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Abstract

In this paper, we present a new planning problem which
arises when data download windows and rate are lim-
ited and when the volume of data actually generated
by instrument activation on board a spacecraft is uncer-
tain and only known after acquisition and data analy-
sis, compression, and memorization. We present sev-
eral pragmatic approaches to this problem and results
of experiments on a realistic scenario.

Introduction
Many space missions are observation missions which con-
sist in using space observation instruments to collect data, to
record it, and to download it to ground mission centers and
to final users who use it to extract relevant information.

In many cases (Earth orbiting satellites, spacecraft orbit-
ing other planets, or rovers at the surface of these planets),
the temporal windows that are available for data download-
ing are limited. Moreover, the data download rate may be
strongly limited. This is especially true for deep space ex-
ploration missions.

In many cases too, the volume of data to be downloaded
is not precisely known in advance. Such a situation arises
with classical Earth observation satellites due to a variable
compression rate of images. It arises with advanced more
autonomous Earth observation satellites that are equipped
with on-board data analysis software (see for example the
experimental EO-1 mission (Chien et al. 2004)) able for
example to discard images that are useless because of the
presence of too many clouds. It arises too with future Mars
exploration rovers that are designed to be able to perform
opportunistic scientific observations (see for example (Cas-
tano et al. 2007; Thompson, Smith, and Wettergreen 2008;
Woods et al. 2009)). Finally, it arises with Earth surveillance
missions, such as for example electromagnetic intelligence
missions, where the result of surveillance is not known in
advance.

In all these cases, it becomes difficult to build data down-
load plans off-line on the ground, as it is usual for many
space missions. If maximum volumes of data are taken
into account to build such plans, download windows may be
under-used and mission return may be needlessly limited. If
expected volumes are taken into account, some data may be

lost due to actual volumes greater than expected ones. A so-
lution consists in building data download plans on-line on
board when actual volumes of data are known.

In this paper, we report the main results of a study that
has been carried out by CNES (French Space Agency) and
ONERA (French Aerospace Lab) in the context of an Earth
surveillance mission. In this context, it is assumed that the
surveillance activities are planned off-line before execution
in mission centers on the ground. However, the volume of
data generated by these activities is not known in advance.
Only, a probability distribution on the actual volume is avail-
able for each surveillance activity. This distribution may
have a large variance (typically, the volume of data gener-
ated by a surveillance activity may go from 1 to 1000). The
actual volume of data generated by a surveillance activity is
only known at the end of this activity, when all the data is
recorded in the satellite mass memory. Data downloading is
only possible within visibility windows of ground reception
stations.

After problem formalization and analysis, we describe
several candidate approaches, including planning on the
ground, decision rules to be applied on board, planning on
board, and sampling-based decision-making on board. All
these approaches have been implemented and compared on
a real-size realistic scenario. We present and discuss experi-
mental results.

Problem data
The problem data associated with a ground planning horizon
H (typically one day) is the following one:

1. a set of Ac surveillance activities over H , planned off-
line on the ground, numbered from 1 to Ac, and ordered
according to an increasing ending time;

2. a set of Pr priority levels, numbered from 1 to Pr , from
the highest to the lowest;

3. a set of St ground reception stations, numbered from 1
to St ; the first one is the main station associated with the
mission center; the others are secondary and data trans-
mitted to one of them must be then transmitted to the mis-
sion center using a ground communication network;

4. a set of Wi visibility windows over H , numbered from 1
to Wi , ordered according to an increasing starting time;



5. a data downloading rate Dr ;

6. for each surveillance activity a ∈ [1..Ac]:

(a) a starting time Saa;
(b) an ending time Eaa;
(c) a probability distribution Pva on the volume generated

by a; probability distributions associated with differ-
ent activities are assumed to be independent from each
other;

(d) a maximum volume Vma and a maximum download
duration Dma = Vma/Dr ; memorization is stopped
when this volume is reached;

(e) an expected volume Vea and an expected download du-
ration Dea = Vea/Dr ;

(f) an actual volume Vaa and an actual download duration
Daa = Vaa/Dr , only known after data memorization;

(g) a deadline Dda; beyond this deadline, downloading a
has no utility because data is too old;

(h) a priority Pra ∈ [1..Pr ]; activities of priority p have
absolute priority over any set of activities of priority
p′ > p;

(i) a weight Wea; weights are used to express relative
preferences at the same priority level and are assumed
to be additive;

7. for each station s ∈ [1..St ], a duration Dts of data transfer
from s to the mission center, with Dt1 = 0.

