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Abstract.
SAC-D/Aquarius is a joint satellite space mission with
CONAE and NASA as main partners. For this mission, a
distributed planning approach has been operational since the
spacecraft launch on June 10, 2011.
In this paper we describe the representation used by
the distributed planning system that runs at the Mission
Operations Center. We describe how this representation is
exploited for automatic generation of all activities related
with periodic orbital events and for an automatic verification
of a successful plan execution. The former takes advantage of
an abstraction layer provided by the planning system and the
latter is based on the model inside the planning system that
connects all activities considered when planning with their
detailed implementation.

1 Introduction
SAC-D/Aquarius is a low-orbit earth-observing science
satellite launched on June 10, 2011 on a Delta II launcher at
Vandenberg NASA facilities. The orbit is sun-synchronous
quasi-polar at 657 km altitude. The revisit period of the orbit
is seven days and has been maintained flawlessly by the orbit
dynamics team by performing the usual orbit correction
maneuvers.

The satellite includes eight instruments and, as usual
with Earth Observation Satellites, its design is based
on the assumption that all science operations commands
plus some satellite maintenance commands are generated
and upload from ground. The on-board software
autonomy mainly focuses on executing power, thermal
and attitude maintenance; plus fault detection isolation
and recovery automatisms. All data downloads, science
sensor acquisitions plus some maintenance activities –like
orbital maneuvers– are planned from ground. Since launch,
on-board operations have been managed with the same
planning system, including all non routine launch, early
orbit, deployment and commissioning activities.

The distribution of the satellite service platform resources
between all instruments is defined in several fixed budgets:
on-board data storage, time-tagged command storage,
power, etc. As we explain below, these budgets allow the
implementation of a planning scheme that up to a certain

degree is regular and that can be automatically generated
starting from a definition of high level science targets.

The satellite operations plan is made in a distributed
manner from three contributions. Both (a) the Aquarius
Instrument Operations Team and (b) the SAC-D Instruments
Operations Team generate a set of action requests that
are later combined with those generated by (c) the Flight
Operations Team –covering all satellite service platform
and coordination activities–. These actions requests are the
starting point for the detailed planning of the satellite that
results in a series of detailed scripts that will be used for
handling each contact, containing all the commands to be
uploaded plus real time operational procedures if needed,
see (Romero and Oglietti 2009) for more details.

An automatic system for the generation of the
contribution by the Aquarius instrument operations
team (case a) has been in place from launch, but due to the
project schedule and some other constraints, we left out of
the first deployed version the following two functions that
were originally envisaged for the planning system:

• To automatically generate all regular activities
contributed by the SAC-D instrument operations
team (case c) and the Flight Operation Team (case d)–,
starting from a high level science target definitions and
from certain operational rules, and maintaining all the
flexibility needed for the mission;

• To monitor the plan execution and compare the predicted
behavior with the values observed in the telemetry
downloaded in order to generate alarms/warnings that
cannot be computed by the usual check of limits alarms.

Since for SAC-D/Aquarius mission, high level science
goals are fix for considerable long periods that can be
measured in months, the associated acquisition activities for
each science goal can be automatically computed from the
satellite accesses to the corresponding targets. Furthermore,
given that the mission has a seven day revisit period, these
accesses follow a periodic pattern of seven days that can be
used to simplify the computations.

As it is usual in spacecraft operations, we define alarm
limits over several hundreds of variables and check them



for every downloaded frame (one every eight seconds)
in order to detect any serious anomalies. The referred
functionality shall monitor the execution of the plan by
comparing the predicted behavior with the values observed
in the downloaded stored telemetry.

The absence of these functionalities entailed more manual
and error prone work for the flight operations team.

In this paper we describe the design and implementation
of these two new functionalities of the planning system.
The first is already operational and has relieved a lot the
workload of the SAC-D Instruments Operations Team and
the Flight Operations Team (from days to hours). The
second is in the final validation and deployment phase and it
will add early detection features about unexpected behaviors
that otherwise would not trigger any computed on board
system alarm. For example, if a command fails to act
properly, in general, this does not imply that we will see an
alarm, because alarms are associated with variables off-limit
values, and they might be right even after the command
failure. If this happens, using only a variables off-limit
check fails to capture the problem.

