer and Smith
2004).

The technical solutions presented in this paper are based
on local search (Van Hentenryck and Michel 2005; Aarts

and Lenstra 2003), in particular, the case of oversubscribed
scheduling problems, as seen in (Kramer, Barbulescu, and
Smith 2007). For oversubscribed problems, two basic
classes of techniques have emerged: “searching directly in
the space of possible schedules and searching in an alterna-
tive space of task permutations.” The approach presented
here directly searches the space of feasible solutions.

The Integral Problem
As previously mentioned the unique functionality of INTE-
GRAL raises many different requests from the science com-
munity, each of them focused on a particular scientific target.
However it has to be considered that the satellite is moving
on a highly elliptical orbit around the Earth. One revolu-
tion takes 72 hours, of which only 58 hours, the time not in
the Earth radiation belts, are available for observations. The
presence of the Sun, the Earth, the Moon, and other planets,
makes a given target only intermittently observable during
those 58 hours. For each target and each satellite revolution,
observation windows can be pre-computed.

The observation of a given target requires a set number
of observation patterns to be performed. There are four
classes of patterns: rectangular patterns requiring 25 point-
ings, hexagonal patterns requiring 7 pointings, staring pat-
terns requiring only one pointing, and user-defined patterns.
Each pointing has a predefined duration. However it is not
mandatory (and often impossible) to perform an observation
within a single revolution: an observation can be divided
into several sub-observations, each one including a chosen
number of patterns. Also, a single observation pattern can
be divided into sub-patterns, each one including a set num-
ber of pointings.

Several different types of observations are needed. Nor-
mal observations (NO) should be split as little as possible
and ended as early as possible after they started; no-splitting
observations (NS) should not be interleaved with other ob-
servations; periodic observations (PE(p,t)) should be decom-
posed into elementary observations to be performed every p
revolutions with a tolerance of t on the deviation from the
period; spread observations (SP(n)) should be decomposed
into n sub-observations to be spread as much as possible
over the year, and each sub-observation should be performed
with no splitting.

Having given an high level description of the INTEGRAL
context we can define a scheduling problem as follows:

• A set of non-overlapping revolutions, R. For each revo-
lution, r ∈ R, a starting time, S(r), and an ending time,
E(r), of the window available for the observations within
r, as well as the maximum filling percentage M(r) of r.
The duration of r is E(r) = S(r).

• A set of priority weights, P , where for each priority
weight, p ∈ P , the value of p reflects the relative im-
portance of observations of priority p.

• A set of observations, O. For each observation, o ∈ O,
the observation has a type TY (o) (NO for a normal ob-
servation, NS for no-splitting observation; (PE(p,t)) for a
periodic observation to be performed every p revolutions

with a tolerance of t on the deviation from the period,
or SP(n) for spread observations which must be decom-
posed into n sub-observations to be spread as much as
possible over the year and to be each performed with no
splitting), a priority level Priority(o) ∈ P , a total Du-
ration D(o), the duration DEO(o) of an elementary ob-
servation, a number NEO(o) of elementary observations
(D(o) = NEO(o)·DEO(o)), and a percentage PCA(o)
above which o is considered to be achieved.

• A set W (o) of observation windows available for o.
For each observation window w ∈ W (o), a revolution
R(w) ∈ R, a starting time S(w) and an ending time
E(w); several windows may be available for perform-
ing an observation o within a revolution r; however, they
do not overlap; if TY (o) = SP (n), observation o is de-
composed into a set SO(o) of n sub-observations and the
set W (o) of the windows associated with o is partitioned
into n subsets, each set W (so) is associated with a sub-
observation so ∈ SO(o). Each revolution, r ∈ R, has a
set of observation windows which includes all windows
w where R(w) = r.

• MOA is the maximum number active observations per
revolution, useful to limit time spent on slewing between
observation activities.

• The output is a set AWS of active window segments. For
each active window aws ∈ AWS, there is a revolution
R(aws) ∈ R, an observation O(aws) ∈ O, a window
W (aws) ∈ W (O(aws)), a starting time S(aws), where
S(aws) ≥ S(W (aws)) and an ending time E(aws),
where E(aws) ≤ E(W (aws)) and E(aws) − S(aws)
is a multiple of DEO(O(aws)). An observation, o, is
active in revolution, r, if there is some active window seg-
ment aws ∈ AWS, with R(aws) = r and O(aws) = o.
A feasible solution (plan) for the Integral Problems will
consist of a set of non-overlapping active window seg-
ments such that the number of active observations is less
than MOA. In addition, the active window segments must
satisfy a set the constraints listed later in this paper.

