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Abstract 
In 2007 the satellite TSX-1 of the mission TerraSAR-X has 
been launched. Its primary payload is an active radar in-
strument, which shall supply radar images on request for 
commercial and scientific users. With a maximum load of 
up to 1000 datatake requests per day and an order deadline 
of six hours before uplink, the command generation process 
had to be fully automated. The complexity of the satellite 
and the evolving knowledge of its constraints exposed fur-
ther challenges on implementation of the scheduling proc-
ess. 
  In 2010 a copy of TSX-1 has been launched: the TDX-1 
satellite. When operating in close formation (i.e. distances 
of 250m-400m) this pair of satellites may execute stereo-
scopic datatakes which allow the generation of a digital ele-
vation model. However several inter-satellite constraints 
need to be taken into account when operating at such short 
distances. Additionally we have two distinct missions, 
which need to be merged together: First, we have the old 
TerraSAR-X mission, for which the customers usually in-
gest their high-priority orders very late, for example for dis-
aster monitoring. Second, we have the TanDEM-X mission, 
whose goal is a complete coverage of the earth in 3D with 
best possible accuracy. For this mission the datatakes are 
calculated up to one year in advance. 
  This paper shows what techniques have been developed 
in order to cope with the challenging requirements of com-
bining two missions and handling a two-satellites-system. 

TerraSAR-X planning problem 

The TSX-1 satellite carries a newly developed SAR in-
strument whose integration in the bus was not trivial. 
Therefore commanding of the satellite has to be done at a 
rather low level. The most important tasks to schedule are: 

- file creation 
- instrument wake up from sleep-level 
- datatake execution 
- instrument go to sleep-level 
- downlink 
- file deletion 
- antenna mode switching (there exist two types of 

datatakes, for which the memory module needs to 
be reconfigured) 

- attitude mode switching (the radar instrument 
needs a certain view angle, therefore the satellite 
has two attitudes which allow data taking: left- 
and right-looking) 

A lot of constraints in between tasks of same as well as dif-
ferent types exist. The main ones are listed in the follow-
ing; all together we have about 70 constraints: 

- Uplink, datatake and downlink have an individual 
but fix duration. Downlinks may be split. All 
other tasks have a task specific fix duration. 

- Uplink before file creation, file creation before 
datatake, etc. 

- No two datatakes at the same time. 
- No file creation and file deletion in parallel to 

datatake or downlink. 
- No more than nine telecommands during one sec-

ond (during datatake commanding we have up to 
7 commands). 

- No more than 55 file deletions in parallel. File de-
letions which overlap must have same start time, 
so they are merged to one telecommand 

- Partial file deletions must not overlap with other 
file creations or (partial) file deletions at all 

- Limited on-board memory 
- In between two datatakes the instrument has to be 

set into a certain sleep-level. The depth of this 
sleep-level depends on the gap size: 

• Gap size < 15sec : Sleep-level 0 (SL0) 
• Gap size < 60sec : Sleep-level 1 (SL1) 
• Gap size < 15min : Sleep-level 2 (SL2) 
• Gap size >= 15min: Sleep-level 3 (SL3) 

- Nominal datatakes need right-looking mode, left-
looking datatakes need left-looking mode. 

- Maximum duration in left-looking mode during 
one maneuver: 170sec 

- Duration of turning to left-looking and turning 
back: 250sec 

- 15min after start of turning to left-looking mode 
the satellite has to be in right-looking mode. 

- During each time window of size one orbit, no 
more than 180sec of data taking is allowed. 



- Replay only during visibility of the respective 
downlink station 

- X-band-transmitter must be switched on during 
replay. 

- During each time window of size one orbit, X-
band-transmitter must not be on for longer than 
2800sec. 

