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Abstract

The ability to predict rotorcraft ground noise is important in
determining and assessing environmental noise impact. The
noise generated by rotorcraft can limit their usage and restrict
operations, particularly near cities and populated regions. The
two primary approaches commonly used to reduce rotorcraft
noise are to make vehicle design modifications and to make
changes in operational flight procedures. The latter have the
advantage that they can often be implemented to achieve sig-
nificant noise reductions at a lower cost than new design
efforts. Computer modeling capabilities for developing low
noise procedures have received much attention over the last
15 years. These models, when paired with an automated opti-
mization approach, can facilitate the design of new approach
trajectories for improving the environmental impact. This pa-
per describes recent work in applying a constraint-based op-
timization model and local search, paired with a robust noise
simulator, to solve the noise minimal trajectory optimization
problem.

Introduction
There is considerable interest by NASA and the commer-
cial sector to develop a transportation infrastructure that is
based on an increased use of rotorcraft, specifically heli-
copters and aircraft such as a 40-passenger civil tilt rotor.
Rotorcraft have a number of advantages over fixed wing air-
craft, primarily in not requiring direct access to the primary
fixed wing runways. As such they can operate at an airport
without directly interfering with major air carrier and com-
muter aircraft operations.

While it is possible to build civil aviation rotorcraft and
tiltrotors of various sizes and capacities, the aviation indus-
try and U.S. government officials are concerned with the
impact of noise on the communities surrounding the trans-
portation facilities. One way to address the rotorcraft noise
problem is to design and test low-noise flight profiles which
can be tested in simulation or through field tests.

The objective of this paper is to introduce a Trajec-
tory Noise Optimization Problem (TNOP) for designing
noise minimal rotorcraft approach trajectories. The model
includes a graphical representation of the computational
search space based on the state of the aircraft and the control
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decisions made by the pilot; a representation of constraints
that identify trajectories that are ’flyable’ based on pilot-
elicited rules of comfort and safety of the aircraft; a noise
simulator tool (Rotorcraft Noise Model, RNM) for calcu-
lating the effects of sound propagation over varying ground
terrain, enabling the quantitative assessment of the overall
ground noise produced by a given trajectory; two cost func-
tions that aggregate and quantify the cumulative noise level
to allow for trajectories to be compared and ordered based
on the noise they produce; and an optimizing search ap-
proach using local search. The local search uses a neigh-
borhood function based on a simple exchange of control de-
cisions. The search is initialized using a seed solution man-
ually crafted by a pilot based on standard approach proce-
dures.

The remainder of this paper is organized as follows. A
brief introduction to the quantification of rotorcraft noise
is presented, followed by an introduction to the TNOP. We
then describe the solving approach for finding noise mini-
mal trajectories. Some preliminary results are presented and
discussed.

Background
Introduction to Noise and how it is Measured
Noise is unwanted sound. Sound is variation in air pressure
detectable by the human ear in the form of vibration of the
ear drum. The decibel is a ratio that compares the sound
pressure of the sound source of interest (e.g., the rotorcraft
overflight) to a reference pressure (the quietest sound we
can hear). Humans can detect sound pressure over a wide
range, 10−9 to 10−3 pounds per square inch (psi). Because
the range of sound pressures is very large, we use logarithms
to simplify the expression to a smaller range, and express the
resulting value in decibels (dB).

Sound can be broken down into frequencies (low,
medium, high). The ear is more sensitive to mid- and high
frequency sounds, so we find noise in these ranges more an-
noying. The so-called A-weighting approximates the sensi-
tivity of the human ear and helps to assess the relative loud-
ness of various sounds.

Sound levels vary with time, which is important if we are
interested in the noise associated with a certain event of in-
terest (e.g. an approaching rotorcraft). To take exposure du-



ration into account, the most common measure is the Sound
Exposure Level (SEL). SEL ’summarizes’ the variable en-
ergy level of an event with arbitrary duration by mapping
it to an event of one second duration with the same overall
energy and a constant energy level. SEL provides a compre-
hensive way to describe noise events for use in modeling
and comparing noise environments. Computer noise models
base their computations on SEL values.

The US Federal Aviation Administration (FAA) consid-
ers a 1.5 dB the minimum significant change where cumula-
tive exposure is above 65 DNL. Any abatement strategy that
promises over 5 dB change in noise level is considered def-
initely beneficial. As we show later, we will use this value
in assessing and comparing noise cost functions for trajecto-
ries.