The Model
The approach presented in this paper is based on a trans-
formed model of the problem: this is based on the assump-
tion that each revolution (or sub-revolution described below)
has at most a single active observation. After solving the
transformed problem, the solution is mapped back to the
original specification of the problem.

In order to model the problem in this way, the follow-
ing ideas are introduced. First, the algorithm maintains
a set of sub-revolutions, Rs, where each rs ∈ Rs de-
fines a sub-section of an original revolutions, r ∈ R. For
each sub-revolution, rs ∈ Rs there is a parent revolution,
Parent(rs) ∈ R, a starting time, S(rs) where S(rs) ≥
S(r), an ending time, E(rs)whereE(rs) ≤ E(r), the max-
imum duration available for observation during the revolu-
tion, MaxFill(rs). Finally, each original revolution, r ∈ R
has Children(r), which includes those sub-revolutions, rs,
where Parent(rs) = r.

The algorithms presented in this paper segments the origi-
nal revolutions of the problem into sub-revolutions and con-
siders plans with only a single observation for every sub-
revolution. Although this imposes an additional constraint
on the problem, it allows the solver to make simpler, faster
moves, thereby exploring more of the search space. The pre-
vious solution to this problem called a scheduler after each
local move in order to know whether or not the set of ac-
tive window segments present in a revolution are schedula-
ble. By assuming only a single observation for each sub-
revolution, there is no need to call a scheduler since schedu-
lability is guaranteed after any local move.

Let State(rs) be the state of rs, where State(rs) ∈
O
⋃
{emptyObs}, where emptyObs is the empty observa-

tion. If State(rs) = o, then the satellite can observe only
observation o during the time period from S(rs) to E(rs)
(in the case of State(rs) = emptyObs, the satellite is not
making any observations during the time period).

Revolution rs ∈ Rs has an overlap with each observa-
tion window, w ∈ W (o). Function overlap(rs, w) returns
the size of the intersection between the start and end points
of the revolution and the start and end points of the ob-
servation window rounded down to the nearest multiple of
DEO(o). Formally, if minEnd = min(E(rs)−E(w)) and
maxStart = max(S(rs), S(w)), then overlap(rs, w) re-
turns:

bmax(0,minEnd−maxStart)
DEO(o)

c ·DEO(o) (1)

There is one exception to procedure overlap. When w ∈
W (o) and TY(o) = PE(p,t), then overlap(rs, w) returns at
most a duration of DEO(o). Periodic observations must not
have more than a single elementary observation per window.

For any plan, CurObsDur(rs, o), is the duration
that the satellite is observing o during rs. The
value of CurObsDur(rs, o) must be a multiple of
DEO(o). TotalObsDur(o) is the total duration that the
satellite is observing observation o ∈ O, equal to∑
rs∈Rs CurObsDur(rs, o). Thus, TotalObsDur(o) is also

a multiple of DEO(o).
The algorithms presented in this paper simply returns

a set of sub-revolutions, Rs, states for the revolutions,
and durations CurObsDur(rs, o). An exact plan can be
extracted from this information by calls to a procedure
extractP lanforRevolution(rs), seen in Algorithm 1.
This procedure returns a set of active window segments,
AWS, by creating active window segments based on the
observation windows of the original problem specification.

Figure 1 illustrates how the original problem is trans-
formed into the model, and how plans are then ex-
tracted from the transformed problem. Figure 1.a) shows
a small Integral Problem instance, with two observa-
tions, one revolutions, and six observation windows. Fig-
ure 1.b) shows the same problem with r1 split into
two sub-revolutions, rs1 and rs2. The empty rectangles
show overlap(rs1, o1), overlap(rs2, o1), overlap(rs1, o2),
and overlap(rs2, o2). Note that the problem is a transfor-
mation of the initial problem; start and end points of obser-

Algorithm 1 extractPlanforRevolution(rs)
o = State(rs)
if o = emptyObs then

return ∅ ;
end if
AWS = ∅;
for all w ∈W (o) do
durw = min(overlap(rs, w), CurObsDur(rs, o));
if durw > 0 then
aws = new active window segment;
S(aws) = max(S(w), S(rs));
E(aws) = S(aws) + durw;
R(aws) = Parent(rs);
O(aws) = o;
AWS = AWS

⋃
aws;

CurObsDur(rs, o) = CurObsDur(rs, o)−durw;
end if

end for
return AWS;

vation windows are replaced by simple maximum durations
for each observation.

