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Abstract

Scheduling in ground station networks is an important
issue to achieve a high utilization of resources. To sat-
isfy the special needs of academic ground station net-
works, the CUSS scheduling system was implemented,
which has the capability to schedule redundant con-
tact windows utilizing a newly developed approach. We
refer to the problem of scheduling redundant contact
windows as the Redundant Request Satellite Schedul-
ing problem (RRSS) (Schmidt and Schilling 2009b).
It was shown, that the CUSS scheduling system is a
reasonable tool for improving the efficiency of ground
station networks by distributing contact time fairly be-
tween partipants. This work describes in detail the re-
dundant scheduling mechanism of the CUSS system, re-
alized through a tailored objective function for contact
window assignment. The objective function contains a
penalty value to avoid unfair distribution of contact win-
dows. Beside the presentation of the objective function
itself, the paper proofs how the penalty value guarantees
a fair redundancy distribution.

Introduction
In the recent years many projects from the small satellite
community started to built ground station networks with the
aim to enhance satellite operation through resource shar-
ing. A crucial issue in this respect is satellite scheduling to
achieve a high utilization of the resources. This work deals
with a special scheduling algorithm designed for the special
needs of these ground station networks.
This paper is related to the redundant scheduling capabil-
ity of the CUSS scheduling system. Redundant scheduling
means, that the scheduler can assign more than one con-
tact window to a request, as it is desired mainly in academic
ground station networks (for further information to this spe-
cific aspect in academic ground station networks refer to
(Schmidt and Schilling 2008)). The redundant scheduling
algorithm was designed to equally distribute additional con-
tact windows, this is guaranteed by the objective function
γ. The γ function consists of two subfunctions γ1 and γ2,
which are added to evaluate a certain schedule. While γ1 is
only a weighted sum of priorities, the γ2 function (called
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penalty function) is a more complex. The γ2 equation is re-
sponsible for adding a penalty value if the redundant contact
windows are not equally distributed. This paper deals espe-
cially with the behavior of the penalty function and how an
equally distributed redundancy is achieved.
The paper is arranged as follows: The next section intro-
duces some basic definitions, which are important to under-
stand the principle of the CUSS scheduling procedure. The
penalty function itself is described main section, its behav-
ior for a typical scheduling scenario is handled afterwards.
In the last section a short conclusion is presented.

Definitions
Before a detailed description of the redundant scheduling
mechanism of the CUSS system can is presented, a few
definition need to introduced, to sketch the necessary back-
ground. The different concepts behind the following equa-
tions and parameters are only described cursory, for a more
extensive description with more relation to the scheduling
problem itself please refer to (Schmidt and Schilling 2009b).
Scheduling in the scope of satellites is in general the prob-
lem to assign an amount of ground stations to an amount
of satellites. In the case of the Redundant Request Satel-
lite Scheduling (RRSS) problem, the participants submit re-
quests for contact windows with satellites. These satellites
are able to communicate with a number of ground stations,
which are connected in a network. The complete mathemati-
cal description of these entities (users, ground stations, satel-
lites) can be retrieved from (Schmidt and Schilling 2009b).
Basic entities are the requests Ri, i = 1...p, representing a
desired communication to a specific satellite. Furthermore,
the users define in the requests the earliest start time and a
latest end time for which this request is valid. Additionally,
the user specifies the duration of a requested contact win-
dow (in minutes). In this work the term contact window Cij
is used to represent a time interval, which is available for a
communication between a satellite and a ground station.

Cij = {Ri, tAOS , tLOS , G} (1)

The subscript i is a reference to the corresponding request
Ri, the subscript j is numbers the contact windows in as-
cending order. Each contact window Cij is furthermore as-
sociated with a ground station G and an start (tAOS) and end
time (tLOS). It is important to note that normally a contact



window can be determined by its orbit geometry and the lo-
cation of the ground station, which therefore is fixed with
respect to start and end time of the contact window. In this
work we refer to a contact window as a requested time inter-
val from an user, which is placed inside the time period the
satellite is in contact with the ground station, therefore it is
more flexible and it can be shifted within a contact period,
as the contact period can be greater than the requested con-
tact window. For simplification we assume for the further
text that the complete contact window is used for assign-
ment. Additionally we define for each contact windows an
attribute Cbij , it is defined as