Helicopter noise sources include the main rotor, the tail
rotor, the engine(s), and the drive systems. The most notice-
able acoustical property of helicopters is the modulation of
sound by the relatively slow-turning main rotor. The result-
ing sound can become impulsive in character and is referred
to as BVI (Blade Vortex Interaction Noise). Impulsive noise
occurs during high-speed forward flight as a result of blade
thickness and compressible flow on the advancing blade.
This causes the blades airloads to fluctuate rapidly. These
fluctuations result in impulsive noise with shock waves that
can propagate forward. At lower airspeeds, and typically
during a descent, rotor impulsive noise can occur when a
blade intersects its own vortex system or that of another
blade. This type of noise is BVI noise. When this happens,
the blade experiences locally high velocities and rapid angle-
of-attack changes. This tends to produce a sound that is loud
and very annoying in character (Fly, 2009), (Greenwood and
Schmitz, 2010).

Rotorcraft Noise Simulation
The Rotorcraft Noise Model (RNM)(Conner et al., 2006) is
a simulation program that predicts how the sound of a rotor-
craft will propagate through the atmosphere and accumulate
at observer (receiver) locations. RNM is capable of calculat-
ing cumulative noise exposures such as A-weighted SEL.
The input to RNM consists of
• a set of computational parameters, including identity of

rotorcraft, and the dimensions and resolution of a grid that
will display output noise (discussed further below);

• a specification of points of interest; and
• a specification of the flight trajectory, including position,

velocity and orientation.
RNM contains a model of how sound propagates through

the atmosphere. In general, the noise that propagates from a
source to a receiver at a given distance from the source can
be expressed as a sum of the following factors:
• the sound level at the source;
• the geometrical spherical spreading loss (since energy is a

conserved quantity, the energy per unit area (intensity) of
an expanding spherical pressure wave decreases as 1/r2.
This is called spherical spreading loss, which obeys an
inverse square law.)

• loss due to atmospheric absorption effects, based on the-
oretical predictions and experimental data;

• ground reflection and attenuation (including the effects of
terrain); and

• effects due to wind.

RNM allows for there to be multiple sources of noise from
the same rotorcraft.

Noise data either experimentally or analytically generated
from models is stored in the form of a sound sphere. Points
on the sphere are described in terms of a radius from the
source and two spherical angles. A sphere is associated with
one noise source and one flight condition (flight path angle,
nacelle angle (for tilt-rotors) and airspeed). There may be
more than one sphere for the same flight condition; for ex-
ample, one sphere for different locations on the rotorcraft.
Figure 1 shows an example sphere (actually, a hemisphere).
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Figure 1: Example of sound hemisphere of an MD-900 heli-
copter.

There are three main computational components of the
RNM simulation:

• Input Module: Linear interpolation over the input trajec-
tory as a pre-processing step. Input data are interpolated
(if required) to a default of 2 second spacing.

• Source Database Lookup and Selection: Selecting and in-
terpolating over the sound spheres to determine the best
representative of the noise generating for a given location
and flight condition in the input trajectory; and

• Source to receiver propagation: Accumulating and stor-
ing the sound for a given receiver.

The second and third components in the list are repeated for
each trajectory point, sound source, flight operation and re-
ceiver location.

RNM simulation produces predictive noise data in various
formats. Of interest to our work, is the generation of ground
noise contour plots, a set of values representing ground noise
exposure using A-weighted SEL or other metric over a des-
ignated grid of x-y points around the evaluated trajectory.
Figure 2 shows an example of such a plot, where each color
corresponds to a dB level (redder and lighter colors noisier).
These plots provide the data used to compute the aggregate
cost functions used during local search, as discussed below.



Figure 2: A Noise Contour Plot.

Trajectory Optimization
The field of trajectory optimization has a long history, with
many applications in aerospace and robotics. The basic de-
scription of the problem, which we adapt here, is stated in-
formally as follows: given a set of states and control actions,
find a sequence of actions (trajectory) that minimizes a cost
function subject to a set of dynamic constraints, and con-
straints on start- or end-states. In addition to noise, trajec-
tories have been optimized with respect to time, fuel, path
length and obstacle avoidance.