Figure 1.c) shows the transformed problem where solid
black rectangles represent that CurObsDur(rs1, o1)
= overlap(rs1, o1) and CurObsDur(rs2, o2) =
overlap(rs2, o2). Figure 1.d) represents this plan mapped
back to the original definition of the Integral Prob-
lem after calls to extractP lanforRevolution(rs1) and
extractP lanforRevolution(rs2). Here, solid black rect-
angles represent active window segments (meaning the
satellite is observing an observation during the timeframe).

Given that revolutions are non-overlapping, and the sub-
revolutions of any revolution are non-overlapping, then
when extractPlanforRevolution is called with any current
plan, the active window segments produced are also non-
overlapping.

Before concluding this section, it is worth remarking on
the differences between the approach here presented and the
work described in (Pralet and Verfaillie 2009). The latter
allows many different active observation segments for each
revolution. However, during the local search, the algorithm
must check after every move whether the observations dur-
ing a window are schedulable. The model presented here
does not allow different observations to be scheduled dur-
ing a single sub-revolution. As we will see in the algorithm
section of this paper, this allows fast local moves to be made.

Constraints
Both the constraints and Criteria sections are based on those
proposed in (Pralet and Verfaillie 2009), with modifications
made to fit into our model. A feasible plan must satisfy six
different types of constraints. In order to define the con-
straints, the following are defined:

• Let seqObs(o) be the sequence of revolutions where
State(r) = o, ordered according to their starting time,
where nextObs(rs) the next observation in seqObs(o).

Figure 1: Integral Problem

• Let foa(o) (resp. loa(o)) be the first (resp. last) revolu-
tion in seqObs(o) (equal to ∅ if seqObs(o) = ∅).
The six types of constraints are then:

1. For each revolution, r, the total current duration
of the sub-revolutions of Children(r) is less than or
equal to ((E(r) − S(r)) · M(r). Thus, ∀r ∈
R,

∑
rs∈Children(r) CurObsDur(r

s, o) ≤ ((E(r) −
S(r)) ·M(r).

2. For each revolution, r, the maximum number of active
observations is less than or equal to MOA. Each sub-
revolution in Children(r) can have only a single active
observation. Thus, ∀r ∈ R, |Children(r)| ≤MOA.

3. For each no-splitting observation o, o must not be inter-
leaved with other observations. Thus, ∀o ∈ O|(TY (o) =
NS), if R′ is the set of sub-revolutions between foa(o)
and loa(o), then ∀rs ∈ R′, State(rs) = o.

4. For each periodic observation o, only a single elemen-
tary observation per revolution. Thus, ∀o ∈ O|(TY (o) =
PE(p, t)), if R′ is the set of sub-revolutions in state o,
then ∀rs ∈ R′, (CurObsDur(rs, o) = DEO(o)).

5. For each periodic observation o of periodicity p and of tol-
erance t, active observations of o must be separated by dis-
tance p, within a tolerance of t. Thus, ∀o ∈ O|(TY (o) =
PE(p, t)), if R′ is the set of sub-revolutions in state o,
then ∀rs ∈ R′, rs = loa(o) ∨ |Parent(nextObs(rs)) −
Parent(rs)− p| ≤ t

6. For each spread observation, o, the maximum
duration of active window segments associated
with each sub-observation: ∀o ∈ O|(TY (o) =
SP (n)), (

∑
rs∈Rs CurObsDur(rs, o)) ≤ D(o)/n;

Criteria
For each observation o, let q(o) be the quality associated
with o in the current plan. The global criterion q to be max-
imized is defined as the normalized weighted sum of obser-
vation qualities:

q =

∑
o∈O Priority(o) · q(0)∑

o∈O Priority(o)
(2)

For each observation o, let qc(o) be the completion quality
of o and qr(o) be its realization quality. Let α ∈ [0, 1] be a
user defined constant which expresses the trade-off between
observation completion and realization. The quality q(o) as-
sociated with o is defined as the weighted sum of completion
and realization qualities of o:

∀o ∈ O : q(o) = α · qc(o) + (1− α) · qr(o) (3)

For each observation, o, the completion quality, qc(o) de-
pends on the percentage completion of o:

qc(o) = min(1,
T otalObsDur(o)

D(o) · PCA(o)
) (4)

The realization quality qr(o) of an observation depends
on the type of observation. For each normal or no-splitting
observation o, the objective is to finish o as early as possi-
ble after it started. Thus, the realization quality depends on
the distance (in terms of revolutions) between the last and
the first active observation activity associated with o. Let
δ(o) = loa(o) − foa(o) be this distance. Let ∆max(o) be
the maximum value of δ(o) , obtained when the first and
last revolutions of o are both active. Let ∆min(o) be the
minimum value of δ(o) which could be obtained if the plan
would contain only elementary observations associated with
o. Both ∆max(o) and ∆min(o) can be pre-computed for
each possible value of TotalObsDur(o). Thus:

∀o ∈ O|TY (o) ∈ {NO,NS} :

qr(o) =

0 if(TotalObsDur(o) = 0)
1 if(∆min(o) = ∆max(o))

∆max(o)−δ(o)
∆max(o)−∆min(o) otherwise

(5)

For each periodic observation o, the objective is
to satisfy as well as possible the periodicity con-
straint. Thus, the realization quality depends on
the sum of the deviations from the period. Let

sumdev(o) =
∑
rs∈Rs|rs<loa(o) |Parent(nextObs(rs))−

Parent(rs) − p| be this sum. Let maxdev =
(TotalObsDur(o)/DEO(o)−1) · t be the maximum devi-
ation possible. Thus:

∀o ∈ O|TY (o) = PE(p, t) :

qr(o) =

0 if(TotalObsDur(o) = 0)
1 if(TotalObsDur(o) = DEO(o))

1− sumdev(o)
maxdev(o) otherwise

(6)

Finally, for each spread observation o, its realization qual-
ity is defined as the mean value of the realization qualities
of its associated no-splitting sub-observations:

∀o ∈ O|TY (o) = SP (n) :

qr(o) =

∑
so∈SO(o) qr(so)

n
(7)

The Algorithm
The algorithms described in this paper are local search algo-
rithms that operate in the feasible space. This section begins
with a description of some of the core procedures used in
the algorithms. Then, a detailed description of the first al-
gorithm, Coarse Grained Local Search, CGLS is given. The
second part of the section is instead dedicated to the second
algorithm, Refined Local Search, RLS.

Function move(rs, onew) changes State(rs) = oold to
State(rs) = onew. CurObsDur(rs, oold) is set to zero
and CurObsDur(rs, onew) is set to the maximum possi-
ble duration that can be assigned to observation onew given
the current state of the plan. The maximum duration is the
minimum of: 1)The maximum duration allowed by the revo-
lution, 2)The maximum duration allowed by the observation
(given that D(onew) cannot be exceeded), and 3) The maxi-
mum overlap between windows of the observation, and the
revolution. Formally:

Avail(rs, o) = min

 bMaxFill(rs)
DEO(o) c ·DEO(o)

D(o)− TotalObsDur(o)∑
w∈W (o) overlap(r

s, w)
(8)

Central to the algorithm is the GetDeltaChange proce-
dure, described in Algorithm 2, which takes as parame-
ters a sub-revolution, rs and the new state of the revolu-
tion, onew, and returns the change in criteria that would
occur if move(rs, onew) was made. The procedure returns
a change in criteria of −∞ if move(rs, onew) would vio-
late a constraint or is tabu. Next, the procedure calculates
the change in criteria, ∆−rs,oold , that occurs when a duration
of CurObsDur(rs, oold) is removed from observation oold.
CriteriaChange evaluates the difference between equa-
tions 2-7 in the Criteria section before and after decreasing
CurObsDur(rs, oold) to zero. Next, the procedure calcu-
lates the change in criteria when the maximum possible du-
ration is added to onew by evaluating equations 2-7. The
procedure returns the total change in criteria that would oc-
cur if State(rs) was changed to onew.

Algorithm 2 GetDeltaChange(rs, onew)

oold = State(rs);
if move(rs, onew) is infeasible or tabu then

return −∞;
end if
∆−rs,oold = CriteriaChange(oold,−CurObsDur(rs, oold));
∆+
rs,onew

= CriteriaChange(onew, Avail(r
s, onew));

return ∆+
rs,onew

+ ∆−rs,oold ;

Next, a procedure CreateRev(start, end, maxFill, obser-
vation) is defined which returns a newly created revolution,
rs, with S(rs) = start, E(rs) = end, and MaxFill(rs) =
maxFill, and move(rs, observation) is made.

Given a revolution, r ∈ R, r can be partitioned into sub-
revolutions by making a call to Split(see Algorithm 3) with
the parameter numberSegments, which specifies the number
of segments. The procedure splits a revolution into num-
berSegments sub-revolutions, where the duration and Max-
Fill of the original revolution is split evenly among the sub-
revolutions.

