
Constraint programming for optimising satellite validation plans

Caroline Maillet
Astrium, Toulouse, France
ONERA, Toulouse, France

Caroline.Maillet@astrium.eads.net
Caroline.Maillet@onera.fr

Gérard Verfaillie
ONERA, Toulouse, France
Gerard.Verfaillie@onera.fr

Bertrand Cabon
Astrium, Toulouse, France

Bertrand.Cabon@astrium.eads.net

Abstract

Telecommunication satellite payload validation lasts
several weeks in thermal vacuum chambers, and mo-
bilise large validation teams. Validation is organised
over several thermal transitions, with each transition al-
lowing the validation of a subset of the equipment under
different constraints. Minimising the number of transi-
tions is a crucial objective for Astrium. Constraint Pro-
gramming was used to elaborate a mathematical model
of the problem. This model may induce thousands of
variables with hundreds of thousands of binary and n-
ary constraints. To solve it, specific algorithms were
developed, using conflict directed backjumping mecha-
nisms, new adaptive variable weighting heuristics, and
restarting strategies. Experiments showed significant
gains in terms of quality of the plans produced within
a limited computing time.

Industrial context
Astrium is an EADS company in charge of designing
and making observation and telecommunication satellites.
Telecommunication satellites are geostationary relays which
provide telephony, high definition television, and internet
services. Orbiting at 36000km from Earth, they receive very
low power radio-frequency (RF) signals emitted by ground
stations. Received signals are amplified and converted in
terms of frequency in order to avoid interferences between
received and emitted signals. They are then filtered and
amplified again before being emitted to Earth. To perform
this task, telecommunication satellite payloads are made of
many amplifiers, filters , frequency converters, and connec-
tions between them. All these equipment units are dupli-
cated to allow reconfigurations in case of failure. The pay-
load of a given telecommunication satellite depends on its
mission. The increase in mission complexity (number of RF
signals) results in an increase in payload complexity.

Before launch, thousands of payload units must be vali-
dated in conditions close to space environment. To do so,
most of the validation operations are performed in thermal
vacuum chambers under extreme temperature conditions.
Validation is organised over several thermal transitions with
an increasing or decreasing temperature. With each ther-
mal transition, is associated a payload configuration. Each
transition allows some of the validation requirements to be

satisfied. All transitions must cover all the validation re-
quirements defined by Astrium.

Validation operations associated with one thermal tran-
sition last more than a dozen hours. Validating the whole
payload mobilises large validation teams present 24 hours
24 over several weeks. Hence, minimising the number of
thermal transitions that allow all the validation requirements
to be covered is a crucial objective for Astrium.

Problem of optimisation of telecommunication
payload validation plans

With each thermal transition, is associated a payload
configuration. With each configuration is associated a set
of paths. A path represents an RF signal that goes through
the payload from an reception antenna to an emission one,
using a set of units (amplifiers, filters, converters, switches,
and connections between them). Switches are configurable
units that allow RF signals to be routed to specific units.
For example, Fig.1 shows a part of the red path which uses
switches 3508 and 4227, amplifier 5005, switches 7988 and
7990, and filter CH17. During a thermal transition, all the
paths of the associated configuration and thus all the units
present on these paths are concurrently validated.

However, the set of paths associated with a transition must
meet some constraints.

Fisrt, all the paths must be compatible with each other
in terms of switch positions. For example on Fig.1, red and
blue paths are compatible because they do not share any unit.
Green and blue path are compatible as well because the only
common unit is switch 3507, used in the same position by
both paths. On the contrary, red and green paths are incom-
patible because both use switch 7990 in different positions.

Second, due to thermal and measure constraints, each
transition has a limited capacity: the number of associated
paths must be less than a maximum number.

Third, due to local thermal constraints, some payload ar-
eas are subject to thermal limitations: the number of active
units must be less than a maximum number. For example,
only two units among amplifiers 5005, 5006, 5007, 5008,
and 5009 of Fig.1 can be used by paths during a decreasing
thermal transition.

Finally, some paths must be compulsorily validated and

Figure 1: Small part of a satellite telecommunication payload

thus must be present in at least one transition. For other
paths, some transitions are forbidden.

Validation requirements must be covered by the set of
thermal transitions. They are of different types.

The most usual ones enforce the validation of a unit in at
least one thermal transition. This requires that at least one
path going through this unit be validated in at least one ther-
mal transition. For example on Fig.1, using red or green path
allows switch 7990 to be validated. Globally, all the payload
units must be validated in at least one thermal transition.