Methods of solving trajectory optimization problems
range from numerical methods (Betts, 1998) to non-linear
programming problems (Goplan et al., 2003) or dynamic
programming (Hagelauer and Mora-Camino, 1998). In ad-
dition, path planning methods from robot motion planning
has been used (P. Cheng and LaValle, 2001). Randomized
optimization methods such as simulated annealing and ge-
netic algorithms have also been applied (Xue and Atkins,
2006).

Local Search
Local search (Hoos and Stutzle, 2004; Aarts and Lenstra,
1997) is one of the fundamental paradigms for solving com-
putationally hard combinatorial problems. Given a problem
instance, the basic idea underlying local search is to start
from an initial search position in the space of all possible
assignments (typically a randomly or heuristically generated
assignment, which may be infeasible, sub-optimal or incom-
plete), and to improve iteratively this assignment by means
of minor modifications. At each search step we move to a
new assignment selected from a local neighborhood, chosen
via a heuristic evaluation function. The evaluation function
typically maps the current candidate solution to a real num-
ber and it is such that its global minima correspond to solu-
tions of the given problem instance. The algorithm moves to
the neighbor with the smallest value of the evaluation func-
tion. This process is iterated until a termination criterion is
satisfied. The termination criterion is usually the fact that a

solution is found or that a predetermined number of steps is
reached, although other variants may stop the search after a
predefined amount of time. Different local search methods
vary in the definition of the neighborhood and of the eval-
uation function, as well as in the way in which situations
are handled when no improvement is possible. To ensure
that the search process does not stagnate, most local search
methods make use of random moves: at every step, with a
certain probability a random move is performed rather than
the usual move to the best neighbor.

In hill-climbing search (Selman and Gomes, 2006), we
select any local change that improves the current value of
the objective function. Greedy local search is a form of hill-
climbing search where we select the local move that leads to
the largest improvement of the objective function. Tradition-
ally, one would terminate hill-climbing and greedy search
methods when no local move could further improve the ob-
jective function. Upon termination, the search would have
reached a local, but not necessarily global, optimum of the
objective function. In recent years, it has been found, per-
haps somewhat surprisingly, that simply allowing the local
search to continue, by accepting ‘sideway’ or even ‘down-
hill’ moves, i.e. local moves to states with, respectively, the
same or worse objective values, one can often eventually still
reach a global optimum.

Trajectory Optimization Problem Formulation
The trajectory noise optimization problem (TNOP) is the
problem of designing flight approach trajectories for rotor-
craft that minimize the cumulative ground noise exposure
from the vehicle. We focus on approach trajectories (and the
nearly identical problem of take-off) because that is where
all the community noise problems arise. We will focus on
A-weighted SEL as our noise exposure metric. RNM sim-
ulation provides a black box scoring function for candidate
trajectories. Specifically, RNM produces an output file that
assigns predicted noise for a set of ground points arranged
in a two-dimensional grid on the X-Y plane (Figure 3). The
grid size is defined in terms of the values of the corner nodes
and the distance between nodes.

Upon this grid our model superimposes an organization of
nodes associated with the state of the aircraft and the control
decisions being made by the pilot. More formally, each node
n at position xn, yn is associated with two vector variables:
• the state vector: sn = 〈xn, yn, zn, vn〉, where zn is alti-

tude and vn is speed (velocity). Since xn and yn are fixed
we will omit them and write 〈vn, zn〉. Intuitively, they rep-
resent the altitude and speed of the rotorcraft when flying
over position (xn, yn);

• the control vector: dn = 〈∆vn,∆zn〉, where ∆vn repre-
sents a decrease in speed, and ∆z represents a decrease
in altitude. Intuitively the control vector represents the
changes in speed and altitude that will be applied to the
rotorcraft starting from node n.
As shown in Figure 3, all pairs of horizontally, vertically

or diagonally adjacent nodes are connected by an edge. We
assume that each edge has a value representing a distance be-
tween the nodes and that the rotorcraft can only move along
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Figure 3: Two dimensional grid of the X-Y space.

edges. Moreover, we do not model turns directly and we as-
sume that the rotorcraft can turn instantaneuosly at any node,
involving no action.

In general, we can define a distance D between arbitrary
pairs of nodes along a path, as the sum of the distances of the
edges in the path. An edge implicitly represents two directed
arcs (one for each direction).