Cbij =
{

1, if Cij integrated in final schedule
0, otherwise (2)

and can be used from the scheduler to indicate if a con-
tact window is scheduled. A schedule is a set of contact
windows, which are determined from the different requests
Ri and from the satellites orbit geometry. This calculation
is done automatically and determines a set of n contact
windows, which should be integrated in a schedule. As
it is not possible to integrate all contact windows due to
overlappings into the schedule, a search algorithm tries to
identify a subset of possible contact windows and marks
these as ”scheduled”. So, if we use the term schedule, we
normally refer to all scheduled contact windows. The CUSS
scheduling system (Schmidt and Schilling 2009a) distincts
between assigned and unassigned contact windows through
the attribute ”scheduled”.
In classical scheduling problems the aim is to find a
schedule which satisfies as many requests as possible
(Barbulescu et al. 2002) (Barbulescu, Kramer, and Smith
2007). A request is satisfied, as soon as one contact window
was assigned to the specific request. In the RRSS problem,
a different approach is followed, as the requirements in
academic ground station networks differ a lot. Here it is
very often desired to have more than one contact window
assigned to a given request. That means that a request
is not automatically satisfied if it receives one contact
window, it is possible to assign several redundant contact
windows to a request (further information can be found in
(Schmidt, Rybysc, and Schilling 2008)). This brings us to
the definition of the term equal distribution of redundancy:
If it is possible to assign more than one contact window to
one request, the additional assigned contact windows should
be distributed equally over the different requests. The
redundant scheduling capability is the main contribution of
this paper and is handled in depth in this work.

The penalty function
Core part of the scheduling system is the objective function
γ, which is capable of redundant scheduling. This redundant
scheduling capability is implemented by the penalty func-
tion γ2, which is subtracted from γ1 to achieve an equal
distribution of redundancy. The penalty function γ2 is for-
mulated for a given set of request R1,..,Ri as

γ2 =
∑

1≤k≤i

(
λκ(Rk)

)
(3)

where λ is a positive integer > 1. In the further report λ
is set to a value of 3, this value was determined in empiri-
cal tests as a reasonable choice (λ influences basically the
weight of the penalty function on γ1). The function κ(R) is
defined as

κ(Ri) = Rbmax −Rbi (4)
with

Rbi =
∑
j

(Cbij) (5)

Rbi describes the actual number of assigned contact
windows Cij for request Ri in a schedule. The value Rbmax
describes the maximum number of assignable contact
windows for one request, evaluated over the complete
set of requests R1, .., Ri. So Rbmax is a specific constant
for a set of given requests: I.e from the set of given
requests (R1,..,Ri), one request has a maximum number
of assignable contact windows, these amount of contact
windows is defined as Rbmax. Therefore it is obvious that
κ(Ri) will be always ≥ 0 as the actual amount of assigned
contact windows of Ri will never be greater than the
maximal amount of assignable contact windows over all
requests. As these definitions are used quite often all over
the report, the meaning of them is explained in an example:

Figure 1: Example with two requests

Lets consider two request, Rk with 3 possible contact
windows (Ck1, Ck2, Ck3) and another request Rl with 5
possible contact windows (Cl1, Cl2, Cl3, Cl4, Cl5). One
conflict can be observed between Rk and Rl, their contact
windows Ck3 and Cl1 are overlapping and only one of these
two contact windows can be assigned on the final schedule
(see figure 1). In this scenario the constant Rbmax is equal
to 5, as request Rl has the maximal number of 5 assignable
contact windows. For the final schedule two options are
possible:
Case 1: Rk gets all of his 3 available contact windows
assigned, so Rbk = 3 and κ(Rk) = 5 − 3 = 2. Due to the
conflict in one of the contact windows, only 4 windows
can be assigned to Rl, which results in Rbl = 4 and
κ(Rl) = 5− 4 = 1 (see schedule option 1 in figure 2). The
penalty value for this schedule would then be calculated as
γ2 = λ2 + λ1 = 12.
Case 2: The conflict will be resolved with the other option,
Rk receives only 2 contact windows, therefore 5 contact
windows will be assigned to Rl (see schedule option 2 in
figure 2). The parameter Rbmax is again equal to 5 (this



value is a constant for a given set of requests). Now we
can calculate κ(Rk) = 5 − 2 = 3 (only 2 assigned contact
windows for Rk ⇒ Rbk = 2) and κ(Rl) = 5 − 5 = 0
(because 5 assigned contact windows for Rl ⇒ Rbl = 5).
As a result γ2 is determined as λ3 + λ0 = 28.
As the penalty function γ2 will be subtracted from γ1,
the smaller value determines the better schedule, here it is
schedule option 1 (case 1 with penalty 12). The explanation
for that is quite simple, the schedule option 1 is preferred
because the distribution of contact windows is more equal.
So in this scenario it is clear that schedule option 1 is
preferred, due to its lower penalty value γ2. The question
is now, if the penalty function γ2 is suitable in general to
achieve an equal distribution of redundancy.