Algorithm 3 Split(r, numberSegments)
segLength = (E(r)− S(r))/numberSegments;
maxFill = ((E(r)−S(r)) ·M(r))/(numberSegments);
Revs = ∅;
for segment from 1 to numberSegments do

s = S(r) + (segment− 1) · segLength;
e = S(r) + segment · segLength;
newRev = CreateRev(s, e, maxFill, emptyObs);
Parent(newRev) = r;
Revs = Revs

⋃
newRev;

end for
Children(r) = Revs;
return Revs;

The first local search algorithm introduced in this paper
is the Coarse Grained Local Search procedure (see Algo-
rithm 4) which is a standard tabu local search. The input to
the problem is a set of sub-revolutions, Rs = R. Thus, for
this algorithm, each revolutions of the original problem has
a single sub-revolutions in Rs.

The tabu list consists of moves. If a move from
State(rs) = oold to State(rs) = onew is in the tabu list,
a move back to State(rs) = oold is tabu. The length of
the tabu list is equal to the number of observations in the
problem.

The variable Criteria represents the score of the cur-
rent plan, and bestLocalCriteria represents the best score
achieved during this iteration of the local search. The lo-
cal search continues to make moves until the score has not
improved from the best local score in β number of moves.

At each iteration of the local search, the best move is the
move that maximizes the change in criteria, and is found by
evaluating GetDeltaChange for all possible moves. The
criteria is then updated, and the best move is made. Al-
though the change in Criteria may be negative, any move

will remain in feasible space due to the check for −∞.
It is important to note that the values ∆+

rs,oold and ∆−rs,oold
used in GetDeltaChange do not necessarily change be-
tween every move of the local search. If a move is made
from State(rs) = oold to State(rs) = onew then the
value of ∆−rs,o does not change if o 6= oold and o 6= onew.
Likewise, ∆+

rs,o does not change if o 6= oold 6= onew.
Thus, the algorithm can maintain scores for ∆+

rs,o and ∆−rs,o
for every pair of revolutions and observations. When a
move is made, UpdateDeltasOfObservation(oold) (resp.
UpdateDeltasOfObservation(onew) updates all the val-
ues of ∆−rs,oold and ∆−rs,oold for every rs ∈ Rs. Thus, a
significant amount of work is avoided by remember previ-
ous values of ∆−rs,oold and ∆−rs,oold .

Finally, the values of indexWithoutImprovement and
bestLocalCriteria are updated based on whether Criteria is
greater than bestLocalCriteria.

Algorithm 4 CGLS(Rs)
Criteria= 0;
bestLocalCriteria = 0;
indexWithoutImprovement = 0;
while indexWithoutImprovement < β do

(rs, onew) = max∀rs∈Rs,o∈OGetDeltaChange(r
s, o);

if GetDeltaChange(rs, o) = −∞ then
continue;

end if
Criteria += GetDeltaChange(rs, onew);
move(rs, onew);
for all rs ∈ Rs do

UpdateDeltasOfObservation(oold, rs);
UpdateDeltasOfObservation(onew, rs);

end for
if Criteria > bestLocalCriteria then

indexWithoutImprovement = 0;
bestLocalCriteria = Criteria;
storeSolution();

else
indexWithoutImprovement++;

end if
end while

Since each revolutions of the original problem has a single
sub-revolutions in Rs, this procedure simply tries assigning
a single observation to each revolution in the original prob-
lem. Thus, the complexity of the problem is greatly reduced,
and moves can be made extremely quickly. However, as will
be seen in the experimental section, the results of this algo-
rithm are poor since limiting the plan to a single observation
for each revolution restricts the search space too much.

This completes the basic local search algorithm. As a se-
quel, this paper introduces an extension of CGLS which re-
fines the solutions found in Algorithm 4. The Refined Lo-
cal Search, RLS is described in Algorithm 5. The search
proceeds with a call to CGLS. If the solution produced by
CGLS is better than the current best solution, the solution
found is restored, and the algorithm attempts to fine tune
this solution. This is done by segmenting each revolution,

rs ∈ Rs based on the restored solution. First, a sub-plan
is extracted for each revolution, by calling extractPlanfor-
Revolution, which returns a set of active observation seg-
ments. The minimum end time and maximum start time is
then found over all the active window segments.

For each revolution rs ∈ Rs, a call to splitRefine (Al-
gorithm 6) is made, and each revolution is split into three
segments; 1) the first revolution before the minimum start
time, 2) the last revolution after the maximum end time, and
3) the middle revolution in between these two points. The
state of the first and last revolutions is set to emptyObs, but
the state of the middle revolution is set to the current state
of rs. Note that splitRefine creates revolutions not only with
different durations and states, but also different values of
MaxFill. The MaxFill of the middle revolution is set to the
entire duration of the revolution, since the entire duration of
the revolution is used by the observation that is currently be-
ing observed by the middle revolution. The remaining Max-
Fill of the original revolution is then split between the first
and last revolution based on the respective size of the first
and last revolution. Effectively, splitRefine is finding seg-
ments at the beginning and end of each revolution that are
not being used in the current plan, and creating new empty
revolutions that can be used to make other observations.

