

Automated Scheduling for TerraSAR-X/TanDEM-X

Christoph Lenzen, Maria Th. Wörle, Falk Mrowka, Michael P. Geyer
German Space Operations Center, DLR Oberpfaffenhofen, 82234 Wessling, Germany

Rüdiger Klaehn
Heavens Above, Pfingstrosenstrasse 2, 81337 München, Germany

Abstract
In 2007 the satellite TSX-1 of the mission TerraSAR-X has
been launched. Its primary payload is an active radar in-
strument, which shall supply radar images on request for
commercial and scientific users. With a maximum load of
up to 1000 datatake requests per day and an order deadline
of six hours before uplink, the command generation process
had to be fully automated. The complexity of the satellite
and the evolving knowledge of its constraints exposed fur-
ther challenges on implementation of the scheduling proc-
ess.
 In 2010 a copy of TSX-1 has been launched: the TDX-1
satellite. When operating in close formation (i.e. distances
of 250m-400m) this pair of satellites may execute stereo-
scopic datatakes which allow the generation of a digital ele-
vation model. However several inter-satellite constraints
need to be taken into account when operating at such short
distances. Additionally we have two distinct missions,
which need to be merged together: First, we have the old
TerraSAR-X mission, for which the customers usually in-
gest their high-priority orders very late, for example for dis-
aster monitoring. Second, we have the TanDEM-X mission,
whose goal is a complete coverage of the earth in 3D with
best possible accuracy. For this mission the datatakes are
calculated up to one year in advance.
 This paper shows what techniques have been developed
in order to cope with the challenging requirements of com-
bining two missions and handling a two-satellites-system.

TerraSAR-X planning problem

The TSX-1 satellite carries a newly developed SAR in-
strument whose integration in the bus was not trivial.
Therefore commanding of the satellite has to be done at a
rather low level. The most important tasks to schedule are:

- file creation
- instrument wake up from sleep-level
- datatake execution
- instrument go to sleep-level
- downlink
- file deletion
- antenna mode switching (there exist two types of

datatakes, for which the memory module needs to
be reconfigured)

- attitude mode switching (the radar instrument
needs a certain view angle, therefore the satellite
has two attitudes which allow data taking: left-
and right-looking)

A lot of constraints in between tasks of same as well as dif-
ferent types exist. The main ones are listed in the follow-
ing; all together we have about 70 constraints:

- Uplink, datatake and downlink have an individual
but fix duration. Downlinks may be split. All
other tasks have a task specific fix duration.

- Uplink before file creation, file creation before
datatake, etc.

- No two datatakes at the same time.
- No file creation and file deletion in parallel to

datatake or downlink.
- No more than nine telecommands during one sec-

ond (during datatake commanding we have up to
7 commands).

- No more than 55 file deletions in parallel. File de-
letions which overlap must have same start time,
so they are merged to one telecommand

- Partial file deletions must not overlap with other
file creations or (partial) file deletions at all

- Limited on-board memory
- In between two datatakes the instrument has to be

set into a certain sleep-level. The depth of this
sleep-level depends on the gap size:

• Gap size < 15sec : Sleep-level 0 (SL0)
• Gap size < 60sec : Sleep-level 1 (SL1)
• Gap size < 15min : Sleep-level 2 (SL2)
• Gap size >= 15min: Sleep-level 3 (SL3)

- Nominal datatakes need right-looking mode, left-
looking datatakes need left-looking mode.

- Maximum duration in left-looking mode during
one maneuver: 170sec

- Duration of turning to left-looking and turning
back: 250sec

- 15min after start of turning to left-looking mode
the satellite has to be in right-looking mode.

- During each time window of size one orbit, no
more than 180sec of data taking is allowed.

- Replay only during visibility of the respective
downlink station

- X-band-transmitter must be switched on during
replay.

- During each time window of size one orbit, X-
band-transmitter must not be on for longer than
2800sec.