Figure 2: Schedule options for the example

In the next section it is shown, that the penalty function γ2

can be used for any combination of two requests Ri and Rj ,
that γ2 will be in any case minimal if the redundant contact
windows are equally distributed.

Behavior of the penalty function for two
arbitrary requests

The aim of this section is to prove that the penalty value γ2 is
minimal, if two requests Ri and Rj have equally distributed
redundant contact windows. Two arbitrary requests Ri and
Rj are assumed, with a number of n, respectivelym, contact
windows available. The proof can be divided in two distinct
cases:
Case 1: Both requests Ri and Rj have no overlapping con-
tact windows. This case can be handled quite simple, be-
cause the absence of conflicts means, that the maximum
amount of contact windows can be assigned (Rbi = n and
Rbj = m, both are maximal), therefore κ(Ri) and κ(Rj) are
both minimal. Thus, also the result of the penalty value γ2 is
minimal.
Case 2: Both requests Ri and Rj have at least one conflict,
i.e. overlapping contact window. Thus, for a conflicting pair
of contact windows, only one of these will be assigned in
the final schedule. Lets assume w.l.o.g. that the request Ri
gets in total k contact windows, which leads to κ(Ri) =
Rbmax− k = a. Request Rj on the other side receives l con-
tact windows, resulting in κ(Rj) = Rbmax − l = b, with
a, b ≥ 0. The penalty for this assignment is calculated as

γ2 = λa + λb (6)
When the assignment of contact windows is changed by

transferring exactly one conflicting contact window to Rj

instead of Ri, the penalty function will change to

γ2 = λa+1 + λb−1 (7)

The explanation is, that an additional contact window for
Rj decreases the κ value by 1. Equations 6 and 7 are now
used to derive how the penalty function behaves in general,
when the contact window assignment is changed. The fol-
lowing inequality is the starting point:

λa + λb < λa+s + λb−s (8)

It will be shown here, that for a given schedule the
penalty increases, when the distribution of contact windows
is changed in an unfair assignment. This is expressed in
equation 8, where the penalty value of a schedule should
be greater (<), if an unfair distribution of contact windows
was created by removing a contact window from request Ri
to Rj . Furthermore it will be proven, that equation 8 holds,
if a fair distribution of redundant contact windows was in-
tegrated in the schedule. In the first step, the inequality in
equation 8 is modified to

λa · (1− λs) < λb · (λ−s − 1) (9)

furthermore holds

λa−b · (1− λs) < (
1
λs
− 1) (10)

and finally is formed to

λa−b · (1− λs) < (
1− λs

λs
) (11)

the term 1− λs < 0, as the parameters λ > 1 and s > 0.
The last step is

λa−b >
1
λs

(12)

To show under which condition inequality 12 is satisfied,
one has to distinguish three further cases:
Case 2.1: a > b. Then inequality 12 is always true, because
λ > 1 and s > 0. This means, if request Ri has less contact
windows assigned than Rj (which is equal to a > b), then
a further decrease of contact windows for Ri (is equal to an
increase of a) leads automatically to a higher penalty, due to
the simultaneously increase of contact windows for Rj . Or
in other words, if Ri has already less contact windows than
Rj , the distribution will be even more unfair when additional
contact windows will be assigned to Rj instead to Ri
Case 2.2: a < b. When we assume that a is smaller than b,
equation 12 can be modified to

1
λb−a

>
1
λs

(13)

which holds for the case that a− b < s. This means, that
the amount of s contact windows can be assigned to Rj
instead Ri without an increase of the penalty value. a < b
means, that Rj has less contact windows assigned than Ri,
i.e. the redundancy is not yet equally distributed. By moving
one contact window from Ri to Rj , the schedule becomes
more fair, the penalty value decreases.



Case 2.3 a = b: Then inequality 12 is again always true, as
1 > 1

λs . So, if Ri and Rj have an equal amount of contact
windows assigned, any further rearranging of assigned con-
tact windows will raise the penalty due to unfair distribution
of contact windows.

It was shown in this section, that the penalty function
γ2 can be used to prevent an unfair distribution of redun-
dant contact windows. A minimal value for γ2 is always
achieved, when redundant contact windows are equally as-
signed over two requests.

Redundancy distribution for more than two
arbitrary requests

Before proving the correct behavior of the penalty function
for more than two requests, a formal definition of equal dis-
tributed redundancy with respect to a schedule is necessary.
When considering only two requests, an equal distribution
of redundant windows is simply achieved by balancing the
number of assigned, conflicting contact windows. But how
can equal distribution be assessed for more than two re-
quests? This is achieved by introducing the term distance:
The distance of schedule σ (see equation 14) refers to the
maximum number of assigned contact windows rmax (with
respect to all requests from schedule σ) minus the minimum
number of assigned contact windows rmin(considering all
requests from schedule σ).