Other requirements enforce a minimum number (greater
than one) of validation tests for some units.

Others enforce a unit to be validated under some thermal
conditions. This reduces the set of usable transitions.

Finally, others enforce a unit to be validated under some
frequency conditions. This reduces the set of usable paths.
For example on Fig.1, if switch 7990 must be validated us-
ing a high frequency, green path which goes through filter
CH11 of too low frequency does not allow this requirement
to be satisfied. On the contrary, red path which goes through
CH17 of high frequency allows it to be satisfied.

It must be stressed that the presence of a path in a
transition allows a set of requirements associated with path
units to be covered.

Two optimisation criteria can be considered when build-
ing validation plans:

• the minimisation of the number of used thermal transi-
tions allowing all the validation requirements to be satis-
fied,

• the maximisation of the number of satisfied validation re-
quirements using a given number of thermal transitions.

Since the number of necessary transitions is generally
about a dozen, it is possible to minimise it manually. This
is why, our study focused on the second criterion: maximi-
sation of the number of satisfied validation requirements
using a given number of thermal transitions.

The problem data is the following:

• a number of usable transitions (about a dozen),

• a set of usable paths (several thousand; this set is precom-
puted by an semi-automatic tool),

• a set of validation requirements (several thousand),

• a set of constraints on used paths:

– binary constraints of compatibility between paths (sev-
eral hundreds of thousands),

– n-ary constraints of capacity and thermal limitation on
transitions (several hundred),

– unary constraints of restriction on path assignments
(several hundred).

The problem output is a validation plan which assigns
each path p the transition in which p is present, possibly
null if p is present in no transition. This output must be
produced in few minutes only.

As far as we know, this application has not been studied
yet by the scientific community. The problem is closed to a
knapsack problem with multiple sacks, multiple sack dimen-
sions, and conflicts (Kellerer, Pferschy, and Pisinger 2004;
Epstein, Levin, and Van Stee 2007). Thermal transitions
are sacks and paths are objects. Conflicts are binary con-
straints of incompatibility between paths and unary con-
straints of restriction on path assignments. Dimensions are
n-ary contraints of capacity and thermal limitation on tran-
sitions. However, usually in knapsack problems, object util-
ities are assumed to be additive. This is not the case in our
problem: path utility is defined by the set of validation re-
quirements it can satisfy. A validation requirement may be
satisfied by several paths. These utilities are not additive.
This is why we built a mathematical model dedicated to the
problem of optimisation of the validation plans of telecom-
munication payloads.

Mathematical model
We first elaborated a mathematical model in Constraint Pro-
gramming (CP) (Dechter 2003) using the CP Optimizer tool

(IBM ILOG). This model associates with each path p a vari-
able which represents the transition in which p is present. Its
domain of value is the set of usable transitions to which the
null value is added to represent the fact that p may be not
selected.

Data
• Number of paths: PATH

• Number of units: UNIT

• Presence of units in paths:

UNIT_PATH[u][p],∀u ∈ {1, . . . , UNIT},
∀p ∈ {1, . . . , PATH}

• Number of thermal transitions: TRANS

• Transition capacities in terms of number of paths:

CAP [t],∀t ∈ {1, . . . , TRANS}

• Compatibilities between paths:

COMP [p][p′],∀p, p′ ∈ {1, . . . , PATH}

• Restrictions on path assignments:

RESTR[p][t],∀p ∈ {1, . . . , PATH},
∀t ∈ {0, . . . , TRANS}

• Number of validation requirements: REQ

• Minimum number of paths to be selected to satisfy vali-
dation requirements:

MIN_REQ[r],∀r ∈ {1, . . . , REQ}

• Usable paths to satisfy validation requirements:

PATH_REQ[p][r],∀p ∈ {1, . . . , PATH},
∀r ∈ {1, . . . , REQ}

• Usable transitions to satisfy validation requirements:

TRANS_REQ[t][r],∀t ∈ {1, . . . , TRANS},
∀r ∈ {1, . . . , REQ}

• Number of thermal limitations: LIM

• Maximum number of active units per transition to satisfy
thermal limitations:

MAX_LIM [l],∀l ∈ {1, . . . , LIM}

• Units involved in thermal limitations:

UNIT_LIM [u][l],∀u ∈ {1, . . . , UNIT},
∀l ∈ {1, . . . , LIM}

• Transitions involved in thermal limitations:

TRANS_LIM [t][l],∀t ∈ {1, . . . , TRANS},
∀l ∈ {1, . . . , LIM}

Variables

For each path, the used thermal transition or the null value
to represent the absence of selection:

aff [p] ∈ {0, . . . , TRANS},∀p ∈ {1, . . . , PATH}

Expressions

• For each unit, the fact that it is used or not:

∀u ∈ {1, . . . , UNIT},∀t ∈ {1, . . . , TRANS},
usedUnit[u][t] =(PATH/UNIT _PATH[u][p]=1∑

p=1

(aff [p] = t)
)
> 0

• For each validation requirement, the number of selected
paths satisfying it:

∀r ∈ {1, . . . , REQ},

testReq[r] =

PATH/PATH_REQ[p][r]=1,
TRANS/TRANS_REQ[t][r]=1∑

p=1,t=1

(aff [p] = t)

• For each validation requirement, its satisfaction level:

∀r ∈ {1, . . . , REQ},
satReq[r] = min(testReq[r],MIN_REQ[r])

• Criterion to be optimised (sum of the satisfaction levels
over all validation requirements):

obj =

REQ∑
r=1

satReq[r]

Objective

maximise obj

Constraints

Unary constraints Restriction on path assignments:

∀p ∈ {1, . . . , PATH},∀t ∈ {0, . . . , TRANS}/
RESTR[p][t] = 0, aff [p] 6= t

Binary constraints Compatibility between paths in the
same transition:

∀p,∀p′ ∈ {1, . . . , PATH}/COMP [p][p′] = 0,(
aff [p] 6= aff [p′]

)
‖(

(aff [p] = 0)&&(aff [p′] = 0)
)

N-ary constraints
• Capacity of each transition:

∀t ∈ {1, . . . , TRANS},
PATH∑
p=1

(aff [p] = t) ≤ CAP [t]

• Thermal limitations:

∀l ∈ {1, . . . , LIM},∀t ∈ {1, . . . , TRANS}/
TRANS_LIM [t][l] = 1,

UNIT/UNIT _LIM [u][l]=1∑
u=1

(usedUnit[u][t] = 1)

≤MAX_LIM [r]

This mathematical model was validated using CP Opti-
mizer (IBM ILOG) on instances associated with satellites
in production. On small instances, it allows optimal so-
lutions to be quickly produced and sometimes optimality
to be proven. Another model, involving boolean variables,
was elaborated in Integer Linear Programming (Nemhauser
and Wolsey 1988). This model was validated using CPLEX
(IBM ILOG). On the same instances, it allows more often
optimality to be proven at the price of higher computing
times. However, on instances of higher size, these generic
solvers (CP Optimizer and CPLEX) encounter problems of
memory overflow. This is why we decided to develop a spe-
cific algorithm. To avoid memory overflow, this algorithm
manages constraints implicitly thanks to bit vector opera-
tions. It also uses numerous CP techniques.

Algorithms
The specific algorithm developed by Astrium to solve this
optimisation problem, is a depth-first tree search algorithm,
including:

• dynamic variable and value ordering heuristics,

• a bound computing updating the objective variable (obj)
domain,

• a propagation mechanism based on forward checking
(Haralick and Elliott 1980),

• a chronological backtracking mechanism (BT) (Bitner
and Reingold 1975).

These mechanisms have been then improved, using:

• intelligent backtracking mechanisms: backjumping (BJ)
(Gaschnig 1979), conflict directed backjumping (CBJ)
(Prosser 1993; Schiex and Verfaillie 1994) with produc-
tion of explanations for binary and n-ary constraints,

• dynamic specific adaptive variable ordering heuristics:
learning of constraint impacts on variables inspired from
weighted degree (wdeg) (Boussemart et al. 2004) and
from wvar (Karoui et al. 2007), use of the last conflict
(Lecoutre et al. 2009),

• restarting mechanisms (Rs): restart with randomised
heuristics (Gomes, Selman, and Kautz 1998; Walsh
1999), adaptive restart using impacts (Grimes 2008), and
randomised adaptive restart.

Even if the arc consistency maintenance mechanism (MAC)
(Sabin and Freuder 1994) is generally very efficient, it was
not implemented in this specific algorithm. Because of the
presence of the null value in the domain of most variables,
the problem is arc consistent and remains arc consistent at
most nodes of the search tree and MAC cannot remove val-
ues from domains.