RLS is then recursively called with an increased number of
revolutions in Rs. The depth of this recursion is bounded by
the fact that bestLocalCriteria is monotonically increasing
and is bounded by one. In practice, the depth of the recursion
was never greater than 4 on the experiments conducted.

Algorithm 5 RLS(Rs, GBS)
Score = 0;
bestLocalCriteria = CGLS(Rs);
if bestLocalCriteria > GBS then
GBS = bestLocalCriteria;
restoreSolution();
for all rs ∈ Rs do

if |children(P (rs))| ≤MOA− 2 then
Rs = Rs\r;
AWS = extractPlanforRevolution(rs);
minTime = minw∈AWSS(w)
maxTime = maxw∈AWSE(w)
[Rev] = splitRefine(rs, minTime, maxTime);
Rs = Rs

⋃
Rev;

end if
end for
RLS(Rs, GBS);

end if

Figure 2 illustrates how RLS modifies the problem. Sup-
pose Figure 2.a) represents a solution for the two revolu-
tions seen in Figure 1, where the dark rectangles are ac-
tive window segments in the plan. Consider revolution rs2
in Figure 2.a). The revolution will be split into three sub-
revolutions; 1) revolution rs3 before the minimum of the
observation windows, and 2) revolution rs5 after the maxi-
mum of the observation windows, and 3) revolution rs4 be-
tween these two revolutions (see Figure 2.b). As seen in Fig-

Algorithm 6 splitRefine(rs, s, e)
mid = createRev(s, e, (end− start), State(rs));
remFill = MaxFill(rs)− (end− start);
remDur = (E(rs)− S(rs))− (E(mid)− S(mid));
fillLower = remFill · (start− S(rs))/remDur;
fillUpper = remFill · (E(rs)− end)/remDur;
lower = createRev(S(rs), s, fillLower, emptyObs);
upper = createRev(e, E(rs), fillUpper, emptyObs);
newRevs = mid

⋃
lower

⋃
upper;

Parent(mid, lower, upper) = Parent(rs);
Children(P (r)) = Children(P (r))\r

⋃
newRevs;

return newRevs;

ure 2.c), the middle window, rs4, will remain in state Obs 2
and the other windows are set to emptyObs. In this case, the
split allows duration to be placed into CurObsDur(rs3, o1)
during the recursive call to RLS.

Computational Advantages
The first immediate advantage of the proposed model and
algorithms is a reduction of the complexity of the problem.
By assuming that each sub-revolution has no more than one
active observation, there is a dramatic reduction in the com-
plexity of the problem. Furthermore, by placing the max-
imum allowable duration in each sub-revolution, the local
search does not need to calculate the schedulability of many
observations within a revolution.

A second computational benefit comes from the fact that
the first two constraints presented in the constraint section
do not need to be checked when a move is made; they are
true for all possible moves that are not tabu. Thus, these
constraints can be ignored when calculating whether any po-
tential move is feasible.

Experimental Results
Our local search approach was tested on real Integral Prob-
lem instances. All tests were performed on 3.16 GHz ma-
chines with 3.5GB of RAM and limited to a timeout of 600
seconds.

We have implemented the algorithms described above,
and tested them on three sets of benchmarks; each bench-
mark consisting of between 12 and 18 months of data from
the Integral mission. For each benchmark, α (used in Equa-
tion 3) was varied between 0 and 1 at increments of 0.05.

Specifically, the following three algorithms were tested.
(1) aims, which a tabu based local search algorithm, which
starts from an empty plan and uses local moves which
add and remove active window segments with flexibility to
choose any possible start and end point for the active win-
dow segment. The algorithm uses a stochastic heuristics to
select, to choose, and to accept local moves, a tabu list to
avoid cycles in the sequence of local moves, and restarts to
diversify the search. (2) cgls, which is the local search al-
gorithm introduced in Algorithm 4. (3) rls, which has been
introduced in Algorithm 5.

Figure 3 shows the results of the three algorithms on the
Integral benchmarks with varying values of α. When α is

Figure 2: Refined Local Search Example

one, the criterion is entirely determined by the percentage
completion of observations. The original AIMS algorithm
is able to outperform CGLS on two of the three benchmark
sets. This is due to the fact that AIMS is able to schedule
window segments representing many different active obser-
vations in a single revolution, whereas CGLS is limited to a
single active observation for each revolution.