1.1 Plan Generation
After the commissioning phase, when the mission
operations turned to nominal phase, science plans become
more stable. At that point several science targets were fixed
as periodic activities to be carried out on a weekly base given
that the periodicity of the orbit is seven days. This helped the
deployment of the new system to automate the generation of
the SAC-D instruments request and that of the operations
plan. We keep the manual generation approach because
we follow a mixed initiative approach and also because in
this manner it is possible to add exceptional activities when
needed.

Furthermore, regarding science data takes, five of the
eight SAC-D/Aquarius instruments generate science data
in a continuous and uniform rate (including the main
instrument Aquarius). Therefore, for them, only the
data downloads need to be addressed. Instead, the
acquisition activities of the other three instruments need to
be specifically planned. These instruments are: an infra-red
camera (NIRST), a high sensitivity camera (HSC), and a
data collector system (DCS).

It is important to notice that there are not to many
examples of automatic science goal generation in the
literature. Most efforts are put in how to construct an optimal
valid plan from an oversubscribed set of science targets. But
science targets are usually inputs for the planning systems,
and are collected from mission users or scientists.

A remarkable example of automatic science target
generation is the EO-1 mission (Chien et al. 2003), where
the science targets are automatically generated on-board
by the identification of valuable data take opportunities.
Another interesting example is SensorWeb 2.0 presented in

(Mandl et al. 2008). This paper presents an ambitious
space sensor web for disaster management with the objective
of facilitate the United States contribution to the Global
Earth Observation System of Systems (GEOSS). GEOSS is
a worldwide initiative in this direction, with the objective to
form a network of EOSs for a wide range of applications
in order to provide a real-time picture of the whole planet
by sharing all countries sensor resources. This sensor web
relays on most important standards in the area like the
Open Geospatial Consortium (OGC) and the Sensor Web
Enablement (SWE) suite. SensorWeb 2.0 intents to present
to the user the most simple possible experience integrating
automatically several space, air and ground sensors, e.g.
Moderate Resolution Imaging Spectrometer (MODIS),
NASA’s Earth Observing One (EO-1), the US’s Air Force
Weather Agency and an Unmanned Aerial System (UAS).
The sensor web allows the users to define their regions of
interests and then the system automatically detects events
of interest. What the users wants to see is automatically
executed by means of an appropriate workflow and the
best available sensors. For example, if a fire is detected
by inspecting MODIS data, this automatically triggers a
higher resolution instrument like the Hyperion on the EO-1
satellite to take a higher resolution image, which in turn also
automatically triggers an Unmanned Aerial System take for
more detailed imagery.

In our work, the planning process is made at ground like
in SensorWeb 2.0. We consider orbit events –like ground
station contacts and target accesses– plus the definition of
high level science objectives to produce the plan. The
definition of the high level science objectives is done by
means of specifying the areas of interest plus some critical
parameters like for example the frequency with which the
images are needed and a seasonal validity period for the area
outside which the target has no scientific interest. Taking
advantage of an abstraction layer provided by the planning
system, this system verify the plan by means of a model
of the whole satellite operations, and after a successful
verification, it generates the detailed plan of commands to
be upload to the spacecraft.

1.2 Plan Execution Validation
In the opposite direction, the automated verification of
plan execution is done by using the model of the planning
system that connects the activities with their detailed
implementation in terms of commands. By matching
the command execution effects, modeled in the planning
system, with the telemetry processed by this application, the
system is able to automatically verify the post-facto correct
execution of the plan, even for activities that would not raise
a system off-limit check alarm if not executed.

The rest of the paper is structured as follows. In order
to give a self-contained presentation, we first present a
review of the representation used in the planning system.



Then we explain how the automated plan generation was
designed and implemented. After that, we present the plan
execution validation design. Following, a few conclusions
about present work.