TerraSAR-X mission goals

The TerraSAR-X mission has been established as a public
private partnership, consisting of the public partner, who
represents the scientific community, and the private part-
ner, whose concern is the commercial exploitation of the
satellite. You can find a detailed description in [1, 2].
 The TSX-1 satellite has been designed for about 500
datatakes per day, which means that Mission Planning has
to consider about 1000 datatakes per day, since not all
datatakes will be schedulable. Obviously Mission Planning
had to be automated.
 Most of the requested datatakes are known several days
or weeks in advance. However one major goal of the Ter-
raSAR-X mission is to supply data for current urgent
events, in particular for disaster monitoring. A main re-
quirement therefore is a quick response to incoming orders,
which we achieve by generating a new timeline for each
uplink session, i.e. twice a day. Order deadline for incom-
ing orders usually is six hours before the respective uplink
passage.
 In addition to the six hours deadline, a special service
has been requested to allow modifications of already com-
manded datatakes via additional ground stations. The dead-
line for these updates is reduced to one hour before uplink.

Algorithm

The commercial and the scientific user groups need to
share the satellite. First challenge therefore was to find a
suitable mechanism of how to distribute the satellite re-
sources. A sophisticated mechanism of pricing orders with
respect to priority, resource consumptions and time criti-
cality has been developed, together with a simple priority
based greedy algorithm, see [2, 3]. However management
decided that pricing of orders would not be necessary. For-
tunately the user groups managed to arrange with each
other, in particular because commercial success was known
to result in a successor satellite for both parties.
 Thus the base algorithm is quite simple:

1. use the timeline of the preceding planning run as
starting point

2. for each scheduled datatake, sorted by (low prior-
ity first / late order date first):

a. if possible, unschedule file creation,
datatake, downlink and file deletion

b. if a. is not possible, try to unschedule
datatake and downlink, move file dele-
tion to the earliest possible time.

3. for each not scheduled datatake, sorted by (high
priority first / early order date first):
try to schedule the datatake, together with
downlink, file deletion, file creation, uplink and
sleep-level switchings

This approach does neither optimize the sum of priorities
nor the number of datatakes, but it has two major advan-
tages:

I. For each unscheduled datatake, we can supply a
list of more important, scheduled datatakes, with
which this datatake would be in conflict.

II. The algorithm is fast enough to obey the six hours
deadline.

III. For the one hour update, we can restrict steps 2
and 3 to the places of the desired modifications

Although the base algorithm is quite simple, there are sev-
eral special features, which had to be implemented:

Sleep-level switching
Initially, the sleep-level transitions should have been added
after scheduling all datatakes. However there exist con-
straints in between sleep-levels and datatakes, which may
cause a conflict in certain situations. Therefore scheduling
of sleep-level transitions had to be added into the main al-
gorithm.
 For this purpose we reused an update mechanism deep
inside the scheduler: You can let an update method be trig-
gered whenever a certain modification takes place. In this
case the modification is a new or deleted datatake timeline
entry. This modification causes the surrounding sleep-level
switchings to be adapted and checked to be conflict free –
if not the datatake is rejected.

Downlinks
The downlink of a datatake may last for a few minutes. We
therefore have to support splitting it into several fragments.
However the last segment of a preceding fragment must be
repeated at the beginning of the succeeding fragment, in
order to allow the two pieces to be merged properly.
 Furthermore, we have a set of allowed downlink station
groups for each datatake request. The scheduler shall
choose the best downlink station group and schedule all
downlink fragments for the ground station opportunities of
this group.
 In order to find the best ground station group, the sched-
uler tries all of them and chooses the result with earliest
end time of the last downlink fragment end. This assures
that memory on board the satellite is deallocated as early as
possible.

File deletion
According to the satellite hardware configuration, a file de-
letion must not take place during a datatake and it must not
take place during a downlink. However, when scheduling
the first datatake, there would be no constraint indicating
that the fileDeletion of this datatake can not be scheduled
during the opportunity of the second datatake. The algo-
rithm therefore may place the fileDeletion such that the
second datatake can’t be scheduled any more.
 We know that there is enough time for file deletion, be-
cause a constraint exists not to activate the instrument for
more than 700sec per orbit (~95min). We therefore decided
to pick certain times in advance. File deletion will only
take place at these dedicated times. Usually these times are
chosen right behind the downlink stations, and in any case
such that no downlink stations are visible and such that
preferably no datatakes are visible. In the last three years
we never had a case where a low priority datatake was
blocked due to this mechanism.
 Although we have similar constraints with file creation
and downlinks, we do not have them with file creation and
datatakes. Therefore a preprocessing as for file deletions is
not necessary.