We define a trajectory as path on the grid plus the as-
signment to all the state vectors and control vectors of the
nodes traversed by the path. Given a trajectory t through
node n, with vectors sn and dn, we denote the assignment
to the vectors of n in t as val(t, sn) = 〈zt,n, vt,n〉 and
val(t, dn) = 〈∆zt,n,∆vt,n〉. A trajectory t is said to be
consistent if, for every pair of consecutive nodes p and n,
where p precedes n, we have that the value of val(t, sn) is
the result of applying the control actions val(t, dp) in state
val(t, sp). More precisely,

vt,n = vt,p + ∆vt,p , zt,n = zt,p + ∆zt,p.

We will be searching for flyable trajectories that mini-
mize noise. Conditions that make a trajectory suitable to
fly are, however, usually expressed in terms of constraints
over the descent angle and deceleration. In particular, any
part of a trajectory should be characterized by an angle of
descent γ ∈ [0o, 10o] and a deceleration a ∈ [0g, 0.1g]
(or a ∈ [40ft/sec2, 201ft/sec2]). Such restrictions induce
constraints on the domain of ∆v and (∆z as follows. Given
a pair of nodes ni, nj and a path between them of distance
D we have:

• the deceleration constraint: DomD,vi(∆vi) = {δv‖∃a ∈
[0, 0.1], δv =

√
v2i + 2a×D−vi}, where a is expressed

in gs.

• the angle-of-decent constraint: Dom(∆zi) = {δz‖∃γ ∈
[0o, 10o], tan(γ) = δz

D }.
A trajectory is said to be flyable if it satisfies all the decel-

eration and angle-of-decent constraints along its path.
In our setting we are given two nodes designated as start

and finish, with fixed state and control vectors, and a solution
is any consistent flyable trajectory between them. To control
the size of this space we initially start by limiting the paths
to those that would be considered ’standard’ by pilots. One

example of a standard approach is a box pattern, as the one
shown in Figure 4.
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Figure 4: A “box”-like approach pattern.

A box pattern can be represented by a sequence of 6 nodes
N0 . . . N5 where turns take place at nodes N1, N2 and N3,
N0 is the start of the approach and N5 is the landing point.
Given a box pattern, say (N0, . . . , N5), our goal is to find an
assignment, say (val(s1), . . . val(s5), val(d0), . . . val(d5)),
to the state and control vectors of the nodes not fixed by the
initial and final conditions, such that the noise simulated by
RNM on the corresponding trajectory minimal.

It is thus important to define a way to evaluate the over-
all noise of a trajectory. In order to do so, we propose the
following two heuristic functions.

Binning Heuristic function Given in input a solution t,
RNM computes the A-weighted SEL value for each of the
grid points. Let us denote with SEL(t, x, y) such a value
for the grid point (x, y) given trajectory t. We define a se-
quence of decreasing ranges, 〈r1, r2, . . . , rn〉 partitioning
the SEL values of the grid points. Given a trajectory t let us
denote by Si(t) = {(x, y)|SEL(t, x, y) ∈ ri}. We define
the following vector b(t) = 〈b1(t), b2(t), . . . , bn(t)〉 where
bi(t) = |Si(t)|. The bin-score of solution t is

Bin(t) = Σi=1...nwibi(t)

where wi is the weight associated to the i-th bin, wi > wi+1

and Σi=1,...,nwi = 1. The intuition behind this function is
that of evaluating a solution by how it partitions the grid
points into regions of different levels of noise. Thus a so-
lution that assigns lower levels of noise to larger regions of
the grid is to preferred. Weights are used to model this and to
further penalize the presence of, even small, extremely noisy
regions. Given this heuristic function the goal is to minimize
its value.

Significant Improvement Heuristic function Let s de-
note a reference solution and t another solution. Then the
significant improvement score of t w.r.t. s is

SI(s, t) =

|{(x, y)‖SEL(s, x, y)− SEL(t, x, y) ≥ 1.5dB}|
− |{(x, y)‖SEL(t, x, y)− SEL(s, x, y) ≥ 1.5dB}|.



In other words, this heuristic function considers a reference
solution (that, in our case will be seed solution of the lo-
cal search), and then scores all other solutions counting the
number of grid points where they produce a noise that is at
least 1.5dB lower than the one produced by s at the same
point. As noted earlier, the 1.5dB threshold has been chosen
since it is the smallest improvement that can be perceived
by a human. The intuition behind this heuristic function is
that of promoting solutions that improve significantly in the
largest number of grid points. Given this heuristic function
the goal is to maximize its value.