8. for each window w ∈ [1..Wi ]:

(a) an associated station Stw ∈ [1..St ];
(b) a starting time Sww;
(c) an ending time Eww;

9. for each pair of windows w,w′ ∈ [1..Wi ], a boolean
Ovw,w′ equal to 1 if and only if both windows overlap
with, for all w ∈ [1..Wi ], Ovw,w = 1;

10. a half-life period Hl used to express how download utility
decreases exponentially with download time; if dla is the
duration from the time at which activity a ended and the
time at which data associated with activity a is delivered
to the mission center, we define the actual utility of a as
Wea · 2−dla/Hl : equal to Wea if data would be immedi-
ately delivered, divided by 2 if data is delivered Hl after
the end of a, by 4 if it is delivered 2Hl after the end of a,
by 8 if it is delivered 3Hl after the end of a, and so on.

Data download problem
Decision variables The problem is to decide, for each ac-
quisition a ∈ [1..Ac], on two variables:

1. an integer variable wa ∈ [0..Wi ] which represents the
window within which a is downloaded, equal to the de-
fault value 0 when a is not downloaded over H;

2. a real variable da which represents the starting time of the
download of a, when wa 6= 0.

Constraints These variables must satisfy the following
constraints:

Data associated with an activity a cannot be downloaded
before the end of a:

∀a ∈ [1..Ac], (wa 6= 0)→ (da ≥ Eaa) (1)

Data associated with an activity a must be delivered be-
fore its deadline :

∀a ∈ [1..Ac], (wa 6= 0)→ (2)
(da +Daa +DtStwa

≤ Dda)

Data must be downloaded within the chosen window :

∀a ∈ [1..Ac], (wa 6= 0)→ (3)
(Swwa

≤ da ≤ Ewwa
−Daa)

Downloads cannot overlap :

∀a, a′ ∈ [1..Ac] | a < a′, (4)
((wa 6= 0) ∧ (wa′ 6= 0) ∧ (Ovwa,wa′ = 1)→
((da +Daa ≤ da′) ∨ (da′ +Daa′ ≤ da))

Optimization criterion The optimization criterion is a
vector of utilities, with one utility for each priority level. To
compare two solutions, it suffices to compare the two associ-
ated vectors in a lexicographic way, from the highest utility
1 to the lowest Pr.

For each priority level p ∈ [1..Pr], the associated utility
Up is defined as follows:

Up
def
=

∑
a∈[1..Ac] | (Pra=p)∧(wa 6=0)

ua (5)

For each activity a ∈ [1..Ac] that is downloaded (wa 6=
0), the associated utility ua is defined as follows:

ua
def
= Wea · 2−dla/Hl (6)

where dla is the difference between the time at which data
associated with activity a is delivered to the mission center
and the time at which activity a ended: dla

def
= da + Daa +

DtStwa
− Eaa.

Impact of uncertainty The difficulty is that decisions
must be made upon downloads without knowledge of the
actual volumes of the data that is not memorized yet. Con-
cerning the constraints, they must be satisfied whatever data
volumes are. It is always possible because any data may be
not downloaded. Concerning the criterion, the objective is
to maximize its expected value according to the probability
distributions over data volumes.

Problem analysis
Generally speaking, the data download problem with-
out uncertainty can be seen as a (multi) knapsack prob-
lem (Kellerer, Pferschy, and Pisinger 2004), where visibility
windows are sacks, downloads are objects to be placed into



sacks, and download durations are object weights. It how-
ever differs from the (multi) knapsack problem if we con-
sider the temporal constraints (earliest and latest download
times, download utility function of download time, possible
overlaps between windows). In spite of these differences, it
may be relevant to use efficient knapsack heuristics to solve
the data download problem. One of these heuristics con-
sists in sorting objects according a decreasing utility den-
sity (ratio between utility and weight) and in inserting them
into sacks according this order, until no object can be added.
Such a heuristics will be widely used in the algorithms that
are described in the next section.