The results also show RLS outperforming the other two
algorithms on almost all instances. RLS is able to make sim-
pler and much faster moves, and is thus able to find better
global solutions. In the Integral mission, the default value
for MOA, which limits the number of observations per rev-
olution in any solution, is five. By recursively splitting revo-
lutions, RLS is able to schedule five observations during each
original revolution at a depth of three. Thus, although it may
appear that restricting the plan to one observation per sub-
revolution is constraining, RLS is able to schedule the maxi-
mum allowed number of observations per revolution for this
mission.

Table 1 gives the detailed results of the AIMS and RLS al-
gorithms on all three sets of benchmarks. The first column
of each algorithm shows the best criteria found in the time-
out, the time in seconds to find the best plan, the number of
moves to find the best plan, and the total number of moves.
This table confirms that RLS is able to make a far greater
number of moves, in many cases making over two orders
of magnitude more moves within the timeout. The AIMS
algorithm often converges quickly, and is then unable to im-
prove on the solution. Conversely, the time and nodes to

Figure 3: Criteria of Integral Problem with varying α

the best solution for RLS tend to be higher, showing that the
algorithm continues to improve on solutions as local search
continues.

Conclusions
This paper presents two alternative algorithms that solve
an oversubscribed problem identified in the domain of the
ESA INTEGRAL mission. Both are local search algorithms
which work on different level of granularity of the basic
moves. The first having a coarse grained view of the prob-
lem which allows a fast, wide coverage of the search space.
The second algorithm extends the previous approach by re-
fining the neighborhood of the local optima obtained in the
first case.

The empirical evaluation has shown the efficiency of these
approaches compared to the previous solution described in
(Pralet and Verfaillie 2009). The efficiency of the algorithms
results from the model of the problem allowing the algo-
rithms to dynamically change the granularity of the neigh-
borhood of the search space.

Future work will be focused on exploring the possible
generalization of the techniques to other oversubscribed
problems. Also, the possibility of extending the current ap-
proach will be considered.

Acknowledgment. The authors would like to thank Erik
Kuulkers, space planning responsible for the INTEGRAL
mission, for the support in the problem definition and to an-
alyze and evaluate the solutions here presented.

References
Aarts, E., and Lenstra, J., eds. 2003. Local Search in Combinato-
rial Optimization. Princeton University Press.
Bensana, E.; Lemaitre, M.; and Verfaillie, G. 1999. Earth Observa-
tion Satellite Management. Constraints: An International Journal
4(3):293–299.
Cesta, A., and Fratini, S. 2008. The Timeline Representation
Framework as a Planning and Scheduling Software Development
Environment. In In PlanSIG-08, Proceedings of the 27th Work-
shop of the UK Planning and Scheduling Special Interest Group.
Knight, R. 2006. Solving Swath Problems Optimally. In 2nd
IEEE International Conference on Space Mission Challenges for
Information Technology (SMC-IT’06).
Kramer, L. A., and Smith, S. F. 2004. Task Swapping for
Schedule Improvement: A Broader Analysis. In Proceedings of
the Fourteenth International Conference on Automated Planning
and Scheduling (ICAPS 2004), June 3-7 2004, Whistler, British
Columbia, Canada, 235–243.
Kramer, L. A.; Barbulescu, L.; and Smith, S. F. 2007. Under-
standing Performance Tradeoffs in Algorithms for Solving Over-
subscribed Scheduling. In Proceedings of the Twenty-Second AAAI
Conference on Artificial Intelligence, July 22-26, 2007, Vancouver,
British Columbia, Canada, 1019–1024.
Pralet, C., and Verfaillie, G. 2009. AIMS: A Tool for Long-term
Planning of the ESA INTEGRAL Mission. In Proceedings of the
6th International Workshop on Planning and Scheduling for Space,
IWPSS09.
Smith, D. E. 2004. Choosing Objectives in Over-Subscription
Planning. In Proceedings of the Fourteenth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2004), June
3-7 2004, Whistler, British Columbia, Canada, 393–401.
Van Hentenryck, P., and Michel, L. 2005. Constraint-Based Local
Search. The MIT Press.
Verfaillie, G., and Lemaitre, M. 2001. Selecting and Scheduling
Observations for Agile Satellites: Some Lessons from the Con-
straint Reasoning Community Point of View. In Walsh, T., ed.,
Principles and Practice of Constraint Programming, 7th Interna-
tional Conference, CP 2001, number 2239 in Lecture Notes in
Computer Science, 670–684. Springer.