This paper does not present any results on the use of this
heuristic, but future work will show the results of comparing
it with the binning approach to evaluating noise.

Box-TNOP-HC(Trajectory σseed, function score, integer threshold)
σcur = σseed // current trajectory
σbest = σseed // best incumbent trajectory
step = 1
do
σ0 = neighbor(σcur)
neighborhood(σcur) = neighborhood(σcur) \ {σ0}
while neighborhood(σcur) 6= ∅ and score(σ0) ≤ score(σcur)

σ0 = neighbor(σcur)
neighborhood(σcur) = neighborhood(σcur) \ {σ0}

σcur = σ0

if flyable(σcur) and score(σcur) > score(σbest)
σbest = σcur

step+ +
while step ≤ threshold
return σbest

Neighbor(Trajectory σ)
1 n = random(σ) // randomly pick a node
2 p = partner(n) // choose adjacent node, either forward or backward
3 select c ∈ {∆v,∆z} // change rate of deceleration or descent
4 vc = val(c, p, n) // find a an allowable value to transfer
5 σn = transfer(n, p, vc, σ) // add the value to p and subtract from n
6 (n, p, c) = used // mark triple as used
return σn // return the neighbor

Figure 5: Greedy Local Search Algorithm

Local Search for Box-TNOP
The technique we propose here to solve the optimization
problem described in the previous section is a hill-climbing
local search approach. The reasons for preferring local
search include:

1. Anytime performance: On average, local search behaves
well in practice, yielding low-order polynomial running
times (Aarts and Lenstra, 1997). Since the trajectory
space is large, it is difficult a priori to characterize glob-
ally preferred solutions. Consequently, we are interested
in a system that can examine large parts of the search
space quickly.

2. Flexibility and ease of implementation: deployment-
related deadlines suggest the use of techniques which are
easy to implement.

3. Simulator Compatibility: running RNM is heavy from a
computational point of view. This means that the repet-
itive evaluation of partial trajectories, required by com-
plete incremental solving paradigms (e.g. Branch and
Bound), may be unacceptably time consuming. Local
search, on the other hand, only requires the evaluation of
complete solutions.

Figure 5 describes the pseudocode of our algorithm,
which we call Box-TNOP-HC. The inputs to the algorithm
are

• a seed solution σseed;

• a scoring function score that can be either Bin or SI;

• a positive integer threshold, representing the number of
search steps after which the execution must terminate.

We note that the box trajectory is implicitly represented in
σseed. Moreover, since in our case there is no way to test if
an optimal solution as been found, the algorithm will always
run for threshold number of steps.

The output of Box-TNOP-HC is a solution denoted by
σbest. During the execution we keep track of the current so-
lution, the neighborhood of which we are exploring, denoted
by σcur, and the best flyable solution found so far, denoted
with σbest. Both such solutions are initially assigned the seed
solution. Then, the algorithm starts exploring the neighbor-
hood of σcur. As soon as it finds a solution that is better than
the current one, it checks if it is flyable and if so it saves as
the best incumbent. Box-TNOP-HC then updates σcur and
starts scanning its neighborhood. Whenever no better solu-
tion is found, a random move in the neighborhood is taken.

Neighborhood Function
So far our procedure is a standard hill-climbing local search
where stagnation in local optima is avoided by random
moves in the neighborhood. The key aspect is, of course,
on how the neighborhood is defined. The intuition guiding
the design summarized here is that a neighbor of a trajec-
tory σ is the result of applying operators that alter the order
and magnitude of the decrease in speed or altitude at two
adjacent nodes of σ.

More formally, from Figure 6, to generate a neighbor of
the illustrated trajectory, a node Ni, i = 0 . . . 4 is chosen at
random (the final node N5 being unalterable), and a partner
(Ni−1 or Ni+1) and a control variable, ∆vi or ∆zi, is cho-
sen. Where, vi is the current value of the chosen variable at
Ni, a value 0 < v′i ≤ vi is computed and transferred to
its partner; that is, v′i is added to the partner and subtracted
from the value of the originating control variable associated
with Ni.