Backtracking
The base algorithm itself calls for a backtracking tech-
nique: in case the algorithm detects the unfeasibility of a
datatake when some timeline entries have already been
generated. In case of a failure due to sleep-level switch-
ings, all datatake specific timeline entries already exist, and
all of them must be removed. Even in case of no failure,
we use backtracking when scheduling the downlinks: As
mentioned above, we try out all downlink groups and se-
lect the best one.
 Although we are coding in a conventional object ori-
ented language (.NET/C#), the core operations are strict
functions without side effects. At a higher level, we strictly
distinguish between the model objects and their states. For
example the resource ‘Power’ is a model object, whose
identity will never change, but its resource profile will be
modified together with the timeline. The current state of
the resource at a certain time is given by an immutable
structure. Inside this structure the resource profile is stored,
together with other properties such as name and parame-
ters. As an element of an immutable structure, a resource
profile must be immutable, too. Of course, the resource
profile of Power has to be modified whenever a power
consuming task is scheduled. But this is done by replacing
the immutable state of Power with a shallow copy, where
only the resource profile is replaced by the result of the
calculation.

 All entities of our modeling language (tasks, groups, re-
sources and the project) are built up this way and are de-
rived from a special base class, which supports the follow-
ing transactional semantics:

using(trans = new Transaction())
{
 bool success;
 // here you can try your subpath and set success
 if(success)
 trans.Accept();
}

When generating the new Transaction(), we save a snap-
shot of all current states of all model objects. Due to the
fact that these states are immutable, we only need to save
the references to these states. Inside the using block, we
may continue our algorithm, e.g. by adding timeline entries
or constraints. Before we exit the using block, we have to
decide whether to take over the modifications we have
done or to roll back to the state at the beginning of the
transaction. In order to take over the modifications, one has
to execute the ‘Accept()’ method of the transaction. In or-
der to roll back one can execute the ‘Reject()’ method.
Similar to database transactions, default is to roll back.
This allows wrapping the transaction block into a try-catch
block and to be sure that in any exceptional case the cur-
rent state of the system is well defined, namely the one be-
fore entering the transaction.
 This approach is similar to ‘Software Transactional
Memory’, see [6, 7].
 In our planning software, we use this transaction to-
gether with a NoSolution exception. This NoSolution can
be thrown inside a subpath and caught outside the us-
ing(new Transaction()) block. For example we can use the
following pattern:

try
{
 using(trans = new Transaction())
 {
 bool success;
 // here we try to schedule the datatake, including
 // uplink, file handling, downlink, sleep-levels
 ScheduleDatatake(dt);
 trans.Accept();
 }
}
catch(NoSolution ns)
{
 // log the reason why the NoSolution has been thrown
 // the reason is supplied in ns.Message
}

Whenever the NoSolution gets thrown inside the Sched-
uleDatatake method (e.g. caused by failing to adapt the
sleep-levels), we exit the using(trans = new Transac-
tion()) block and all modifications inside ScheduleData-
take are discarded.
 Although throwing exceptions in nominal workflow
should be avoided, we do not face a performance issue
here, because the effort to schedule a datatake is by far
greater than throwing and catching an exception.

Modification handling
As mentioned in the previous section, we use a certain
mechanism in order to assure execution of code whenever
something happens which we want to observe. This has
some resemblance with event handling. However it is not
quite the same. With events, you usually get notified when
something happens on a different thread. Here we want to
have a piece of code being executed at once when some-
thing happens. The thread in which it is executed must wait
until the code returns.
 The separation of model object and its state allows this
kind of monitoring quite easily: Whenever a model object
of the scheduler gets a new state (e.g. because a timeline
entry is added to a task or a resource is given a new re-
source profile), a certain list of modification handlers is
processed. There exist predefined modification handlers,
such as the one which recalculates the resource profiles
when a timeline entry is added or a new constraint is de-
fined. But you can also add modification handlers yourself,
e.g. in order to keep the sleep-level switchings up to date.