When the volumes of data and thus the download du-
rations are uncertain, the data download problem becomes
close to the stochastic (multi) knapsack problem. In fact,
there are several versions of the stochastic knapsack prob-
lem, according to what is uncertain in the problem defini-
tion (maximum weight of the sack, weight of the objects,
gains associated with the objects) and the time at which un-
certainty disappears. The closest version to our problem is
described in (Dean, Goemans, and Vondrak 2004): uncer-
tain object weights, actual weights known when objects are
placed into the sack. A small difference is that, in our prob-
lem, volumes are not known at the download time, but be-
fore, at the memorization time. Unfortunately, (Dean, Goe-
mans, and Vondrak 2004) and other studies of the stochas-
tic knapsack problem do not propose specific optimization
algorithms. They simply analyze either theoretically or em-
pirically the quality of the solutions produced using stochas-
tic variants of classical heuristics, such as the one presented
above (obtained by replacing object weights by expected
ones).

More generally, the data download problem with uncer-
tain volumes can be modeled as an MDP (Markov Decision
Problem (Puterman 1994)) whose main features are the fol-
lowing ones:

• decision steps are starts of visibility windows, ends of ac-
tivities, or ends of downloads;

• the system state is defined by the current time t and, for
each activity a ∈ [1..Ac], its current volume va in the
mass memory, which is null before the end of a and after
download, and positive otherwise;

• the chosen action is defined by an activity ac ∈ [0..Ac]
which represent the data to be downloaded and a window
wc ∈ [0..Wi ] within which data will be downloaded; val-
ues 0 are used to represent the absence of download in
order to wait for the beginning of a visibility window or
the end of an activity;

• the system state resulting from an action ac is uncertain
because of the uncertain volumes of data memorized be-
tween the current time and the next one, which is the end
of the chosen download or of the waiting period (uncer-
tainty does not come from actions, but from the environ-
ment).

The result is an MDP with a variable, but bounded, num-
ber of decision steps, with continuous states, and with dis-
crete actions. To compute off-line on the ground an op-

timal or near-optimal policy (something which would say
which action to choose in any system state), approximate al-
gorithms such as for example HRTDP (Hybrid Real-Time
Dynamic Programming (Teichteil-Königsbuch and Infantes
2009)) could be used. HRTDP is a hybrid version of
RTDP (Barto, Bradtke, and Singh 1995). RTDP samples
the set of possible system trajectories to estimate the opti-
mal value of each state and to identify the associated opti-
mal action. HRTDP does the same by using regressors to
represent optimal values of states and classifiers to represent
associated optimal actions.

On top of the same MDP modeling, other approximate
approaches, such as Hindsight Optimization (Chong, Givan,
and Chang 2000) or Online Stochastic Optimization (Hen-
tenryck and Bent 2006) could be used on-line on board to
choose the best action to be performed in the current state.
Both sample the set of possible system trajectories over a
limited horizon ahead the current state.

Another way of choosing on-line the best action to be
performed, inspired from the Model Predictive Control ap-
proach (Garcia, Prett, and Morari 1989) in Automatic Con-
trol, would consist in planning over a limited horizon ahead
the current state, assuming that all the unknown volumes
will be equal to their expected value, and in selecting the
first action of the resulting plan.

Finally, another way of choosing still on-line the best ac-
tion to be performed would consist in using well designed
decision rules.

In the next section, we describe more precisely, the ap-
proaches we have implemented and experimented.

Several approaches
Planning on the ground
We first develop a reference approach which consists in
building a download plan off-line on the ground without
knowledge of the actual volumes. To be sure that this plan be
executable, we consider a first variant, referred to as PG1,
where all volumes are assumed to be maximum. To be sure
that at least data associated with highest priority activities
be downloaded, we consider a second variant, referred to as
PG2, where volumes are assumed to be maximum when in-
serting activities of priority 1 and 2 (the most important) and
to be equal to their expected value when inserting activities
of priority 3 (the less important). With the latter variant,
downloads of data of priority 3 may be lost in case of too
large actual volumes.