Assuming a trajectory of length (number of nodes) L, the
size of such a neighborhood can be determined as follows.
First, any neighbor can be defined by the triple (n, p, c) used
to generate it, where n and p are a node and its partner, re-
spectively, and c is the control variable ∆v or ∆z. So the size
of the neighborhood is the number of such triples. Assuming
the final node cannot be altered, only L− 1 nodes can have
any partners. Since there are at most 2 partners and 2 control
actions, a given node can participate in at most 4 triples. But
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Figure 6: A “box”-like approach trajectory.

the ’fringe’ nodes, the first, and the L − 1st, only have one
partner, so only participate in 2 triples. The remaining L− 3
nodes participate in 4 triples; so the neighborhood size is
4(L− 2). For example, the size of the neighborhood of any
trajectory with the box structure of Figure 6 is 4(6−2) = 16.

A triple (n, p, c) will be called ’used’ if this combination
was used during local search to generate a neighbor, and the
neighborhood of a trajectory is empty if all the triples have
been marked as used. In selecting the triple, only the node is
generated randomly; the others are selected in an arbitrarily
chosen order, forward partner before previous, ∆v before
∆z (lines 1-3 of Neighbor, Figure 5).

Once a triple is selected, a suitable value vc to transfer
between a node and its partner must be determined in or-
der to preserve the feasibility of the new trajectory. We first
experimented with a simple ’swap’ routine, where control
values were exchanged between nodes. The main problem
with simple approaches like swapping is that the result of an
arbitrary swap is usually an infeasible trajectory due to the
violation of constraints related to rate of descent or deceler-
ation, as a result of the varying distances between nodes. For
example, a ∆z that can be accomplished smoothly in 10000
ft might be too uncomfortable or even unsafe if attempted in
2000 ft (see Figure 6). This led to a more detailed consider-
ation of the conditions that allow quantities to be transferred
between nodes. The problem can be viewed as similar to
planning with resources, with capacity and usage require-
ments.

Specifically, for each control variable, the amount of con-
trol that can be transferred between nodes is determined by
two factors: how much additional rate (deceleration or de-
scent) can be added to a node, and how much loss of veloc-
ity or altitude is allowed for the state associated with a node.
Intuitively, for safety and/or comfort reasons, a pilot will not
tolerate too much deceleration or descent over a given seg-
ment; nor will the pilot allow the craft to fly too slowly or
too close to the ground at certain distances from the landing
site.

Consequently, line 4 of Neighbor attempts to find the
largest value vc that can be transferred between a node and
its partner that does not violate these safety and comfort con-

straints. First, each node is associated with a upper bound
on the ∆v,∆z that it can support, related to the distance be-
tween it and its forward adjacent node. The value transferred
to it by either its forward or backward partner cannot exceed
this value. Secondly, each node is associated with a mini-
mal velocity and altitude (vmini, zmini) it must support.
No transference of ∆v,∆z can result in a state associated
with this node in which v or z go below these values.

Experiments
In this section we present some preliminary experimental
results on the performance of local search in solving the
TNOP. We explain the rationale for the experimental design,
the tests we have run to this point, and summarize and in-
terpret the results. Some of the designs have provided inputs
to field tests that will be conducted by NASA at Eglin Air
Force Base in Florida in June, 2011.

Data Resolution
It is important to emphasize the distinction between the
number of grid points in a TNOP instance and the number
of nodes. A grid point represents a data point for our cost
functions, a point on the ground at which a noise prediction
is made by the simulator. A grid point may correspond to
a node (if they share the same x-y values) but not neces-
sarily (one may choose to define a node that is outside of
the grid if he or she does not care to measure the noise at
that point). The data resolution of the problem is the num-
ber of distinct data points used to evaluate trajectories, and
is also something the designer can vary. Clearly, there is a
computational cost incurred by a high resolution, both dur-
ing the simulation, and in the post-processing within the cost
functions. Also not surprisingly, this burden is felt more in-
tensely in the simulation than in the post-processing, where
more complex math is performed.

The data resolution is an input parameter to RNM: one
specifies the x-y values for the bottom left and upper right
corners of the grid, and specifies the distance in feet between
any pair of nodes. For these tests, we’ve looked at resolution
in the range between roughly 75 and 22000 data points. Ta-
ble 3 shows a sample of resolutions, as well as the cost in
time for using the resolution in evaluating trajectories. The
columns of the table show distance between grid elements,
the number of data points generated (for all the trajectories
explored in this paper) and the time it takes to run RNM on a
single trajectory (with 7 nodes) and generate a score (which
involves constructing the bins and performing the weighted
sum). The important thing to note about the table is that too
high a resolution (100 or 50 grid distance) makes it pro-
hibitively expensive to sample a large number of trajectories
during local search.