Multithreading
With respect to performance, this semi-functional approach
proved to be sufficiently fast. The CPU load is absolutely
irrelevant compared with the time used for the dominating
part, the execution of the resource profile calculations. It
even allows a very good multithreading approach:
 Whenever a new thread is started, a copy of the current
state is generated (as the states themselves are immutable,
nothing has to be copied except for the mapping of objects
to their states). The new thread now can execute its opera-
tion. When finished, the set of modifications can be incor-
porated into the state of the parent thread or when multiple
threads have been executed in parallel, one can select in
between different modes:

• Merge calculations, i.e. take over all modifica-
tions. An exception would occur if the same ob-
ject was modified by more than one thread.

• Use best result, i.e. check which result is better
and only use this one’s modifications.

The multithreading concept itself proved to work without
problems; however our current implementation of profiles
is based on a tree structure, which means that small mem-

ory allocations are executed extremely often. The garbage
collector of .NET 3.5 unfortunately is single threaded;
therefore parallelization didn’t show the expected perform-
ance benefit. To solve this, we are currently working on an
alternative implementation based on arrays.

How to hit a moving target

When designing and implementing the TerraSAR-X mis-
sion planning system, we faced the problem that many de-
tails of the satellite were not yet known. Many changes had
to be incorporated during the project’s implementation
phase, and even in the early operational phase, new con-
straints occurred, not to mention adaptation of constraints.
 When designing the scheduler for the TerraSAR-X mis-
sion, we had two possibilities, either to implement a light-
weight specialized tool, which can only serve this mission,
or we could refactor our existing planning tool suite to
match the requirements of the new mission. Fortunately we
decided to refactor our generic planning tools. The GSOC
modeling language, which is used in these tools, strictly
distinguishes between the structure (tasks, which shall be
scheduled and grouping of tasks), the resources (state of
the modeled system), the constraints (how the tasks interact
with other tasks and resources) and the algorithm. There-
fore most of the newly appearing requirements could be
implemented just by adding a new constraint. Sometimes
we needed to add a new resource. Both modifications did
not affect the algorithm or other components of the Mis-
sion Planning System (MPS) at all, so no great effort was
involved in this place. Modifications of other parts of the
MPS were necessary only when we had to introduce a new
task, e.g. a file creation. For a description of the modeling
language, see [5].
 Of course there existed the need to adapt certain parame-
ters during the mission. In order to serve this requirement,
we started with a configuration file, in which we stored all
values, for which we supposed that they might get modi-
fied in course of time. However this proved to be insuffi-
cient: the configuration file grew large and the exact mean-
ing of the different values became hard to understand for
all but the developer. Furthermore new constraints could
not be defined, because only existing values could be
adapted. This led to a wide range of software versions.
 To solve this, we decided to design an XML schema,
which allows defining constraints according to our generic
modeling language. An XML file which obeys this schema
can be used to define constraints on a planning project in-
side our planning tools. Almost all constraints of the Ter-
raSAR-X mission have been translated to entries of such an
XML file. This means that all of these constraints have
been removed from the mission specific code and are now
generated according to the XML file. Thus all of these con-
straints are now completely configurable and removable

and even new constraints may be defined just by modifying
the XML file.
 Of course this means that this XML file itself must be
treated with special care – however activation of a modi-
fied constraint specifications file is much less time con-
suming than recompiling and installing a new software
version.
 We still have some parameters, which do not concern
the constraints themselves. But we have managed to ban
the volatile part into almost full configurability.