Backtracking mechanisms
Three backtracking mechanisms were implemented. For
each of them, a conflict is an inconsistency between a vari-
able assignment and previous variable assignments. A fail-
ure is the fact that all values of a variable are in conflict. In
case of failure, it is necessary to backtrack.

Chronological backtracking (BT) (Bitner and Reingold
1975) consists in coming back to the last variable assign-
ment.

Backjumping (BJ), introduced in (Gaschnig 1979), con-
sists in coming back to the assignment of the most recent
variable involved in the last conflict that led to failure. In
case of nested failures, the first backtrack is a backjump, the
others are chronological backtracks.

Conflict directed backjumping (CBJ), introduced in
(Prosser 1993) and in (Schiex and Verfaillie 1994), mem-
orises conflict explanations. A conflict explanation is the
set of previously assigned variables that are responsible for
conflict. In case of failure for a variable v, a backjump is
triggered to the most recent variable involved in the conflict
explanations of v. CBJ allows multiple nested backjumps.

Variable ordering heuristics
Dynamic specific variable ordering heuristics In CP, dy-
namic variable ordering heuristics allow the next variable to
assign to be chosen according to the previous variable as-
signments. Usually, these heuristics follow the first-fail prin-
ciple: choose the variable that allows failure to be detected
as soon as possible. However in our problem, it is impor-
tant to handle differently variables that do not have the null
value in their domain and variables that do have it. The first
ones represent paths that must be compulsorily selected in
one of the transitions. The second ones represent paths that
may be selected or not. For the first ones, the first-fail prin-
ciple seems to be relevant. On the contrary, for the second
ones, an opposite first-success principle seems to be more
relevant.

As a consequence, three variable types are identified and
ordered in hierarchical way:

1. variables with only one value in their domain are assigned
first,

2. variables without null value in their domain are then as-
signed following the first-fail principle,

3. variables with null value in their domain are finally as-
signed following the first-success principle.

For variables without null value in their domain, the clas-
sical MinDomain dynamic heuristic is relevant: choose a
variable of smallest current domain size (Haralick and El-
liott 1980).

For variables with null value in their domain, we can draw
inspiration from knapsack heuristics. The most classical
consists in ordering statically objects according to decreas-
ing values of the ratio between utility and weight (Kellerer,
Pferschy, and Pisinger 2004). In our problem, it is diffi-
cult to define what utility and weight of a path are. For this
reason, variables are dynamically ordered according to de-
creasing values of the immediate impact on the objective:
MaxObjective heuristic. For a variable v, this impact is
the maximum value of the increase in the requirement sat-
isfaction level that is possible to get by assigning v a value
from its current domain.

These orderings can be refined to take into account the
initial compatibility between paths: for each path, the num-
ber of paths with which it is compatible. This information
allows the least (resp. the most) compatible variable to be
chosen: MinCompatible (resp. MaxCompatible) heuris-
tic.

The resulting hierarchical dynamic specific heuristic
(HDS) is the following:

1. variables with only one value in their domain are assigned
first,

2. variables without null value in their domain are then as-
signed following the MinDomain heuristic and, in case
of equality, the MinCompatible one,

3. variables with null value in their domain are finally as-
signed following the MaxObjective heuristic and, in
case of equality, the MaxCompatible one.
A weakness of the HDS heuristic is that it does not take

into account n-ary constraints. This is why we looked for
some refinements.

Dynamic specific adaptive variable ordering heuristics
In CP, the first-fail MinDomain heuristic is usually refined
by taking into account the degree deg of each variable (num-
ber of constraints in which it is involved), its dynamic de-
gree ddeg (number of active constraints in which it is in-
volved) (Bessière and Régin 1996), or its weighted degree
wdeg (sum of the weights of the active constraints in which
it is involved) (Boussemart et al. 2004) . A constraint is
active if at least one of its variables has not been assigned
yet. Constraint weights are learned during search. More pre-
cisely, the weight of a constraint c is incremented each time
the propagation of c leads to a failure. The MinDomain
heuristic is then replaced by the MinDomain

deg , MinDomain
ddeg ,

or MinDomain
wdeg heuristic.

However these refinements use a large amount of mem-
ory. They are incompatible with our implementation which
manages constraints implicitly to avoid memory overflow. It
would be better to associate weights with variables. This
is what is proposed in (Karoui et al. 2007) which intro-
duced the MinDomain

wvar heuristic. Variable weights (wvar)
are learned during search. More precisely, the weight of a
variable v is incremented each time a failure occurs on v.