Dist(σ) = rmax − rmin (14)

rmax = max
(
Rbi ,∀i

)
(15)

rmin = min
(
Rbi ,∀i

)
(16)

Using this equation makes it possible to define that the
redundancy of schedule σ1 is more balanced than schedule
σ2, if distance of schedule σ1 is smaller than the distance of
schedule σ2

Dist(σ1) < Dist(σ2) (17)

As this definition seems not so clear from the first impres-
sion, an example is given for illustration.

Equal redundancy distribution for an example
scenario

Figure 3: Example Scenario with 3 requests

The scenario in figure 3 depicts a situation with three re-
quests. The conflicts between these requests are expressed

with the overlapping, hatched areas. Therefore, it is not pos-
sible to assign all 9 available contact windows. Two sched-
ules, which could be a result from the scheduling process are
shown in figures 4 and 5. It can be seen quite easily, that the
amount of assigned contact windows for schedule σ1 and σ2

are equal (5 in total). The question is now, which of these
schedules better satisfies the criterion of equal distributed
redundancy? From the upper definition of distance this is
the case for schedule σ2, because Dist(σ1) can be calcu-
lated as the maximum amount of contact windows rmax = 3
(satellite 2) minus the minimum amount of contact windows
rmin = 1 (satellite 1 and 3), so Dist(σ1) = 3 − 1 = 2.
The same evaluation for schedule σ2 leads to a value of
Dist(σ2) = 2 − 1 = 1 (satellite 1 and 3 have two contact
windows assigned). Therefore, schedule σ2 has a fairer dis-
tribution of redundant contact windows. It has to be shown
now, that the penalty value is minimal, if the distance in a
schedule with more than two requests is minimal.

Figure 4: Schedule σ1

Figure 5: Schedule σ2

Relation between the penalty function and distance
With the mathematical formulation of the term distance (see
equation 14) it will be proven now, that the penalty function
is minimal, if the distance of a schedule is minimal, i.e the
redundancy is equally distributed for a given problem in-
stance with more than two requests. In a real world scenario,
each orbit results in an unique pattern of available contact
windows, thus the number of available contact windows
for each request is different. The interesting question is
then, how the total amount of assigned contact windows
interacts with the objective to equally distribute redundant
contact windows. Therefore, two cases are distinguished to
prove that the objective function behaves correct, i.e. it is
minimal if the redundancy is equally distributed between
the requests:

Case 1: Schedules σ1 and σ2 have the same total amount
of n assigned contact windows. To prove that the penalty
function behaves correctly, it has to be shown that the
penalty value of schedule σ2 is smaller than the penalty



value of schedule σ1, if the distance of schedule σ2 is
smaller than the distance of schedule σ1. Mathematically
formulated:

γ2(σ2) < γ2(σ1) (18)

if Dist(σ2) < Dist(σ1)

These equations express the intuitive expectation, that
the penalty value is smaller, if the redundancy is fairly dis-
tributed, i.e. the distance between the schedules is smaller.

Case 2: Schedule σ1 has in total n contact windows
assigned, Schedule σ2 has m contact windows assigned,
with n 6= m. For this case it has to be shown, that there
exists at least one penalty value for schedule σ2, which is
smaller than the penalty value of schedule σ2, if n < m.
Expressed in equations:

∃γ2(σ2) < γ2(σ1) (19)

if
∑
i

κ(Ri) <
∑
j

κ(Rj)

Note: Equation 19 expresses, that schedule σ2 has more
contact windows in total assigned than schedule σ1. Intu-
itively one expects, that the penalty value for schedule σ1

should be greater, as it has less contact windows in total
assigned. But having more contact windows assigned does
not necessarily imply a fair distribution of redundant contact
windows, for example could many conflicts in the calculated
contact windows result in a very unfair redundancy distribu-
tion. But when the conflicts are neglected, there should exist
at least a schedule σ2, which has a smaller penalty value then
schedule σ1, as it has more contact windows assigned than
σ1.