Challenges of TanDEM-X scheduling

The TDX-1 satellite and its mission were added to the
TSX-1 satellite and its mission three years after launch of
TSX-1. For details on the combined mission and the tech-
nical needs for the following, see [4]. When starting the
commissioning phase, we had two satellites in far forma-
tion. At this time the only additional complexity was to se-
lect one satellite per data take. However as the satellites
approached, different scenarios with different constraints
had to be considered:

• separated formation
o parallel downlink of both datatakes is

possible
o during one pass, reception of data from

both satellites with only one antenna is
impossible

• near formation:
o no parallel downlink of the two satellites,

because their signals would interfere
o during one pass, reception of data from

both satellites with only one antenna is
impossible

• close formation:
o no parallel downlink
o no parallel execution of distinct datatakes
o Reception of data from both satellites is

possible with only one antenna during
one pass, but a handover margin of ten
seconds must be considered.

o proper SyncHorns must be selected on
both satellites in order to allow synchro-
nization of the two satellites during
bistatic datatakes and during SyncWarn-
ings (see below)

o exclusion zones: neither satellite may ac-
tivate the instrument whenever the other
satellite might get hit by the radar beam

These scenarios had to be addressed by their individual
modeling.
 Special attention had to be paid to the exclusion zone
constraint in close formation. This is a mission critical con-
straint as violating it may damage the satellite which gets

hit by the radar beam of the opponent satellite. Therefore
an additional check is made on board the satellite. How-
ever this check relies on both satellites being in their pre-
dicted position. To be sure of this, we need to obey another
rule:

o datatakes may only be scheduled in case
a synchronization check is scheduled no
longer than 53 minutes beforehand

This so called ‘SyncWarning’ would deactivate both satel-
lites’ instruments in case it fails.

Picture 1: Screenshot of several scheduled datatakes, downlinks, file creations, file deletions and sleep level modes,
 together with some resources

Generic techniques for similar problems

Given these new requirements, we could have followed the
old approach we used for sleep-level switching, which
would have meant to implement one modification handler
for each feature, i.e.

• Whenever a downlink is scheduled, check
whether enough antennas are available – note that
this is formation dependent.

• Whenever a datatake is scheduled, take care that a
SyncWarning is scheduled beforehand and if not,
adapt the SyncWarning timeline entries.

• Whenever a datatake or a SyncWarning is sched-
uled, take care that the SyncHorns are in proper
constellation.

For sure this direct approach would have worked, but we
would not have had any benefit for future missions. We
therefore decided to implement a new feature, called ‘Re-
pairOnExit’. This feature solves all of the described issues
generically, including the sleep-level switching.
 The idea is to allow automatic scheduling of a supplier
task: We formulate the constraints in a way that the sched-
uler can detect tasks which can serve to solve potential
conflicts on these constraints. Scheduling of the dependent
task takes place inside a using-block, in which the respec-
tive constraints are replaced by helper constraints, which
reflect the potential supply of the supplier tasks. This pre-
vents the need for repairing when adding the supplier task
in the next step. When scheduling inside the using state-
ment is complete, the dispose mechanism takes care of re-
moving the helper constraints and reactivating the ignored
constraints. To solve the conflicts on these constraints, one
or multiple repairer tasks are scheduled as needed. If de-
conflicting fails, the transaction of this repair-on-exit state-
ment is rejected, i.e. no modification takes place:

var config = .. // here we specify what constraint shall be
 // repaired by scheduling a supplier task
using(new RepairOnExit(config)) // here we calculate
 // where a supplier task may be scheduled
{
 ExecuteCode(); // here the specified constraint is
 // replaced by constraints, which
 // reflect the places where a supplier
 // can be scheduled
 Transaction.Current.Accept(); // implicit transaction
 // must be accepted
} // here we try to schedule repairer timeline entries,
 // in order to deconflict the specified constraint

Let’s have a more detailed look at this mechanism for the
SyncWarnings as an example:

There exist 36 different SyncWarning tasks, since there ex-
ist six sync horns on each satellite. For each sync horn pair
we need a dedicated SyncWarning task

1. Before scheduling a datatake, a new transaction is
started

2. The SyncWarnings around the time when the
datatake may be scheduled, are removed

3. The times are calculated when a SyncWarning
may be scheduled

4. The constraint ‘Datatake needs SyncWarning’ is
replaced by a constraint reflecting the result of 3.

5. The datatake is scheduled, together with uplink,
file creation, downlink, file deletion and sleep-
level switchings. If this is not possible, the whole
transaction is rejected and we exit this block. Oth-
erwise we proceed as follows:

6. The constraint from 4. is removed and the one of
3. is reactivated

7. If the constraint ‘Datatake needs SyncWarning’ is
violated, one or more SyncWarnings are sched-
uled to deconflict all conflicting ‘Datatake needs
SyncWarning’ constraints. If this succeeds, the
transaction is accepted. If not it is rejected.