However, this heuristic does not take into account failure
explanations. This is why we propose a new adaptive heuris-
tic based on the learning of failure explanations. As with
wvar, variable weights, now called wcvar for weighted cul-
prit variable, are learned during search. More precisely, the
weight of a variable v is incremented each time v is in-
volved in the last conflict that leads to a failure. The re-
sulting heuristic is referred to as MinDomain

wcvar .
As a result, the HDS heuristic is refined as follows and

becomes the HDSA_WCVar heuristic:
1. variables with only one value in their domain are assigned

first,
2. variables without null value in their domain are then as-

signed following the MinDomain
wcvar heuristic and, in case

of equality, the MinCompatible one,
3. variables with null value in their domain are finally as-

signed following the MaxObjective
wcvar heuristic and, in case

of equality, the MaxCompatible one.

The MaxObjective
wcvar heuristic is close to the classical knap-

sack Max value
weight heuristic, if we interpret wcvar as being

the weight of paths.

Heuristics based on the last conflict A refinement of
usual CP heuristics has been proposed in (Lecoutre et al.
2009). In case of failure, after backtracking, it consists in
assigning first the variable on which the failure occurred and
then in following standard heuristics.

According to this idea, the HDS heuristic is refined as
follows and becomes the HDSA_LC heuristic:

1. the previous failure variable is assigned first,
2. variables with only one value in their domain are then as-

signed,
3. variables without null value in their domain are then as-

signed following the MinDomain heuristic and, in case
of equality, the MinCompatible one,

4. variables with null value in their domain are finally as-
signed following the MaxObjective heuristic and, in
case of equality, the MaxCompatible one.

Combination The previous two heuristics can be com-
bined, resulting in the following HDSA_WCVar_LC heuris-
tic:

1. the previous failure variable is assigned first,
2. variables with only one value in their domain are then as-

signed,
3. variables without null value in their domain are then as-

signed following the MinDomain
wcvar heuristic and, in case

of equality, the MinCompatible one,
4. variables with null value in their domain are finally as-

signed following the MaxObjective
wcvar heuristic and, in case

of equality, the MaxCompatible one.

Value ordering heuristics
As for value ordering heuristics, values in variable domains
are dynamically ordered according to decreasing values of
the immediate impact on the objective.

Restart mechanisms
Even if intelligent backtracking mechanisms and dynamic
specific adaptive heuristics are used, first assignments are
crucial due to the huge number of variables. Restart mech-
anisms allow first assignments to be undone. After a given
number of backtracks, search is started again from scratch.
Restart after restart, the number of allowed backtracks is ge-
ometrically increased (Walsh 1999). The increased number
of allowed backtracks guarantees algorithm completeness.
However, it is necessary not to explore twice the same part
of the search tree. For that, it suffices to modify the variable
ordering. We implemented several types of restart.

The randomised restart (Rs_Rand) introduces noise
in heuristic values (Gomes, Selman, and Kautz 1998).
More precisely, before making choices, a small positive
or negative noise is randomly added to the heuristic
value of each variable. This mechanism allows a random
search to be performed around the initial heuristic. It is
thus possible to randomise the four previously defined
heuristics to get four randomised versions: HDS_Rs_Rand,
HDSA_WCVar_Rs_Rand, HDSA_LC_Rs_Rand, and
HDSA_WCVar_LC_Rs_Rand. The first one is a ran-
domised restart, the following three ones are adaptive
randomised restarts.

Another way of guaranteeing search diversity is to use
learning. An adaptive restart using weighted degrees (wdeg)
was introduced in (Grimes 2008). As weighted degrees are
modified during search and exploited by variable ordering
heuristics, variable orderings differ restart after restart.
We propose a similar restart based on wcvar, we refer
to as HDSA_WCVar_Rs. Another adaptive restart was
implemented on top of the combined HDSA_WCVar_LC
heuristic. We refer to it as HDSA_WCVar_LC_Rs.

All these mechanisms (backtracking, variable ordering,
and restart) were experimented on instances associated with
satellites in production in Astrium.