TerraSAR-X mission goals 

The TerraSAR-X mission has been established as a public 
private partnership, consisting of the public partner, who 
represents the scientific community, and the private part-
ner, whose concern is the commercial exploitation of the 
satellite. You can find a detailed description in [1, 2]. 
 The TSX-1 satellite has been designed for about 500 
datatakes per day, which means that Mission Planning has 
to consider about 1000 datatakes per day, since not all 
datatakes will be schedulable. Obviously Mission Planning 
had to be automated. 
 Most of the requested datatakes are known several days 
or weeks in advance. However one major goal of the Ter-
raSAR-X mission is to supply data for current urgent 
events, in particular for disaster monitoring. A main re-
quirement therefore is a quick response to incoming orders, 
which we achieve by generating a new timeline for each 
uplink session, i.e. twice a day. Order deadline for incom-
ing orders usually is six hours before the respective uplink 
passage. 
 In addition to the six hours deadline, a special service 
has been requested to allow modifications of already com-
manded datatakes via additional ground stations. The dead-
line for these updates is reduced to one hour before uplink. 

Algorithm 

The commercial and the scientific user groups need to 
share the satellite. First challenge therefore was to find a 
suitable mechanism of how to distribute the satellite re-
sources. A sophisticated mechanism of pricing orders with 
respect to priority, resource consumptions and time criti-
cality has been developed, together with a simple priority 
based greedy algorithm, see [2, 3]. However management 
decided that pricing of orders would not be necessary. For-
tunately the user groups managed to arrange with each 
other, in particular because commercial success was known 
to result in a successor satellite for both parties. 
 Thus the base algorithm is quite simple: 

1. use the timeline of the preceding planning run as 
starting point 

2. for each scheduled datatake, sorted by (low prior-
ity first / late order date first): 

a. if possible, unschedule file creation, 
datatake, downlink and file deletion 

b. if a. is not possible, try to unschedule 
datatake and downlink, move file dele-
tion to the earliest possible time. 

3. for each not scheduled datatake, sorted by (high 
priority first / early order date first):  
try to schedule the datatake, together with 
downlink, file deletion, file creation, uplink and 
sleep-level switchings 

This approach does neither optimize the sum of priorities 
nor the number of datatakes, but it has two major advan-
tages: 

I. For each unscheduled datatake, we can supply a 
list of more important, scheduled datatakes, with 
which this datatake would be in conflict. 

II. The algorithm is fast enough to obey the six hours 
deadline. 

III.  For the one hour update, we can restrict steps 2 
and 3 to the places of the desired modifications 

Although the base algorithm is quite simple, there are sev-
eral special features, which had to be implemented: 

Sleep-level switching 
Initially, the sleep-level transitions should have been added 
after scheduling all datatakes. However there exist con-
straints in between sleep-levels and datatakes, which may 
cause a conflict in certain situations. Therefore scheduling 
of sleep-level transitions had to be added into the main al-
gorithm. 
 For this purpose we reused an update mechanism deep 
inside the scheduler: You can let an update method be trig-
gered whenever a certain modification takes place. In this 
case the modification is a new or deleted datatake timeline 
entry. This modification causes the surrounding sleep-level 
switchings to be adapted and checked to be conflict free – 
if not the datatake is rejected. 

Downlinks 
The downlink of a datatake may last for a few minutes. We 
therefore have to support splitting it into several fragments. 
However the last segment of a preceding fragment must be 
repeated at the beginning of the succeeding fragment, in 
order to allow the two pieces to be merged properly. 
 Furthermore, we have a set of allowed downlink station 
groups for each datatake request. The scheduler shall 
choose the best downlink station group and schedule all 
downlink fragments for the ground station opportunities of 
this group. 
 In order to find the best ground station group, the sched-
uler tries all of them and chooses the result with earliest 
end time of the last downlink fragment end. This assures 
that memory on board the satellite is deallocated as early as 
possible. 