Search Parameters
The critical parameters in any local search are the thresh-
old size and the number of restarts. We are also interested
in finding a set of weights and bin ranges to the binning
cost function that makes sense and provides useful results.
Although we can’t claim to have achieved a unique perfect



Table 1: Data Resolutions
Grid Distance # Points Speed per Evaluation (sec)

50 22,761 122.3
100 5781 31.2
200 1497 8.2
400 396 2.3
1000 75 1.2

setting for these parameters (if indeed one exists) we here
state some preliminary results on some of these meta-issues.

Bin ranges and Weights In specifying bin ranges,
we tried to provide a characterization of 4 qual-
itative noise categories: very noisy, noisy, moder-
ately noisy, and low noise. We chose SEL-A ranges
〈[115,+∞], [100, 114], [85, 99], [−∞, 84]〉. Weights were
chosen as an indicator of how important it is to reduce
noise in that bin range. Somewhat surprisingly, it was
decided not to weigh the loudest range significantly higher
than the others, but rather to prefer the more egalitarian
weight distribution 〈0.4, 0.3, 0.2, 0.1〉 for each of the bins,
respectively. The reason for this assignment is that the
loudest reflects a location close to, or on, the landing field,
and it is not important (or indeed possible) to lower the
noise over such non-residential areas.

Trajectory Size Intuitively, the number of nodes (trajec-
tory size) corresponds to the number of distinct control de-
cisions a pilot will be required to make to execute the trajec-
tory during approach and landing. Pilots typically make 5 or
6 control actions during this flight segment, and for reasons
of safety it is not desirable to add significantly to the pilot’s
control actions. Nonetheless, as on-board automated control
technology improves, the constraint on the number of nodes
based on pilot decisions will become less important, and so
it is not in general an important factor in our TNOP design.
Nonetheless, because we were interested in submitting tra-
jectories to be validated on a field test with little automated
control available, we have here focused on smaller trajectory
sizes; specifically, for the experiments here, we are looking
at trajectory size of 6.

Initial Seeds For these experiments we (one of us being
a helicopter pilot) generated ’standard’ approach trajectories
to be used as seeds. Figure 7 describes graphically one of the
seeds used in the experiments. The ’box’ has three segments:
the downwind segment (the upper horizontal line) of length
7500 feet, the base segment (the vertical line) and the final
approach segment (the lower horizontal line with 4 nodes).
The final approach segment is the most important to exam-
ine, because they usually produce the most noise. Typically
they are executed at a constant rate of descent and deceler-
ation, where rate of descent is measured in terms of glide
slope angle (γ) ranging from 3 ≤ γ ≤ 9 degrees, although
for the experiments the designers wanted to consider γ up
to 12 degrees. Figure 7 shows a seed with a 9 degree final
approach. In our local search, we start with seeds that are
constant in deceleration and rate of descent, but are allowed

Figure 7: A Seed solution.

to produce solutions that vary in both during final approach.
In general, since the goal of the research is to design new
trajectories that are lower in noise, it is reasonable to seed
our optimizer with standard trajectories.

Table 2: Comparison of Seeds
# Points Angle Seed Best e

6 309.9 305.2
1497 9 285.5 265.2

12 263.1 256.1
6 81.9 60.6

396 9 75.7 69.3
12 69.5 67.3

We first wanted to compare the noise quality of the dif-
ferent seeds at different resolutions, and the ability of local
search to seek alternative trajectories with lower noise. Ta-
ble 2 shows some results for two different resolution settings
(grid distances 200 and 400 feet). The trajectory with the 12
degree final approach scored better than the 9 degree or 6
degree final approaches, due no doubt to the less ground tra-
versed by a steeper descent. The Best score was obtained
by running local search with threshold of 50 and 5 starts,
taking the best score among the five runs. With the higher
resolution, the most improvement was found with the 9 de-
gree approach, whereas in the lower resolution the 6 degree
seed produced the most improvement, finding the best score
among all the seeds.