Experiments
Experiments were carried out on five telecommunication
payloads, referred to as SatA, SatB, SatD, SatE, and SatF. In
order to produce a large number of different instances, sev-
eral dozen instances were randomly derived from these ini-
tial instances. To do that, validation requirements taken into
account by each instance were randomly fired from a set of
requirements. Instances of type SatA, and SatB, involve sev-
eral hundred variables, those of type SatD, SatE, and SatF
involve several thousand. Instances of type SatA and SatB
are simpler than the others in terms of number of constraints
and requirements to be satisfied. As an example, instances
of type SatE involve 5 transitions, 7, 000 paths, 2, 400 vali-
dation requirements, 13, 000, 000 binary constraints and 135
n-ary constraints. On all these instances, twelve algorithms
were compared. All of them perform a depth-first tree search
and use a forward checking propagation mechanism. They
differ according to the used backtracking mechanisms, vari-
able ordering heuristics, and restart mechanisms. These
twelve algorithms are the following:

• chronological backtrack and dynamic specific heuristic
(BT_HDS),

• backjumping and dynamic specific heuristic (BJ_HDS),

• conflict directed backjumping (CBJ) and dynamic specific
heuristic (CBJ_HDS),

• CBJ and dynamic specific adaptive heuristic with wcvar
(CBJ_HDSA_WCVar),

• CBJ and dynamic specific heuristic with last conflict
(CBJ_HDSA_LC),

• CBJ and dynamic specific adaptive heuristic with wcvar
and last conflict (CBJ_HDSA_WCVar_LC),

• CBJ, dynamic specific heuristic, and randomised restart
(CBJ_HDS_Rs_Rand),

• CBJ, dynamic specific adaptive heuristic with wcvar, and
restart (CBJ_HDSA_WCVar_Rs),

• CBJ, dynamic specific adaptive heuristic with wcvar, and
randomised restart (CBJ_HDSA_WCVar_Rs_Rand),

• CBJ, dynamic specific heuristic with last conflict, and ran-
domised restart (CBJ_HDSA_LC_Rs_Rand),

• CBJ, dynamic specific adaptive heuristic with wcvar and
last conflict, and restart (CBJ_HDSA_WCVar_LC_Rs),

• CBJ, dynamic specific adaptive heuristic with
wcvar and last conflict, and randomised restart
(CBJ_HDSA_WCVar_LC_Rs_Rand).

These twelve algorithms were also compared with the CP
Optimizer solver (IBM ILOG) for the instances that do not
lead to memory overflow. This generic solver was used in
two modes:

• depth-first (CP_Optimizer),

• restart (CP_Optimizer_Rs).

For each instance and each algorithm, we measured the
number of satisfied test requirements of the best validation
plan produced within a limited time : one minute for the
simplest instances of type SatA and SatB, and of five min-
utes for the others. For each instance type and each algo-
rithm, a mean of these measures is calculated. These means
are then normalised between 0 and 1 to give a quality in-
dex. Since CP Optimizer does not produce any results for
instance type SatD, and SatE, these normalisations are cal-
culated from specific algorithm results. Thereby, the quality
index of the best algorithm is 1, the worst is 0. Quality in-
dices of CP Optimizer results are also calculated from spe-
cific algorithm results. For this reason, CP optimizer quality
indices could be greater than 1 if they provide better results
than specific algorithms, lower than 0 if they provide worst
results. Tab.1 gathers quality indices of results obtained by
the twelve specific algorithms and by the generic solver for
each instance type. Fig.2 shows the mean value of these
quality indices over the five instance types for specific algo-
rithms.

Algorithm SatA SatB SatD SatE SatF
BT_HDS 0.76 0 0 0 0.46
BJ_HDS 0.76 0.03 0.01 0.43 0.47
CBJ_HDS 0.81 0.14 0.08 0.63 0.48
CBJ_HDSA_WCVar 0.81 0.09 0.08 0.51 0.49
CBJ_HDSA_LC 0.81 0.14 0.08 0.65 0.48
CBJ_HDSA_WCVar_LC 0 0.07 0.08 0.53 0.49
CBJ_HDS_Rs_Rand 0.93 1 0.53 0.79 0.05
CBJ_HDSA_WCVar_Rs 0.9 0.74 1 1 1
CBJ_HDSA_WCVar_Rs_Rand 0.13 0.71 0.08 0.55 0.15
CBJ_HDSA_LC_Rs_Rand 1 1 0.44 0.86 0
CBJ_HDSA_WCVar_LC_Rs 0.9 0.72 0.97 0.99 0.99
CBJ_HDSA_WCVar_LC_Rs_Rand 0.13 0.71 0.08 0.52 0.14
CP_Optimizer_DF -23.5 -8.47 NA NA -17.94
CP_Optimizer_Rs 0.36 1.26 NA NA 0.7

Legend: NA grey cells point out non applicable experiments.