To build such a plan, we use a non-chronological greedy
algorithm based on classical knapsack heuristics. The algo-
rithm starts from an empty plan. At each step, it chooses
an activity a (i) whose data can be downloaded using one of
the remaining windows, (ii) that is of highest priority, and
(iii) that, at equal priority, maximizes the utility density (ra-
tio between (1) a’s utility if data is delivered at the earliest
time and (2) the duration of a’s data download). Once a
is chosen, data download is inserted in the current plan in
such a way that data be delivered to the mission center at
the earliest time and the remaining windows are accordingly
reduced (sometimes split into sub-windows). The algorithm



stops when all activities have been considered or no more
download can be inserted in the current plan.

Applying decision rules on board
To make on-line decisions, the most popular approach con-
sists in designing expert decision rules. We designed two
rules to be applied on-line on board. The second one is more
sophisticated, but more time consuming than the first one.

First decision rule The first decision rule, referred to as
DR1, consists in choosing at each decision step an activity
a (i) whose data can be immediately downloaded using one
of the current windows (activity already ended), (ii) that is
of highest priority, and (iii) that, at equal priority, maximizes
the utility density (see above). Once a is chosen, the chosen
window is, among the current ones, the one that allows data
to be delivered at the earliest time.

Second decision rule The second decision rule, referred
to as DR2, consists in choosing at each decision step an ac-
tivity a (i) whose data can be downloaded using one of the
current windows (activity possibly not ended yet), (ii) that
is of highest priority, and (iii) that, at equal priority, maxi-
mizes the utility density (ratio between (1) a’s utility if data
is delivered at the earliest time and (2) the duration from the
current time to the end of a’s data download i.e., the time
spent if a is chosen). Once a is chosen, the chosen window
is, among the current ones, the one that allows data to be
delivered at the earliest time.

This rule allows non immediate downloads to be chosen
and thus to wait for the end of an activity to download as-
sociated data. Moreover, when the chosen download is not
immediate, the rule searches recursively for activities whose
data could be downloaded between the current time and the
beginning of a’s data download, until no such activity exists.
For activities already ended, the algorithm considers the ac-
tual data volumes. For the others, it considers the expected
ones.

Planning on board
The main drawback of the first approach (planning on the
ground) is that actual volumes are unknown at the planning
time.

As done in Model Predictive Control (Garcia, Prett, and
Morari 1989), it is however possible to plan (and replan)
on-board each time over a limited horizon ahead. To build
such plans, it is possible to use the same non-chronological
greedy algorithm we use for planning on the ground and to
call it with actual volumes for activities already ended and
expected ones for the others.

We developed two versions of this approach. In the first
one, referred to as PB1, a new plan is built each time an ac-
tivity ends and information about its actual volume is avail-
able. In the second one, referred to as PB2, a new plan is
built at each decision step

An on-board implementation of both versions could be
reasonably considered, because the greedy planning algo-
rithm is very efficient and called each time only over a lim-
ited horizon.

Sampling-based decision-making on board
On-line stochastic optimization The previous approach
(planning on board) can be improved by producing at each
decision step samples of the future over a limited horizon
ahead (possible volumes for activities not ended yet, ran-
domly generated according to the known probability distri-
butions), by considering each of these samples as certain in-
formation, by planning on this basis, and by selecting the
action (download or waiting action) that appears the max-
imum number of times as the first action in the produced
plans.

We refer to this approach, inspired from Online Stochastic
Optimization (Hentenryck and Bent 2006), as SB1. Clearly,
this approach is more time consuming than the previous one,
because several plans (one for each sample) must be built at
each decision step.

Hindsight optimization The previous approach (on-line
stochastic optimization) can be further refined by consider-
ing at each decision step all the possible actions (download
or waiting action), by evaluating each of them on the basis of
sampling and planning, and by selecting the most valuable
action.

To evaluate an action a, we produce samples of the future
over a limited horizon ahead the end of a (possible volumes
for activities not ended yet), we consider each of these sam-
ples as certain information, we plan on this basis, and then
we consider the mean utility of the produced plans (includ-
ing a’s utility; in fact the vector of the mean utilities, one for
each priority level). An action with maximum mean utility
is then selected.

We refer to this approach, inspired from Hindsight Opti-
mization (Chong, Givan, and Chang 2000), as SB2. Clearly,
this approach is still more time consuming because several
plans (one for each sample) must be built for each possible
action at each decision step.

Experimental results
The approaches described in the previous section have been
implemented and experimented on a real-size realistic sce-
nario built by CNES.