Proofs
This section proves the correct behavior of the penalty func-
tion for the two cases above:

Case 1: If Dist(σ2) < Dist(σ1), then the penalty value
γ2(σ2) < γ2(σ1):

This proof uses the fact, that a decrease of Dist(σ1), au-
tomatically results in a decrease of the penalty γ2(σ1). The
penalty value of schedule σ1 can be calculated by

γ2 = λa1 + λa2 + λa3 + ...+ λan (20)

We assume without the loss of generality, that a2 =
Rbmax−rmax and a1 = Rbmax−rmin. That meansDist(σ1)
is given by a2 − a1. If we reduce the distance of that sched-
ule be removing one contact windows from R2 to any other
request, we obtain a new schedule σ2, and the penalty is al-
tered from a2 → a2 + 1 and an → an − 1. That means in
equation 20 exactly two terms of the sum are altered, namely
λa2 changes to λa2+1 and λan to λan−1. The inequality

λa2+1 + λan−1 < λa2 + λan (21)

is true when the redundancy is distributed fair. This means
that also the penalty value for schedule σ1 will decrease, as
the following characteristic holds

λa + λb < λa+s + λb−s (22)

Thus, γ2(σ1) will be reduced by decreasing the distance
by 1. Therefore, γ2(σ2) is also smaller than γ2(σ1), as
Dist(σ2) < Dist(σ1).

Case 2: For the second case it has to be shown now, that
there exists at least one schedule σ2, which has a smaller
penalty value than schedule σ1, if the total amount of as-
signed contact windows for schedule σ2 is greater than the
amount of assigned contact windows for schedule σ1.
This is shown through proof by contradiction. If there would
exist no γ2(σ2), that is smaller than γ2(σ1), the penalty
value of schedule σ1 is minimal and can be expressed as

γ2(σ1) = λb1 + λb2 + λb3 + ...+ λbn (23)

The schedule is now modified to yield a new penalty value
of

γ2(σ′1) = λb1−1 + λb2 + λb3 + ...+ λbn (24)

It can be seen easily, that γ2(σ′1) < γ2(σ1), because
λb1−1 < λb1 . Furthermore is

∑
i κ(Ri) <

∑
i′ κ(R

′
i), as we

changed the redundancy distribution from b1 to b1 − 1. This
means a schedule σ′1 exists, which fulfills the requirements
in equation 19 and is therefore a contradiction.

In summary show the proofs, that the proposed schedul-
ing objective function γ2 guarantees an equal distribution of
redundant contact windows. While the γ1 objective tries to
maximize the number of contact windows included in the fi-
nal schedule, prefers the γ2 objective these schedules where
a fair distribution of contact windows exists. This character-
istic better satisfies the demands of the small satellite com-
munity.

Summary
So it has been shown in this section, that the penalty func-
tion γ2 distributed equally the redundancy between the dif-
ferent requests. This behavior is very important, especially
in the context of academic ground station networks, because
the participants share their resources without commercial
interest, therefore it is crucial to handle the different users
equally. Of course the penalty function can not guarantee,
that a schedule is always fair with respect to redundancy, as
conflicts or orbit geometry affect the schedule in that way
a lot. But the proofs have shown, that the aim to distribute
the redundancy equally between requests is achieved by this
objective function. The impact of the penalty function in the
complete objective function can be changed by multiplying
the result with a weight or by adjusting the parameter λ.
Experiments with real world satellite data have shown, that
the resulting schedules retrieved by the scheduler using the



objective function, satisfy the needs of academic ground sta-
tion networks.

Conclusion
Satellite scheduling is an important issue in ground sta-
tion networks to improve utilization and efficiency. The pre-
sented approach of redundant contact window scheduling
can be used for scenarios where several participants have
to share the resources from one ground station network. It
was shown, that the objective function of the presented ap-
proach fully satisfies the requirements of the RRSS schedul-
ing problem. Further work will concentrate on optimization
of the search algorithms for the special case of redundant
contact window scheduling.

References
Barbulescu, L.; A. Howe, A.; Watson, J.; and Whitley, D.
2002. Satellite range scheduling: A comparison of genetic,
heuristic and local search. In Seventh International Confer-
ence on Parallel Problem Solving from Nature.
Barbulescu, L.; Kramer, L.; and Smith, S. 2007. Benchmark
problems for oversubscribed scheduling. In The 17th Inter-
national Conference on Automated Planning & Scheduling.
Schmidt, M., and Schilling, K. 2008. Satellite scheduling
for educational ground station networks. In IAC, number
IAC-08-B4.3.6.
Schmidt, M., and Schilling, K. 2009a. Evaluation of the cuss
scheduling system with respect to real world scenarios. In
Proc. 60th International Astronautical Congress (IAC’09),
Daejeon, Korea.
Schmidt, M., and Schilling, K. 2009b. A scheduling sys-
tem with redundant scheduling capabilites for ground station
networks. In IWPSS.
Schmidt, M.; Rybysc, M.; and Schilling, K. 2008. A
scheduling algorithm for ground station networks related to
small satellites. In SpaceOps.