File deletion  
According to the satellite hardware configuration, a file de-
letion must not take place during a datatake and it must not 
take place during a downlink. However, when scheduling 
the first datatake, there would be no constraint indicating 
that the fileDeletion of this datatake can not be scheduled 
during the opportunity of the second datatake. The algo-
rithm therefore may place the fileDeletion such that the 
second datatake can’t be scheduled any more. 
 We know that there is enough time for file deletion, be-
cause a constraint exists not to activate the instrument for 
more than 700sec per orbit (~95min). We therefore decided 
to pick certain times in advance. File deletion will only 
take place at these dedicated times. Usually these times are 
chosen right behind the downlink stations, and in any case 
such that no downlink stations are visible and such that 
preferably no datatakes are visible. In the last three years 
we never had a case where a low priority datatake was 
blocked due to this mechanism. 
 Although we have similar constraints with file creation 
and downlinks, we do not have them with file creation and 
datatakes. Therefore a preprocessing as for file deletions is 
not necessary. 
 

Backtracking 
The base algorithm itself calls for a backtracking tech-
nique: in case the algorithm detects the unfeasibility of a 
datatake when some timeline entries have already been 
generated. In case of a failure due to sleep-level switch-
ings, all datatake specific timeline entries already exist, and 
all of them must be removed. Even in case of no failure, 
we use backtracking when scheduling the downlinks: As 
mentioned above, we try out all downlink groups and se-
lect the best one. 
 Although we are coding in a conventional object ori-
ented language (.NET/C#), the core operations are strict 
functions without side effects. At a higher level, we strictly 
distinguish between the model objects and their states. For 
example the resource ‘Power’ is a model object, whose 
identity will never change, but its resource profile will be 
modified together with the timeline. The current state of 
the resource at a certain time is given by an immutable 
structure. Inside this structure the resource profile is stored, 
together with other properties such as name and parame-
ters. As an element of an immutable structure, a resource 
profile must be immutable, too. Of course, the resource 
profile of Power has to be modified whenever a power 
consuming task is scheduled. But this is done by replacing 
the immutable state of Power with a shallow copy, where 
only the resource profile is replaced by the result of the 
calculation. 

 All entities of our modeling language (tasks, groups, re-
sources and the project) are built up this way and are de-
rived from a special base class, which supports the follow-
ing transactional semantics: 
 

using(trans = new Transaction()) 
{ 
 bool success; 
 // here you can try your subpath and set success 
 if(success) 
  trans.Accept(); 
} 

 
When generating the new Transaction(), we save a snap-
shot of all current states of all model objects. Due to the 
fact that these states are immutable, we only need to save 
the references to these states. Inside the using block, we 
may continue our algorithm, e.g. by adding timeline entries 
or constraints. Before we exit the using block, we have to 
decide whether to take over the modifications we have 
done or to roll back to the state at the beginning of the 
transaction. In order to take over the modifications, one has 
to execute the ‘Accept()’ method of the transaction. In or-
der to roll back one can execute the ‘Reject()’ method. 
Similar to database transactions, default is to roll back. 
This allows wrapping the transaction block into a try-catch 
block and to be sure that in any exceptional case the cur-
rent state of the system is well defined, namely the one be-
fore entering the transaction. 
 This approach is similar to ‘Software Transactional 
Memory’, see [6, 7]. 
 In our planning software, we use this transaction to-
gether with a NoSolution exception. This NoSolution can 
be thrown inside a subpath and caught outside the us-
ing(new Transaction()) block. For example we can use the 
following pattern: 
 

try 
{ 
 using(trans = new Transaction()) 
 { 
  bool success; 
  // here we try to schedule the datatake, including 
  // uplink, file handling, downlink, sleep-levels 
  ScheduleDatatake(dt); 
  trans.Accept(); 
 } 
} 
catch(NoSolution ns) 
{ 
 // log the reason why the NoSolution has been thrown 
 // the reason is supplied in ns.Message 
} 

 



Whenever the NoSolution gets thrown inside the Sched-
uleDatatake method (e.g. caused by failing to adapt the 
sleep-levels), we exit the using(trans = new Transac-
tion()) block and all modifications inside ScheduleData-
take are discarded. 
 Although throwing exceptions in nominal workflow 
should be avoided, we do not face a performance issue 
here, because the effort to schedule a datatake is by far 
greater than throwing and catching an exception. 