2 The SAC-D/Aquarius Mission Planning
System

In this section we review the planning system. We start
by introducing the mission objectives. Then we present
the main concepts and data structures that are used in the
planning system to build the plan. For more details on this
matter, we refer the reader to (Romero and Oglietti 2009).

2.1 SAC-D/Aquarius Mission Overview
The SAC-D/Aquarius Mission is an Earth Observation
Satellite cooperative mission. The main partners are the
Argentine national space agency Comisión Nacional de
Actividades Espaciales (CONAE) and the United States
National Aeronautics and Space Administration (NASA).
Also, ASI –the Italian National Space Agency– and CNES
–the French National Space Agency– participate in the
mission with two science instruments.

The primary science objective of the mission is to
contribute to the understanding of the whole Earth system
including the effects of natural and human-induced changes
on the global environment by measuring sea surface salinity
and other variables that aim to resolve missing physical
processes that link the water cycle, the climate, and the
ocean. SAC-D/Aquarius observatory has other instruments
that complement and help to improve overall performance.
The SAC-D/Aquarius instruments are the following:

1. Aquarius;

2. Microwave Radiometer (MWR);

3. New Infra-Red Sensor Technology (NIRST);

4. High Sensitivity Camera (HSC);

5. Data Collection System (DCS);

6. Radio Occultation Sounder for Atmosphere (ROSA);

7. Cosmic radiation effects and orbital debris and
micrometeroids detector (CARMEN-1);

8. Technological Demonstration Package (TDP).

The Aquarius instrument was provided by NASA, MWR,
NIRST, HSC, DCS and TDP were provided by CONAE,
CARMEN-1 instrument by CNES and ROSA instrument by
ASI.

These instruments complement each other and have the
following multiple objectives: measurement of sea surface
salinity, measurement of rain rates, surface wind speeds,
water vapor and cloud liquid water over the ocean, hot
spots, high temperature events and volcanic eruptions, sea
surface temperature, temperature and humidity profile of the
troposphere and the stratosphere, light intensity over urban

areas and polar auroras, hot spots mapping of fire risk, soil
moisture, etc.

The architecture of the satellite follows the usual modular
design ((Larson and Wertz 1999; Boden and Larson
1996)), where there are several dedicated service platform
subsystems (Command, Control & Data Handling, Power,
Attitude, etc) that provide services to the payloads.

The mission has the support of several ground stations.
For nominal operations it uses CONAE’s ETC (Estación
Terrena Córdoba, located in Argentina) and ASI’s Matera
GS (located in Italy). ETC provides both X-band an S-band
services, and Matera provides X-band services. For the
Launch and Early Orbit Phase (LEOP), and for maneuvers
and contingencies, it also has the support of NASA’s Near
Earth Network (NEN) with four ground stations located
around the globe (Wallops Isld.-USA, McMurdo-Antarctica,
Fairbanks-Alaska and Svaldbard-Norway) that provides
S-band services. Also for LEOP the mission had the support
of ASI’s Malindi GS, in Kenia.

2.2 Planning Problem Representation
The planning system is built on concepts very similar
to those presented in (Dvorák and Barták 2010). In
this section we explain how the planning problem is
represented and handle in the SOP (Spacecraft Operation
Planning) subsystem at the mission Mission Operations
Center (MOC).

State Variables At the MOC, the satellite and some other
aspects of the mission are modeled as an evolving set of
variables called, State Variables (SV). These State Variables
are used to represent in a succinct way the important aspects
of the spacecraft that are necessary to consider for planning.

The use of SVs and timelines in this way is widely
extended as a de facto standard, as evidenced for example in
RAX-PS or ASPEN systems (Jónsson et al. 2000), (Chien
et al. 2000).

Each satellite instrument and subsystem is modeled with
a set of SVs that represent the operational modes and all
the important information that summarize the state of the
instrument or subsystem.

There are also a few SVs that are used to represent
information external to the spacecraft. These kind of SVs
are called None Controllable State Variables (NCSV). For
instance, there are NCSVs indicating eclipses, propagated
and scheduled ground station contacts, etc.