Table 1: Quality index obtained by each algorithm for each instance type.

Figure 2: Mean quality index obtained by each algorithm.

Results for backtracking mechanisms
Tab.1 shows that backjumping (BJ_HDS) improves the
solution quality with regard to chronological backtrack
(BT_HDS). A 0.43 increase in the quality index is observed
on instances of type SatE. Whatever the instance type is,
CBJ (CBJ_HDS) improves further the solution quality. A
0.63 gain is obtained on instances of type SatE. These re-
sults are verified in Fig.2. Whereas backjumping (BJ_HDS)
results in a mean index of 0.34, CBJ (CBJ_HDS) brings
a mean index of 0.43. For this reason, variable ordering
heuristics and restart mechanisms were then tested using
only CBJ.

Results for variable ordering heuristics
The solutions produced by the adaptive heuristic with wcvar
and without restart (CBJ_HDSA_WCVar) are not of bet-
ter quality than those produced by the reference heuristic

(CBJ_HDS), except for instances of Type SatE whose in-
dex increase slightly of 0.01. The heuristic based on the last
conflict (CBJ_HDSA_LC) produces small gain 0.02 for in-
stances of type SatE with regard to the reference heuristic.
The combined adaptive heuristic (CBJ_HDSA_WCVar_LC)
decreases the solution quality by almost 0.20 on average
with regard to the reference heuristic. For instances of type
SatA, this combined heuristic produces solutions of worse
quality than using the reference algorithm (BT_HDS). These
learning mechanisms do not seem to be efficiently used
without restart.

Results for restart mechanisms
Among the specific algorithms, Tab.1 shows that the best
results are obtained:

• for instances of type SatA, by the randomised restart with
last conflict (CBJ_HDSA_LC_Rs_Rand),

• for instances of type SatB, by both the randomised restart
(CBJ_HDS_Rs_Rand) and the randomised restart with
last conflict (CBJ_HDSA_LC_Rs_Rand),

• for instances of type SatD, SatE, and SatF by the adaptive
restart with wcvar (CBJ_HDSA_WCVar_Rs).
On average, the adaptative randomised restart with

wcvar, and the adaptive randomised restart with wcvar
and last conflict (CBJ_HDSA_WCVar_LC_Rs_Rand)
do not improve results with regard to CBJ_HDS. These
restarts makes results even worse for instances of type SatA
with regard to BT_HDS. On average, use of the last con-
flict (CBJ_HDSA_WCVar_LC_Rs_Rand or respectively
CBJ_HDSA_WCVar_LC_Rs) decreases the quality index
with regards to the one obtained by the randomised restart
(CBJ_HDS_Rs_Rand) or respectively by the adaptive
restart with wcvar (CBJ_HDSA_WCVar_Rs). Even if
CBJ_HDSA_WCVar_LC_Rs_Rand founds the best results
for instances of type SatA and SatB. On average, the
adaptive restart with wcvar (CBJ_HDSA_WCVar_Rs)
produces the best solutions.

This analysis proves the positive impact of CBJ and restart
mechanisms for this optimisation problem with a large bene-
fit for the adaptive restart with wcvar. This learning wcvar
based on weight culprit variable, turns out to be very suc-
cessful when it is combined with the restart mechanism.

Results obtained with the generic CP Optimizer
solver
The generic CP Optimizer solver (IBM ILOG) was used as a
reference on instances of type SatA, SatB, and SatF. It could
not be used on other instances due to memory overflow.

Tab.1 shows that CP Optimizer using a depth-first strat-
egy (CP_Optimizer) gives much lower quality results than
specific algorithms. As our specific algorithms use the same
depth-first strategy, these results prove the positive impact of
CBJ and of specific variable ordering heuristics.

CP Optimizer using a restart strategy (CP_Optimizer_Rs)
is more efficient. It allows better solutions to be produced
for instances of type SatB. Nevertheless, it is far from the
best solution for instances of type SatA, and SatF. To ob-
tain better results for instances of type SatB with specific
algorithms, it would be valuable to implement other restart
mechanisms based on the learning of the reduction of the
search tree size. This type of learning, proposed in (Refalo
2004), consists in learning the impact of each variable as-
signment on the size of the search tree.