Modification handling 
As mentioned in the previous section, we use a certain 
mechanism in order to assure execution of code whenever 
something happens which we want to observe. This has 
some resemblance with event handling. However it is not 
quite the same. With events, you usually get notified when 
something happens on a different thread. Here we want to 
have a piece of code being executed at once when some-
thing happens. The thread in which it is executed must wait 
until the code returns. 
 The separation of model object and its state allows this 
kind of monitoring quite easily: Whenever a model object 
of the scheduler gets a new state (e.g. because a timeline 
entry is added to a task or a resource is given a new re-
source profile), a certain list of modification handlers is 
processed. There exist predefined modification handlers, 
such as the one which recalculates the resource profiles 
when a timeline entry is added or a new constraint is de-
fined. But you can also add modification handlers yourself, 
e.g. in order to keep the sleep-level switchings up to date. 

Multithreading 
With respect to performance, this semi-functional approach 
proved to be sufficiently fast. The CPU load is absolutely 
irrelevant compared with the time used for the dominating 
part, the execution of the resource profile calculations. It 
even allows a very good multithreading approach: 
 Whenever a new thread is started, a copy of the current 
state is generated (as the states themselves are immutable, 
nothing has to be copied except for the mapping of objects 
to their states). The new thread now can execute its opera-
tion. When finished, the set of modifications can be incor-
porated into the state of the parent thread or when multiple 
threads have been executed in parallel, one can select in 
between different modes: 

• Merge calculations, i.e. take over all modifica-
tions. An exception would occur if the same ob-
ject was modified by more than one thread. 

• Use best result, i.e. check which result is better 
and only use this one’s modifications. 

The multithreading concept itself proved to work without 
problems; however our current implementation of profiles 
is based on a tree structure, which means that small mem-

ory allocations are executed extremely often. The garbage 
collector of .NET 3.5 unfortunately is single threaded; 
therefore parallelization didn’t show the expected perform-
ance benefit. To solve this, we are currently working on an 
alternative implementation based on arrays.  

How to hit a moving target 

When designing and implementing the TerraSAR-X mis-
sion planning system, we faced the problem that many de-
tails of the satellite were not yet known. Many changes had 
to be incorporated during the project’s implementation 
phase, and even in the early operational phase, new con-
straints occurred, not to mention adaptation of constraints. 
 When designing the scheduler for the TerraSAR-X mis-
sion, we had two possibilities, either to implement a light-
weight specialized tool, which can only serve this mission, 
or we could refactor our existing planning tool suite to 
match the requirements of the new mission. Fortunately we 
decided to refactor our generic planning tools. The GSOC 
modeling language, which is used in these tools, strictly 
distinguishes between the structure (tasks, which shall be 
scheduled and grouping of tasks), the resources (state of 
the modeled system), the constraints (how the tasks interact 
with other tasks and resources) and the algorithm. There-
fore most of the newly appearing requirements could be 
implemented just by adding a new constraint. Sometimes 
we needed to add a new resource. Both modifications did 
not affect the algorithm or other components of the Mis-
sion Planning System (MPS) at all, so no great effort was 
involved in this place. Modifications of other parts of the 
MPS were necessary only when we had to introduce a new 
task, e.g. a file creation. For a description of the modeling 
language, see [5]. 
 Of course there existed the need to adapt certain parame-
ters during the mission. In order to serve this requirement, 
we started with a configuration file, in which we stored all 
values, for which we supposed that they might get modi-
fied in course of time. However this proved to be insuffi-
cient: the configuration file grew large and the exact mean-
ing of the different values became hard to understand for 
all but the developer. Furthermore new constraints could 
not be defined, because only existing values could be 
adapted. This led to a wide range of software versions. 
 To solve this, we decided to design an XML schema, 
which allows defining constraints according to our generic 
modeling language. An XML file which obeys this schema 
can be used to define constraints on a planning project in-
side our planning tools. Almost all constraints of the Ter-
raSAR-X mission have been translated to entries of such an 
XML file. This means that all of these constraints have 
been removed from the mission specific code and are now 
generated according to the XML file. Thus all of these con-
straints are now completely configurable and removable 



and even new constraints may be defined just by modifying 
the XML file. 
 Of course this means that this XML file itself must be 
treated with special care – however activation of a modi-
fied constraint specifications file is much less time con-
suming than recompiling and installing a new software 
version. 
 We still have some parameters, which do not concern 
the constraints themselves. But we have managed to ban 
the volatile part into almost full configurability. 