We restrict the specification to provide a way of
controlling the important aspects during nominal operations.
And because the plan is made in a distributed way – as
explained above the Aquarius Instrument Operations Team
adds to the plan all Aquarius instrument activities– the state
variables are also used to allow the proper synchronization
of the activities added by each team.

Formally, a State Variable is just an identifier together



Figure 1: The progression of 4 state variables as timelines.

with a domain indicating the possible values for it. The
domain can be an enumeration of string literals or the
integer numbers or a subset of integer numbers, etc. The
propagation of state variables is done in a deterministic way.
This means that SVs only change if some Basic Actions
change them. Opposed to that, NCSVs are externally
propagated and cannot be changed by any Basic Action.
Basic Actions are high level representation of the commands
to the satellite that includes not only an indication of which
is the command to uplink and its actual parameters, but of
which is the effect of executing the command on-board in
terms of the effect that we shall expect to see on the SVs.

In the next figure it is shown a hypothetical example of
state variables progression. For instance, the NCSV called
Eclipse has two values in its domain the string SunLight and
the string Eclipse. In turn, OpMode is a regular SV that is
changed only by commands.

Basic Action A Basic Action (BA) is a data set containing
the following elements:

1. One command from the Basic Command Library.

2. One reference time point that is used to represent the
moment of its execution.

3. Specifications of its Execution Conditions.

4. Specification of its Effects.

Being:

• Basic Command definitions. Basic Commands are
constructed using CONAEs Spacecraft Control Language
(SCL), which is a scripting language used between other
purposes to define the commands that can be send to the
satellite. They can have parameters and several other
features;

• Reference Time Point. The reference time point represents
the moment when the command is executed;

• Execution Conditions. An execution condition is
specified by means of the value that a state variable of
the system should have during a defined time interval.
When a BA is included in the operations plan, its moment
of execution is fixed. As usual, an execution condition is
satisfied if the value of the SV in the plan coincides with

the value of the condition in all the execution condition
time interval.
In the planning process at the MOC, all execution
conditions of a BA are checked to be satisfied. This
provide a mechanism for coordination to the Aquarius and
SACD Instrument Operations Teams by asking about a
particular state of the service platform, that is, to ask for
a service. When this happens the Flight Operations Team
is responsible to add all necessary BAs to the plan in such
a manner to satisfied all instrument teams requests.

• Effects. An effect has the same structure as the execution
conditions, but with another semantics. It indicates
the values the state variables will have because of the
execution of a command, and are used to propagate the
expected state of the system.
When a BA is included in the operation plan, the effects
of the BA are taken into account and used to modify the
value of the state variables.

Lets illustrate the concepts introduced so far with a
concrete example. Suppose you have a payload with its
own on-board storage capabilities. It is likely that the
payload will have a command for beginning to download
the data. More precisely, the instrument has a command
that sends science data through the bus during the dump
duration that is passed as a parameter. Let call the command
Payload MMDump(dumpDuration).

In order to download the science data, synchronization
of the Payload MMDump command and the capabilities of
the service platform are needed. In fact, a contact with a
ground station supporting X-band contact is also needed. In
the following figures we see how this synchronization can
be specified (and later verified) using the BA representation.

Figure 2: Dump Basic Action Execution Conditions.

Basic Action Component The main constitutive elements
of a Basic Action Component (BAC) are Basic Actions. As
was explained, a Basic Action corresponds to one command
in the satellite basic command library. BACs are intended to
be a higher abstraction layer to coordinate the execution of
a set of basic actions (i.e. basic commands).



A Basic Action Component is composed by:

• A tuple of Basic Actions.

• Binary time constraints between the basic actions.

Since BA components are used to synchronize the
execution of basic actions locally, that in turn translates in
the execution of commands; BA components are expected to
be strongly constrained (in terms of the time constraints that
tell how each BA of the component relates with the others).