It should be pointed out that each of the seeds has advan-
tages other than noise to consider (the 12 degree approach is
at the upper edge of comfort and safety limits), so the point
is not to choose among them, but to compare them on one
criterion, noise. It is also important to note the different run
time behaviors of local search on the three seeds (the state-
ments that follow are meant to be anectodal observations,
to be verified by collecting more statistics). Running with 6
degree seed with the same local search settings (i.e. thresh-



old and restart number) is always slower than either 9 or 12
degree (with the same box structure). The reason seems al-
most certainly to do with the number of feasible neighbors.
RNM is only run if the neighbor of a trajectory is feasible. 12
degree seeds don’t have many feasible neighbors, because
12 degree is the upper bound of feasible γ and so applying
the transference almost always produces infeasible neigh-
bors. By contrast, 6 degree seeds tend to have many feasible
neighbors, which means RNM is called much more often to
evaluate candidates, thus making the local search procedure
slower. Only a small percentage of the 6 degree candidates
selected improve the noise cost, for reasons still under inves-
tigation. One possible explanation is that the 6 degree seed
has constant deceleration and descent, and this might be in
general the best (in terms of noise) final approach. The run
time behavior of the 6 degree seed is therefore dominated
by the need to run RNM for many or all of a neighborhood
before the step size is incremented. A 9 degree seed tends to
have somewhat fewer feasible neighbors, but more of these
are quieter approaches; thus the 9 degree seed is ”in the mid-
dle” between 6 and 12 with respect to run time behavior.

Anytime Behavior An optimal threshold setting is partly
determined by how quickly, on average, the algorithm con-
verges to an optimal solution. Figure 8 shows the result of
running local search on the three initial seeds (6 9 and 12
degree glide slope) with a threshold of 200, for a data res-
olution of 396 data points, and recording the score of the
best solution found in increments of 25. The value plotted
represents the average over 10 runs.

Figure 8: Runtime behavior of Box-TNOP-HC starting with
3 ”standard” seeds.

For 6 and 12 degree seeds, convergence to the local opti-
mal occurs by step 25. For the 9 degree seed, convergence
is not complete at step 25, but rather there is a slow im-
provement throughout the runs. Nonetheless, local search on
TNOP tends to find most improvement early in the search,
which suggests a strategy with more restarts, higher resolu-
tion, but a smaller step size. We plan other tests to confirm

that the same behavior occurs at all resolutions.

Variable Resolution Search We explored the possibility
that local search with lower and higher resolutions could be
effectively combined. Starting with the initial standard seed,
local search with low resolution (in this instance, 75 data
points) could explore larger areas of the solution space. The
best solution found in the low resolution search could then
be used as a seed for higher resolution search (here, 5781
data points), which allows for greater discrimination of so-
lutions, but is more focused.

Table 3 compares constant and variable search. With con-
stant Resolution, local search is run with high resolution
only, with threshold of 100 and 5 starts, with the 9 degree
seed trajectory. With variable resolution, the same seed was
run first with low resolution, for threshold of 100 and 50
starts. The best trajectory found becomes the seed for a more
limited higher resolution search, with a threshold of 50 and
5 starts. The result, for this instance, is the same solution
at a lower time. It should be strongly stressed that this sim-
ple example is only suggestive of the value of the variable
resolution approach, and more experiments are needed to
determine whether, and the extent to which, variable reso-
lution produces better results, and allows us to use a limited
amount of higher resolution local search.

Table 3: Local Search With Constant and Variable Resolu-
tion

Best Score Time (sec)
Constant Resolution 1006 2323
Variable Resolution 1006 1059

Conclusions and Future Work
This paper describes a constraint-based optimization model
for the problem of minimizing the noise of approach trajec-
tories for rotorcrafts. We show how such a model is a suit-
able representation when a local search based approach is
used to find better solutions. The presented framework is
appealing since it allows to incorporate constraints repre-
senting the knowledge provided by experts (such as pilots)
and provides a structured and straightforward way to em-
bed simulation results within search. Experimental results,
while preliminary, look promising and suggest this line of
research as having the potential for providing significant im-
provements concerning rotorcraft noise minimization.

An extensive experimental scenario is the first item on our
agenda. We also plan to design new heuristic functions to be
used within the hill-climbing schema as well as to inves-
tigate the possibility of systematic search. In the near fu-
ture we plan to incorporate turns, either directly into search
or as modifications of the solutions found by our system.
Other, less imminent, issues regard incorporating informa-
tion on different sensitivity levels for different areas around
heliports and the embedding of our system with on-board
guidance tools.
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