Note that in step 7, we only add SyncWarnings in case we
do have a conflict. This allows an easy mechanism for ac-
tivating and deactivating these features due to different
constellations:
 We introduce four tasks ‘farFormation’, ‘separatedFor-
mation’, ‘nearFormation’ and ‘closeFormation’. At any
time, exactly one of them is scheduled, namely the one
whose formation is active at that time. The generic con-
straint definition allows adding a constraint for the first
three of these tasks: They all supply the SyncWarning sup-
plied resource in the same way as the SyncWarning does.
This means that whenever we are not in close formation,
the resource is supplied and no SyncWarnings are com-
manded – completely without reconfiguration. The only
input needed is the information of the satellite scenario.

Preferred TSX-1 downlink

The two satellites are very similar. However they differ
quite significantly in mass memory: the newer TDX-1 sat-
ellite may store twice as much data as the TSX-1 satellite.
If we would treat the two satellites equally, we can expect
the TSX-1 memory to be full although 50% of the TDX-1
memory is still available. For the TerraSAR-X mission,
this is not such a big issue, because on the one hand, the
high priority datatakes are already scheduled and on the
other hand the TDX-1 satellite may also execute the data-
take in most cases. For the TanDEM-X mission however
the situation is different: each datatake for this mission
must be executed on both satellites synchronously. When-
ever one satellite’s memory is full, no such pair of bistatic

datatakes can be executed any more. The TanDEM-X mis-
sion therefore would not benefit at all from the increased
capabilities of the TDX-1 satellite.
 We therefore had to introduce a concept which somehow
first dumps the TSX-1 satellite. We started to introduce a
rescheduling of downlinks when TSX-1’s limit is reached.
However we ended up in complex code and a bad perform-
ance. In the end, we changed our concept the following
way:
 While scheduling the bistatic datatakes for the TanDEM-
X mission, we schedule the datatakes not in the order of
their priorities (which is equal anyway for all of them), but
we schedule them in the order of their opportunities. After
one bistatic pair of datatakes has been scheduled, we un-
schedule the downlink of the TDX-1 satellite and store the
downlink in a queue. As soon as the TDX-1 memory is
filled by more than N% (e.g. N = 50), the ‘oldest’ element
in this queue is taken and scheduled. After scheduling the
last bistatic TanDEM-X datatake, all remaining TDX-1
downlinks are scheduled before the TerraSAR-X datatakes
are considered. This results in the following sequence:

• Bistatic datatake pair 1:
o datatakes scheduled at 12:00
o TSX-1 downlink scheduled at 12:30
o TDX-1 downlink postponed

• Bistatic datatake pair 2:
o datatakes scheduled at 12:10
o TSX-1 downlink scheduled at 12:32
o TDX-1 downlink postponed

• …
• Bistatic datatake pair 10:

o datatakes scheduled at 13:00
o TSX-1 downlink scheduled at 13:30
o TDX-1 downlink postponed

• TDX-1 meory filled by more than N%
o TDX-1 downlink for datatake pair 1

scheduled at 12:38
• Bistatic datatake pair 11:

o datatakes scheduled at 13:10
o TSX-1 downlink scheduled at 13:32
o TDX-1 downlink postponed

• TDX-1 memory filled by more than N%
o TDX-1 downlink for datatake pair 2

scheduled at 12:40
• …

As long as there exist enough unused downlink opportuni-
ties for scheduling the TDX-1 downlinks, scheduling them
takes place before the opportunities of all bistatic data-
takes, which have not yet been considered. Therefore the
TDX-1 downlinks can be scheduled without affecting the
TSX-1 downlinks. This way the TDX-1 memory is only
dumped when TSX-1 is empty.
This concept will work unless there don’t exist enough
downlink opportunites. In this case the downlinks of TDX-