Figure 3 shows a Basic Action Component Template
(BACT) being built with the GUI developed for this.
BACTs provide a way of reusing sequences of commands
that implement a given operations. A BACT is a
template encapsulation of a parameterized sequence of
lower-level BAs such that the parameters translate both to
the parameters of the BAs or of the temporal relationship
of the sequence of the BAs. Indeed, BACTs can hold not
only a parameterized temporal sequences of BAs, but a more
complex temporal relationships: a parameterized Simple
Temporal Network of BAs. This structure allow for example
to represent a partial order of BAs, what –when convenient–
can be used for a less commitment approaches to post-pone
up to the last time possible to choose between the valid
alternatives.

Figure 3: Basic Action Component template being built.

The Basic Action Component concept can be related with
EO-1 Spacecraft Command Language module (Chien et
al. 2003), because it converts a high level data structure
into the detailed command sequence to be executed. The
BACTs provide a functionality similar to the decompositions
of activities in the ASPEN system ((Chien et al. 2000)), but
restricted to only one level of decomposition. Higher level
of grouping can be achieved with different construct: the
Action Request data structure.

An Action Request (AR) is a complex structure, allowing
many functionalities –including for example the request of
the up-link of a software patch or the execution of a real time

interactive pass procedure activity–, but its simplest use is to
encapsulate many Basic Action Components, i.e. instances
of BAC Templates.

To summarize: a BA is the equivalent of an action in
classical planning but they have a low level implementation
in terms of a command and uses SVs and NCSVs instead
of predicates when defining its effects and preconditions. A
BACT is a Simple Temporal Network of BAs that allows the
modular construction of re-usable sequences of commands.
An Action Request allows the submission of several BACs
(i.e. instantiated BACTs) to be considered for its inclusion
in the main plan.

When a Action Request is inserted in the plan (by
solving the underlying STP, see (Dechter et al. 1991)),
the execution conditions and effects of each basic actions
are, respectively, controlled and propagated in chronological
order. A consistent plan is therefore a plan such that
all execution conditions of all BAs are satisfied by the
propagated values of the SVs and by those of the NCSVs.
The propagated dynamics of the SVs reflect all changes
expected in the SVs when the commands are executed.

3 Automatic Orbit-Event-Related Activity
Planning

In classical planning ((Fikes and Nilsson 1971)), a goal
refers to the desired state of the system at the end of
plan execution, but the subject of how these goals are
synthesized, defined or collected is usually not addressed,
even if its specification is a central part of the definition
of the planning problem. For instance, there might be
users that submits requests of images that are first collected,
and then, translated into a set of goals or extended goals
valid for various planning horizons by systems outside the
planning system. The only part included in the specification
of the planning problem is the final step, the goal defined
for a certain planning horizon. Event if rather complex
approaches deal with the so called extended goals and
preferences (e.g. (Baier et al. 2009)), the problem of how
these extended goals are collected is not treated.

Space missions have science requirements defined by
their instruments science teams. In many cases these
turn into a description of science objectives and priorities
expressed in such a broad way and without considering
all operational constraints, that does not allow a direct
translation to a concrete plan without some human
intervention. This usually implies that without any formal
approach an important effort is dedicated to define and
adjust the operational interfaces between the science and
operation teams.

We believe that modeling science objectives, priorities
and constraints, and from that model, to automatically
generate the planning problem goals it is an important
matter to the success of flexible and efficient space mission
planning systems. We will refer to this as the goal



generation problem. As we explained in the introduction,
one of the two main subjects that we present in this
paper is how we solve this problem automatically for the
SAC-D/Aquarius mission. Indeed, in this section we show
how we deal with the automatic synthesis of the activities to
be added in the plan in order to satisfy the science goals.

As mentioned above, goal generation was treated also
in (Chien et al. 2003) for EO-1 satellite on-board
planning system. There, the new targets are defined
by processing on-board science data looking for valuable
science opportunities. In our case, the automatic goal
generation is computed for periodic orbit-related science
goals. We implemented a way to link a high level description
of orbit related goals with some activities to be added in the
operations plan, that are later implemented as Basic Action
Components in an Action Request.