Challenges of TanDEM-X scheduling 

The TDX-1 satellite and its mission were added to the 
TSX-1 satellite and its mission three years after launch of 
TSX-1. For details on the combined mission and the tech-
nical needs for the following, see [4]. When starting the 
commissioning phase, we had two satellites in far forma-
tion. At this time the only additional complexity was to se-
lect one satellite per data take. However as the satellites 
approached, different scenarios with different constraints 
had to be considered: 

• separated formation 
o parallel downlink of both datatakes is 

possible 
o during one pass, reception of data from 

both satellites with only one antenna is 
impossible 

• near formation: 
o no parallel downlink of the two satellites, 

because their signals would interfere 
o during one pass, reception of data from 

both satellites with only one antenna is 
impossible 

• close formation: 
o no parallel downlink 
o no parallel execution of distinct datatakes 
o Reception of data from both satellites is 

possible with only one antenna during 
one pass, but a handover margin of ten 
seconds must be considered. 

o proper SyncHorns must be selected on 
both satellites in order to allow synchro-
nization of the two satellites during 
bistatic datatakes and during SyncWarn-
ings (see below) 

o exclusion zones: neither satellite may ac-
tivate the instrument whenever the other 
satellite might get hit by the radar beam 

These scenarios had to be addressed by their individual 
modeling. 
 Special attention had to be paid to the exclusion zone 
constraint in close formation. This is a mission critical con-
straint as violating it may damage the satellite which gets 

hit by the radar beam of the opponent satellite. Therefore 
an additional check is made on board the satellite. How-
ever this check relies on both satellites being in their pre-
dicted position. To be sure of this, we need to obey another 
rule: 

o datatakes may only be scheduled in case 
a synchronization check is scheduled no 
longer than 53 minutes beforehand 

This so called ‘SyncWarning’ would deactivate both satel-
lites’ instruments in case it fails. 



Picture 1: Screenshot of several scheduled datatakes, downlinks, file creations, file deletions and sleep level modes, 
 together with some resources 



Generic techniques for similar problems 

Given these new requirements, we could have followed the 
old approach we used for sleep-level switching, which 
would have meant to implement one modification handler 
for each feature, i.e. 

• Whenever a downlink is scheduled, check 
whether enough antennas are available – note that 
this is formation dependent. 

• Whenever a datatake is scheduled, take care that a 
SyncWarning is scheduled beforehand and if not, 
adapt the SyncWarning timeline entries. 

• Whenever a datatake or a SyncWarning is sched-
uled, take care that the SyncHorns are in proper 
constellation. 

For sure this direct approach would have worked, but we 
would not have had any benefit for future missions. We 
therefore decided to implement a new feature, called ‘Re-
pairOnExit’. This feature solves all of the described issues 
generically, including the sleep-level switching. 
 The idea is to allow automatic scheduling of a supplier 
task: We formulate the constraints in a way that the sched-
uler can detect tasks which can serve to solve potential 
conflicts on these constraints. Scheduling of the dependent 
task takes place inside a using-block, in which the respec-
tive constraints are replaced by helper constraints, which 
reflect the potential supply of the supplier tasks. This pre-
vents the need for repairing when adding the supplier task 
in the next step. When scheduling inside the using state-
ment is complete, the dispose mechanism takes care of re-
moving the helper constraints and reactivating the ignored 
constraints. To solve the conflicts on these constraints, one 
or multiple repairer tasks are scheduled as needed. If de-
conflicting fails, the transaction of this repair-on-exit state-
ment is rejected, i.e. no modification takes place: 
 

var config = .. // here we specify what constraint shall be 
      // repaired by scheduling a supplier task 
using(new RepairOnExit(config)) // here we calculate 
      // where a supplier task may be scheduled 
{ 
 ExecuteCode(); // here the specified constraint is 
         // replaced by constraints, which 
         // reflect the places where a supplier 
         // can be scheduled 
 Transaction.Current.Accept(); // implicit transaction 
               // must be accepted 
} // here we try to schedule repairer timeline entries, 
  // in order to deconflict the specified constraint 