This scenario covers a one-week horizon. It involves 1484
surveillance activities: 140 of priority 1, 420 of priority 2,
and 924 of priority 3 (the lowest). All activities have the
same weight (1). Probability distributions on volumes gen-
erated by activities are assumed to be all Gaussian, with
varying minimum, maximum, and mean values, and vary-
ing standard deviations. For each activity, its actual volume
is fired according to the associated probability distribution.

Planning on board (PB1, PB2, SB1, and SB2) is sys-
tematically performed over a 30 minute horizon ahead. For
SB1, 50 samples are considered at each decision step. For
SB2, 10 samples are considered for each possible action at
each decision step.

Table 1 shows, for each approach, the following results:

• the number of downloads performed over the one-week
horizon;

• the utilization percentage of the download windows;



downloads utilization U1 U2 U3

PG1 560 31.32% 0.763 0.468 0.256
PG2 807 62.78% 0.764 0.468 0.500
DR1 850 77.81% 0.926 0.850 0.345
DR2 1104 95.64% 0.925 0.853 0.592
PB1 1121 95.77% 0.925 0.857 0.608
PB2 1110 95.86% 0.925 0.861 0.596
SB1 1104 96.75% 0.926 0.873 0.589
SB2 1153 97.55% 0.926 0.874 0.615

Table 1: Experimental results (number of downloads, uti-
lization percentage of the download windows, and util-
ity at the three priority levels): PG for Planning on the
Ground, DR for Decision Rules on board, PB for Planning
on Board, and SB for Sampling-based decision-making on
Board

DR1 DR2 PB1 PB2 SB1 SB2
1 5.52 3.03 6.68 1967.16 4418.39

Table 2: Computing time relatively to that of DR1, for all
approaches that require on-board computing

• the resulting utility at the three priority levels.

Table 2 shows, for each approach that requires on-board
computing, the computing time relatively to that of the sim-
plest approach (DR1, first decision rule on board). Mak-
ing one decision with DR1 takes about 0.3 millisecond on a
3GHz processor.

PG1 (Planning on the Ground, using maximum volumes)
produces the worst results: only 31% of the download win-
dows are used. PG2 (Planning on the Ground, using max-
imum volumes only for activities of priority 1 and 2) pro-
duces better results for activities of priority 3 (the lowest):
63% of the download windows are used.

DR1 (first Decision Rule on board) produces better re-
sults for activities of priority 1 and 2 (the highest): 78%
of the download windows are used. However, DR2 (second
Decision Rule on board) performs better for activities of pri-
ority 3 (the lowest): 96% of the download windows are now
used, at the cost of a computing time only multiplied by 5.

The results produced by PB1 and PB2 (Planning on
Board) are a bit better, but not significantly better. Com-
puting times remain of the same order of magnitude.

The results produced by SB1 and SB2 (Sampling-based
decision-making on Board) are similar. Among all the ex-
perimented approaches, the best results, in terms of utiliza-
tion percentage and of utility, are produced by SB2. How-
ever, these results are obtained at a very high cost in terms of
computing time (some thousands times the computing time
taken by DR1).

These results should be however consolidated by firing
several scenarios in terms of actual volumes of data (only
one scenario has been fired for the moment).

Conclusion
A first conclusion is that, even if the problem considered re-
mains relatively simple (only data download planning), there
is no unique technical solution. Several approaches may be
considered. Each of them has its strengths and weaknesses
in terms of implementation, computing time, and result qual-
ity.

A second conclusion is that approaches based on
decision-making on the ground (PB1 and PB2) are clearly
outperformed by approaches based on decision-making on
board, when actual volumes of data are known. The former
(decision-making on the ground) are outperformed in terms
of result quality: number of downloads, utilization of the
download windows, and utility.

Among the latter (decision-making on board), applying
sophisticated decision rules (DR2) or planning on board
(PB1 or PB2) seem to achieve the right trade-off between
result quality and computing time. They have in common
to look ahead one way or another before making immedi-
ate decisions, whereas the first decision rule (DR2) does
not look ahead and produces results of significantly worse
quality. However, it seems to be difficult to perform signif-
icantly better than DR2, PB1, or PB2, and more sophisti-
cated sampling-based approaches (SB1 and SB2) produce
slightly better results at a prohibitive cost in terms of com-
puting time.
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