AIMS CGLS
α criteria time(s) moves tot moves criteria time(s) moves tot moves

Aug 2007 - Aug 2008 0.05 0.980 36 779 10374 0.987 137 409418 1809065
0.1 0.969 17 407 10832 0.976 291 877380 1805168

0.15 0.953 34 724 9507 0.967 401 1232826 1834236
0.2 0.940 296 5400 10566 0.958 320 957837 1816913

0.25 0.928 22 533 10672 0.952 240 709459 1780702
0.3 0.910 24 560 9446 0.943 260 748599 1756653

0.35 0.908 9 247 9271 0.937 554 1607093 1742578
0.4 0.900 570 8548 9022 0.931 103 290217 1732104

0.45 0.890 23 535 8863 0.929 209 587644 1686936
0.5 0.885 10 261 8104 0.917 290 814988 1681854

0.55 0.891 9 223 8550 0.914 478 1340851 1683651
0.6 0.889 11 276 8049 0.909 596 1666308 1677424

0.65 0.878 11 280 8474 0.894 557 1507202 1622963
0.7 0.871 10 256 7509 0.896 581 1566782 1617889

0.75 0.867 10 252 7627 0.893 391 1053861 1623308
0.8 0.838 37 673 8082 0.893 392 1059510 1623684

0.85 0.853 13 345 8278 0.894 596 1588230 1599273
0.9 0.848 29 584 8443 0.897 188 486897 1601329

0.95 0.882 11 290 7693 0.902 64 161846 1613731
1 0.897 12 285 6996 0.909 550 1353455 1475340

Aug 2008 - Aug 2009 0.05 0.987 404 6255 9215 0.991 124 255119 1269645
0.1 0.974 8 166 9609 0.985 462 960341 1253337

0.15 0.967 530 8019 9008 0.979 282 588227 1256567
0.2 0.959 38 779 9384 0.975 154 321575 1257544

0.25 0.951 472 7092 8956 0.966 499 1038549 1252626
0.3 0.950 224 3661 9271 0.961 284 589792 1248521

0.35 0.946 9 190 8546 0.957 352 722301 1249407
0.4 0.937 13 312 9114 0.950 499 1008349 1210706

0.45 0.939 22 504 8576 0.943 362 734375 1225377
0.5 0.920 53 998 8152 0.938 165 331422 1216004

0.55 0.934 11 256 8798 0.936 29 48539 1221073
0.6 0.914 400 5300 7946 0.928 463 916812 1192405

0.65 0.915 469 6278 8010 0.925 154 299310 1152099
0.7 0.901 37 745 8726 0.929 104 195515 1165200

0.75 0.906 35 552 7726 0.922 424 801799 1136697
0.8 0.912 12 286 7940 0.916 403 751574 1123653

0.85 0.923 27 599 7647 0.932 454 845359 1118109
0.9 0.929 14 324 7794 0.932 515 931800 1080655

0.95 0.916 39 861 6601 0.930 308 549360 1069113
1 0.927 11 242 6538 0.944 89 164315 1160033

Aug 2009 - Jan 2011 0.05 0.979 384 5876 6302 0.991 22 30136 1070536
0.1 0.973 15 366 804 0.983 134 231476 1035268

0.15 0.965 490 7049 8033 0.980 591 997219 1013825
0.2 0.953 120 380 1699 0.975 350 591455 1023168

0.25 0.949 71 246 1751 0.972 144 229124 991129
0.3 0.939 142 563 2063 0.966 500 814057 984874

0.35 0.921 196 914 2461 0.971 183 291508 969330
0.4 0.940 239 1395 2936 0.959 313 487788 954223

0.45 0.908 34 287 3750 0.959 270 427663 953629
0.5 0.909 490 4900 5809 0.950 173 271986 972200

0.55 0.906 424 897 1207 0.950 478 772847 968240
0.6 0.894 221 562 1360 0.947 63 94297 977125

0.65 0.925 74 188 1461 0.948 313 522864 1015802
0.7 0.888 256 867 1803 0.944 423 717115 1026575

0.75 0.891 328 1211 2013 0.951 519 917067 1063831
0.8 0.882 329 1326 2132 0.946 251 449395 1066574

0.85 0.875 137 771 2546 0.951 534 990280 1114996
0.9 0.901 256 1441 3157 0.952 224 410497 1121714

0.95 0.916 32 311 3816 0.954 430 804811 1129260
1 0.939 45 628 4643 0.964 233 447829 1200151

Table 1: Best Criteria, Time to Best Criteria (sec), Moves to Best Criteria, and Total Move using 600 second timeout