 
Let’s have a more detailed look at this mechanism for the 
SyncWarnings as an example: 
 

There exist 36 different SyncWarning tasks, since there ex-
ist six sync horns on each satellite. For each sync horn pair 
we need a dedicated SyncWarning task 

1. Before scheduling a datatake, a new transaction is 
started  

2. The SyncWarnings around the time when the 
datatake may be scheduled, are removed 

3. The times are calculated when a SyncWarning 
may be scheduled 

4. The constraint ‘Datatake needs SyncWarning’ is 
replaced by a constraint reflecting the result of 3. 

5. The datatake is scheduled, together with uplink, 
file creation, downlink, file deletion and sleep-
level switchings. If this is not possible, the whole 
transaction is rejected and we exit this block. Oth-
erwise we proceed as follows: 

6. The constraint from 4. is removed and the one of 
3. is reactivated 

7. If the constraint ‘Datatake needs SyncWarning’ is 
violated, one or more SyncWarnings are sched-
uled to deconflict all conflicting ‘Datatake needs 
SyncWarning’ constraints. If this succeeds, the 
transaction is accepted. If not it is rejected. 

Note that in step 7, we only add SyncWarnings in case we 
do have a conflict. This allows an easy mechanism for ac-
tivating and deactivating these features due to different 
constellations: 
 We introduce four tasks ‘farFormation’, ‘separatedFor-
mation’, ‘nearFormation’ and ‘closeFormation’. At any 
time, exactly one of them is scheduled, namely the one 
whose formation is active at that time. The generic con-
straint definition allows adding a constraint for the first 
three of these tasks: They all supply the SyncWarning sup-
plied resource in the same way as the SyncWarning does. 
This means that whenever we are not in close formation, 
the resource is supplied and no SyncWarnings are com-
manded – completely without reconfiguration. The only 
input needed is the information of the satellite scenario. 

Preferred TSX-1 downlink 

The two satellites are very similar. However they differ 
quite significantly in mass memory: the newer TDX-1 sat-
ellite may store twice as much data as the TSX-1 satellite. 
If we would treat the two satellites equally, we can expect 
the TSX-1 memory to be full although 50% of the TDX-1 
memory is still available. For the TerraSAR-X mission, 
this is not such a big issue, because on the one hand, the 
high priority datatakes are already scheduled and on the 
other hand the TDX-1 satellite may also execute the data-
take in most cases. For the TanDEM-X mission however 
the situation is different: each datatake for this mission 
must be executed on both satellites synchronously. When-
ever one satellite’s memory is full, no such pair of bistatic 



datatakes can be executed any more. The TanDEM-X mis-
sion therefore would not benefit at all from the increased 
capabilities of the TDX-1 satellite.  
 We therefore had to introduce a concept which somehow 
first dumps the TSX-1 satellite. We started to introduce a 
rescheduling of downlinks when TSX-1’s limit is reached. 
However we ended up in complex code and a bad perform-
ance. In the end, we changed our concept the following 
way: 
 While scheduling the bistatic datatakes for the TanDEM-
X mission, we schedule the datatakes not in the order of 
their priorities (which is equal anyway for all of them), but 
we schedule them in the order of their opportunities. After 
one bistatic pair of datatakes has been scheduled, we un-
schedule the downlink of the TDX-1 satellite and store the 
downlink in a queue. As soon as the TDX-1 memory is 
filled by more than N% (e.g. N = 50), the ‘oldest’ element 
in this queue is taken and scheduled. After scheduling the 
last bistatic TanDEM-X datatake, all remaining TDX-1 
downlinks are scheduled before the TerraSAR-X datatakes 
are considered. This results in the following sequence: 