1 would ‘overtake’ the currently scheduled datatakes,
which means that new TSX-1 downlinks and old TDX-1
downlinks compete for the downlink opportunities. But
this is correct, because when the TDX-1 memory is filled
by more than N%, we expect both satellites to have equal
memory left. So why should TSX-1 be preferred any
more?
 Nevertheless the high-priority bistatic datatakes are re-
quested in a systematic way, which assures that there exists
enough downlink capacity for the TanDEM-X mission. We
therefore did not observe this situation at all.

Remaining flexibility

The high-priority bistatic datatakes of the TanDEM-X mis-
sion are ordered in a systematic way, which assures that
these requests may be scheduled. Of course we still need to
serve the TerraSAR-X mission, whose orders are unknown
until up to six hours before uplink. We therefore need a
mechanism, which on the one hand allows high-priority
TerraSAR-X datatakes to block TanDEM-X datatakes and
on the other hand assures that the TanDEM-X mission can
be completed.
 This is achieved by the Remaining Flexibility concept:
Before starting the algorithm, we analyze the bistatic data-
takes of the TanDEM-X mission. Each datatake has a time
window when it must be executed. Inside this time win-
dow, we have one opportunity all eleven days. Usually a
datatake has a time window of about 45 days, i.e. five op-
portunities. For each of these TanDEM-X datatakes of the
current three days scheduling horizon, we check how many
opportunities are left which are not yet occupied by other
TanDEM-X datatakes. This number specifies the flexibility
during the TanDEM-X datatake’s opportunity.
 At the beginning of the scheduling process, all high-
priority TerraSAR-X datatakes, which overlap with a re-
gion of flexibility less or equal 1, are blocked and queued
for later consideration. When the last TanDEM-X datatake
has been scheduled, all of these blocked TerraSAR-X data-
takes get a second chance, just in case the TanDEM-X
datatake could not be scheduled for any other reason.

Background sequence

Of course we have to schedule additional tasks, such as
housekeeping dumps and transponder switchings. These
tasks can always be schedulable somewhere. Therefore
they are not considered during the main timeline genera-
tion step. Nevertheless we still need to consider certain
constraints to tasks of the main timeline; therefore we
schedule them in a post processing step.
The requirements to schedule these background sequence
tasks have been as volatile as the constraints of the TSX-1

satellite. So we implemented this algorithm as generic as
possible. Its basic functionality is to take opportunities and
add an offset to their start time or their end time. At this
place a timeline entry is generated.
 In order to maintain a conflict free timeline, the resulting
timeline entry is deconflicted by moving into a specified
direction. A transmitter-on command for example would
be moved to an earlier time, if the number of telecom-
mands in the calculated second slot exceeded its maximum
value. A dumpStart command on the other hand would be
moved to the succeeding second slot.
 You can also specify a minimum distance in between the
opportunities, when these should be merged. This way you
can avoid switching off and on a transmitter at a short dis-
tance.
 Of course it does not make sense to schedule a dump
command if the transmitter is not switched on. To assure
this doesn’t happen, you may group commands together
and specify different levels.
 For example consider two groundstation opportunities
which are at a very short distance to each other or even
overlapping. The first level rule would merge these oppor-
tunities and schedule transmitter on and off before and af-
ter the pair of opportunities. The second level rule does
only apply if the first level rule has succeeded to add the
transmitter switchings. In this case the second level rule
would consider these opportunities separately. For the first
one the dump start and dump stop commands would be
generated. For the second one the dump start would be
scheduled not earlier than the preceding dump stop and ac-
cording to the second opportunity.
 Similar to the constraint definitions, this algorithm is
completely configurable via a well defined XML file.