Conclusion
For this new application domain, the mathematical model
we proposed allows the objective of optimisation of the
telecommunication payload validation plans to be ex-
pressed. However this model induces a great number of vari-
ables (many thousands) and of constraints (many hundreds
of thousands). Its solving using generic tools may be impos-
sible due to memories problem when generating models.

Only specifically implemented algorithms allow all the in-
stances to be solved. In these algorithms, CBJ and restart

mechanisms are valuable. For the most complex instances,
the new adaptive variable ordering heuristic with wcvar is
efficient when combined with restart. For one simpler in-
stances type, implemented restarts are not as efficient as CP
Optimizer when using a restart mode. It would be interesting
to develop adaptive restart mechanisms based on the learn-
ing of the reduction of the search tree size (Refalo 2004).

In another way, this optimisation problem could be solved
using local search algorithms such as min conflict (Minton
et al. 1990), tabu search (Glover and Laguna 1993), or sim-
ulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983).

References
Bessière, C., and Régin, J. 1996. MAC and Combined
Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard
Problems. In Proc. of CP’96, 61–75.
Bitner, J., and Reingold, E. 1975. Backtrack Programming
Techniques. Communications of the ACM 18(11):651–656.
Boussemart, F.; Hemery, F.; Lecoutre, C.; and Sais, L. 2004.
Boosting Systematic Search by Weighting Constraints. In
Proc. of ECAI’04, 146–150.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann Publishers Inc.
Epstein, L.; Levin, A.; and Van Stee, R. 2007. Multi-
dimensional Packing with Conflicts. In Proc. of FCT’07,
288–299.
Gaschnig, J. G. 1979. Performance measurement and anal-
ysis of certain search algorithms. Ph.D. Dissertation.
Glover, F., and Laguna, M. 1993. Tabu Search. In Modern
Heuristic Techniques for Combinatorial Problems. 70–141.
Gomes, C.; Selman, B.; and Kautz, H. 1998. Boosting
combinatorial search through randomization. In Proc. of
AAAI’98, 431–437.
Grimes, D. 2008. A Study of Adaptive Restarting Strategies
for Solving Constraint Satisfaction Problems. In Proc. of
AICS’08.
Haralick, R. M., and Elliott, G. L. 1980. Increasing Tree
Search Efficiency for Constraint Satisfaction Problems. Ar-
tificial Intelligence Journal 14(3):263–313.
IBM. ILOG. IBM ILOG OPL Development Stu-
dio. http://www-01.ibm.com/software/integration/
optimization/opl-dev-studio/.
Karoui, W.; Huguet, M.-J.; Lopez, P.; and Naanaa, W. 2007.
YIELDS: A Yet Improved Limited Discrepancy Search for
CSPs. In Proc. of CPAIOR’07.
Kellerer, H.; Pferschy, U.; and Pisinger, D. 2004. Knapsack
Problems. Springer.
Kirkpatrick, S.; Gelatt, C.; and Vecchi, M. 1983. Optimiza-
tion by Simulated Annealing. Science 220(4598):671–680.
Lecoutre, C.; Saïs, L.; Tabary, S.; and Vidal, V. 2009. Rea-
soning from Last Conflict(s) in Constraint Programming.
Artificial Intelligence Journal 173:1592–1614.
Minton, S.; Johnston, M. D.; Philips, A. B.; and Laird,
P. 1990. Solving large-scale constraint satisfaction and

scheduling problems using a heuristic repair method. In
Proc. of AAAI’90, 17–24.
Nemhauser, G., and Wolsey, L. 1988. Integer and Combi-
natorial Optimization. John Wiley & Sons.
Prosser, P. 1993. Hybrid Algorithms for the Constraint Sat-
isfaction Problem. Computational Intelligence 9:268–299.
Refalo, P. 2004. Impact-Based Search Strategies for Con-
straint Programming. In Proc. of CP’04, 557–571.
Sabin, D., and Freuder, E. C. 1994. Contradicting con-
ventional wisdom in constraint satisfaction. In Proc. of
ECAI’94, 125–129.
Schiex, T., and Verfaillie, G. 1994. Nogood Recording for
Static and Dynamic Constraint Satisfaction Problems. In-
ternational Journal of Artificial Intelligence Tools 3(2):187–
207.
Walsh, T. 1999. Search in a Small World. In Proc. of IJ-
CAI’99, 1172–1177.