• Bistatic datatake pair 1: 
o datatakes scheduled at 12:00 
o TSX-1 downlink scheduled at 12:30 
o TDX-1 downlink postponed 

• Bistatic datatake pair 2: 
o datatakes scheduled at 12:10 
o TSX-1 downlink scheduled at 12:32 
o TDX-1 downlink postponed 

• … 
• Bistatic datatake pair 10: 

o datatakes scheduled at 13:00 
o TSX-1 downlink scheduled at 13:30 
o TDX-1 downlink postponed 

• TDX-1 meory filled by more than N% 
o TDX-1 downlink for datatake pair 1 

scheduled at 12:38 
• Bistatic datatake pair 11: 

o datatakes scheduled at 13:10 
o TSX-1 downlink scheduled at 13:32 
o TDX-1 downlink postponed 

• TDX-1 memory filled by more than N% 
o TDX-1 downlink for datatake pair 2 

scheduled at 12:40 
• … 

As long as there exist enough unused downlink opportuni-
ties for scheduling the TDX-1 downlinks, scheduling them 
takes place before the opportunities of all bistatic data-
takes, which have not yet been considered. Therefore the 
TDX-1 downlinks can be scheduled without affecting the 
TSX-1 downlinks. This way the TDX-1 memory is only 
dumped when TSX-1 is empty. 
This concept will work unless there don’t exist enough 
downlink opportunites. In this case the downlinks of TDX-

1 would ‘overtake’ the currently scheduled datatakes, 
which means that new TSX-1 downlinks and old TDX-1 
downlinks compete for the downlink opportunities. But 
this is correct, because when the TDX-1 memory is filled 
by more than N%, we expect both satellites to have equal 
memory left. So why should TSX-1 be preferred any 
more? 
 Nevertheless the high-priority bistatic datatakes are re-
quested in a systematic way, which assures that there exists 
enough downlink capacity for the TanDEM-X mission. We 
therefore did not observe this situation at all. 

Remaining flexibility 

The high-priority bistatic datatakes of the TanDEM-X mis-
sion are ordered in a systematic way, which assures that 
these requests may be scheduled. Of course we still need to 
serve the TerraSAR-X mission, whose orders are unknown 
until up to six hours before uplink. We therefore need a 
mechanism, which on the one hand allows high-priority 
TerraSAR-X datatakes to block TanDEM-X datatakes and 
on the other hand assures that the TanDEM-X mission can 
be completed. 
 This is achieved by the Remaining Flexibility concept: 
Before starting the algorithm, we analyze the bistatic data-
takes of the TanDEM-X mission. Each datatake has a time 
window when it must be executed. Inside this time win-
dow, we have one opportunity all eleven days. Usually a 
datatake has a time window of about 45 days, i.e. five op-
portunities. For each of these TanDEM-X datatakes of the 
current three days scheduling horizon, we check how many 
opportunities are left which are not yet occupied by other 
TanDEM-X datatakes. This number specifies the flexibility 
during the TanDEM-X datatake’s opportunity. 
 At the beginning of the scheduling process, all high-
priority TerraSAR-X datatakes, which overlap with a re-
gion of flexibility less or equal 1, are blocked and queued 
for later consideration. When the last TanDEM-X datatake 
has been scheduled, all of these blocked TerraSAR-X data-
takes get a second chance, just in case the TanDEM-X 
datatake could not be scheduled for any other reason.  
 