Performance

When starting with the TerraSAR-X mission, we were
thinking about implementing some optimization criterion,
which might be used for optimization. However for this
mission, optimization was not desired. Instead a simple
rule was preferred.
 It turns out that global optimization might not be possi-
ble at all for this mission within the available time. Even
our simple algorithm currently takes one hour calculation
time for a short-term timeline, which covers three days.
The workload is about 3000 datatake alternatives, i.e. one
datatake for the TSX-1 satellite and one for the TDX-1 sat-
ellite. The dominating factor of the large work load is the
power resource model.
 For the TerraSAR-X mission, we had a simple rule that
no more than 180sec datataking may take place in any 95
minutes window. For the TanDEM-X mission we have to
reach the limits of the satellites, therefore a detailed power
and thermal analysis has been performed. We now have 15

gliding windows; the smallest one is the 95min window,
for which the maximum datatake workload is now ex-
tended to 400sec. The largest one is 15*95min window
with a maximum workload of 15*210sec. However the
calculation effort is caused by the power model, which di-
rectly models the state of discharge of the battery. This
model supports the battery capacity, i.e. whenever the bat-
tery is full, further energy supply by the solar arrays get
lost. Using this model means that adding a power con-
sumption results in propagating the whole future, at least
until the next time where the battery is completely refilled.
 But also without the power calculation, optimization
would be a hard thing. Tests by us and others have indi-
cated that the problem is too complex to tackle using more
generic stochastic approaches.

Prospects

The technique of specifying constraints and algorithms via
XML files has proven to be very helpful. For future mis-
sions we therefore intend to implement a similar approach
for structure generation. This way, a simple mission might
only need to make use of the generic tools together with a
properly adapted configuration.
 Our modeling language is quite straight forward and al-
lows intuitive modeling of constraints. In order to use more
generic algorithms, one may write a project analyzer which
identifies the bottlenecks of the planning problem and ex-
tracts them into a simplified model. A generic algorithm
may be applied to this simplified model and the result (e.g.
a selection of datatakes, which shall be scheduled) can be
used as input for the scheduling algorithm on the complete
model. However it seems to be extremely challenging to
write a good generic project analyzer. A mission specific
project analyzer on the other hand would drastically reduce
our ability to quickly react to changing constraints, which
is vital especially for a one of a kind mission such as Ter-
raSAR-X/TanDEM-X.

References
[1] Maurer E., Mrowka, F, Braun A., Geyer M. P., Lenzen C.,
Wasser Y., Wickler M., “TerraSAR-X Mission Planning System:
Automated Command Generation for Spacecraft Operations”,
IEEE Transactions on Geoscience and Remote Sensing, Vol. 48,
No. 2, 2010, pp. 642-648

[2] Braun, A., Geyer, M.P., Wickler, M., Foussal, C.I.,
“Autonomous End-to-End Planning System for TerraSAR-X,”
AIAA Space Ops 2004

[3] Geyer, M. P., Braun, A., Foussal, C.I., Lenzen, C. and
Köhler, A., “Tailoring the TerraSAR-X Mission Planning System
to PPP needs,” AIAA Space Ops 2006

[4] Dr. Michael P. Geyer, Dr. Falk Mrowka, Christoph Lenzen,
“TerraSAR-X/TanDEM-X Mission Planning – Handling Satel-
lites in Close Formation” AIAA Space Ops 2010

[5] Christoph Lenzen, Dr. Falk Mrowka, Dr. Andreas Spörl,
“Scheduling Formations and Constellations”, electronic poster at
the AIAA Space Ops 2010

[6] Nir Shavit and Dan Touitou. Software Transactional Mem-
ory. Proceedings of the 14th ACM Symposium on Principles of
Distributed Computing, pp. 204–213. August 1995.

[7] Tim Harris, Simon Marlow, Simon Peyton Jones, and Mau-
rice Herlihy. Composable Memory Transactions. ACM Sympo-
sium on Principles and Practice of Parallel Program-
ming2005 (PPoPP'05). 2005.

Acknowledgments
The TanDEM-X project is partly funded by the German
Federal Ministry for Economics and Technology (Förderk-
ennzeichen 50 EE 1035) and is realized in a public-private
partnership by DLR e.V. and Astrium EADS