Background sequence  

Of course we have to schedule additional tasks, such as 
housekeeping dumps and transponder switchings. These 
tasks can always be schedulable somewhere. Therefore 
they are not considered during the main timeline genera-
tion step. Nevertheless we still need to consider certain 
constraints to tasks of the main timeline; therefore we 
schedule them in a post processing step.  
The requirements to schedule these background sequence 
tasks have been as volatile as the constraints of the TSX-1 



satellite. So we implemented this algorithm as generic as 
possible. Its basic functionality is to take opportunities and 
add an offset to their start time or their end time. At this 
place a timeline entry is generated.  
 In order to maintain a conflict free timeline, the resulting 
timeline entry is deconflicted by moving into a specified 
direction. A transmitter-on command for example would 
be moved to an earlier time, if the number of telecom-
mands in the calculated second slot exceeded its maximum 
value. A dumpStart command on the other hand would be 
moved to the succeeding second slot.  
 You can also specify a minimum distance in between the 
opportunities, when these should be merged. This way you 
can avoid switching off and on a transmitter at a short dis-
tance. 
 Of course it does not make sense to schedule a dump 
command if the transmitter is not switched on. To assure 
this doesn’t happen, you may group commands together 
and specify different levels. 
 For example consider two groundstation opportunities 
which are at a very short distance to each other or even 
overlapping. The first level rule would merge these oppor-
tunities and schedule transmitter on and off before and af-
ter the pair of opportunities. The second level rule does 
only apply if the first level rule has succeeded to add the 
transmitter switchings. In this case the second level rule 
would consider these opportunities separately. For the first 
one the dump start and dump stop commands would be 
generated. For the second one the dump start would be 
scheduled not earlier than the preceding dump stop and ac-
cording to the second opportunity. 
 Similar to the constraint definitions, this algorithm is 
completely configurable via a well defined XML file. 

Performance 

When starting with the TerraSAR-X mission, we were 
thinking about implementing some optimization criterion, 
which might be used for optimization. However for this 
mission, optimization was not desired. Instead a simple 
rule was preferred. 
 It turns out that global optimization might not be possi-
ble at all for this mission within the available time. Even 
our simple algorithm currently takes one hour calculation 
time for a short-term timeline, which covers three days. 
The workload is about 3000 datatake alternatives, i.e. one 
datatake for the TSX-1 satellite and one for the TDX-1 sat-
ellite. The dominating factor of the large work load is the 
power resource model. 
 For the TerraSAR-X mission, we had a simple rule that 
no more than 180sec datataking may take place in any 95 
minutes window. For the TanDEM-X mission we have to 
reach the limits of the satellites, therefore a detailed power 
and thermal analysis has been performed. We now have 15 

gliding windows; the smallest one is the 95min window, 
for which the maximum datatake workload is now ex-
tended to 400sec. The largest one is 15*95min window 
with a maximum workload of 15*210sec. However the 
calculation effort is caused by the power model, which di-
rectly models the state of discharge of the battery. This 
model supports the battery capacity, i.e. whenever the bat-
tery is full, further energy supply by the solar arrays get 
lost. Using this model means that adding a power con-
sumption results in propagating the whole future, at least 
until the next time where the battery is completely refilled. 
 But also without the power calculation, optimization 
would be a hard thing. Tests by us and others have indi-
cated that the problem is too complex to tackle using more 
generic stochastic approaches.  

Prospects 

The technique of specifying constraints and algorithms via 
XML files has proven to be very helpful. For future mis-
sions we therefore intend to implement a similar approach 
for structure generation. This way, a simple mission might 
only need to make use of the generic tools together with a 
properly adapted configuration. 
 Our modeling language is quite straight forward and al-
lows intuitive modeling of constraints. In order to use more 
generic algorithms, one may write a project analyzer which 
identifies the bottlenecks of the planning problem and ex-
tracts them into a simplified model. A generic algorithm 
may be applied to this simplified model and the result (e.g. 
a selection of datatakes, which shall be scheduled) can be 
used as input for the scheduling algorithm on the complete 
model. However it seems to be extremely challenging to 
write a good generic project analyzer. A mission specific 
project analyzer on the other hand would drastically reduce 
our ability to quickly react to changing constraints, which 
is vital especially for a one of a kind mission such as Ter-
raSAR-X/TanDEM-X. 
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