To do this, the planning system receives as inputs
from CODS (CONAE Orbit Dynamic Services) periodical
updates of several files generated from the last TLE (Two
Line Element). These include:

1. GS (Ground Station) visibilities. These are used to
generate X-band downlinks, S-band TT&C, DCS, and
PAD (that is the mass memory of instruments) activities.
The attributes of a GS visibility include the following: GS
ID, start time, stop time, duration, revolution number.

2. Science target accesses. These are used for NIRST and
HSC cameras activities. For each region of interest
described as a polygon, COD Service generates the
accesses for a given period and the geometry of the
instrument. The attributes of an access include the
following: place name, start time, end time, duration,
and the four earth points that define a polygon (the region
covered by the instrument).

The definition of the activities to be added automatically,
taking into account all the information above, follows
configurable rules. The rules are used to link each event (GS
service and/or target accesses) to the BACTs that implement
each activity. The periodicity of the events is a key aspect
that allows the transformation. Hence, the rules are applied
establishing a period that is the same as the orbital revisit
period of seven days.

For example, in Earth Observation satellites it is usual
that the Ground Station contacts used for a particular service
(e.g. TT&C) follow a fixed pattern that depends on the orbit
period. The same is true for some science applications, that
require that a particular set of accesses to an area must be
acquired periodically.

For example, in the case of SAC-D/Aquarius mission, all
ETC ground station visibilities with more than 5 degrees
of maximum elevation are used for TT&C services; and
three Matera ground station visibilities are used for X-Band
downlink services. Specifically, if the passes in a given
orbit period are enumerated, the indexes of the passes

used for these services are fixed. For example, of all
28 ETC passes in a week, all except pass 2 and 11
are used for at least one of the five types of possible
X-Band downlinks combinations. The number of downlink
combinations comes from choosing some subset of the
instruments which data is downloaded multiplexing, but not
all combinations are legal. What passes to use for each
instrument is predefined by the X-Band downlink budget
that was distributed between all instruments.

Another important aspect is that the system shall allow
the complete reconfiguration of these goals, that can change
drastically along the mission life-time. In other words:
the rules to generate these operation goals need to be
reconfigurable. After considering several use-cases, we
defined the rules called Activity Instantiation Rules, that give
the flexibility needed to automate the process. These rules
are the key of the automatic generation of activities, and are
explained in detail below.

The instantiation rules key fiels are the following:

Event ID. This is the ID of the event that implies the
generation of a new activity. For example, a visibility with
a particular GS, or an access to a given ROI (Region of
Interest).

Activity Type. The type of the activity that must
be generated. These are activities of a high level
of abstraction, that are later implemented in terms of
BACTs (the lower-level detailed representation the planning
system handles for plan verification and command uplink
compilation).

Time Series. These include a time window for which
the activity must be generated and the periodicity used to
enumerate the events. That is, inside each period defined by
the time series the events are enumerated chronologically.

Star Time Binding. This is a data structure that specifies
how the attributes of a given event are used to define the start
time of an activity. Any date field (e.g. start time, end time)
of an event can be bound to the start time of the activity.
Furthermore, a delay can be defined using any mathematical
formula on the numeric attributes of the event (float, int, etc).
This flexibility was added because some activities needed
to be allocated at the middle point of a pass, and another
activities uses the end time of the event as the time point
reference.

Parameter Bindings. This is a list of bindings that allow
to specify how the attributes of the event are bound to
the parameters of the activity. A lot of flexibility is
allowed, including fixing values or values proportional to
the duration of the event. For example, this is used to
transfer the duration of an access to a target to a parameter
of a BACT, that in turn connects this parameter with the
duration parameter of the command to execute an instrument
acquisition.



Selected Occurrences. These are the indexes that indicate
what occurrences of the events are used to generate activities
within one period.

Minimum Access Time. This is a filter that is applied to
the duration of the events before the enumeration is done.
It allows to leave out spurious short events that can emerge
due to small variation in the orbit. It gives robustness to the
event enumeration.

With the orbital data and the Activity Instantiation Rules,
the system is able to generate a list of activities. This list
is later translated to Action Requests (see previous section)
containing various Basic Action Components instances in
agreement with these rules. This is the format that the core
planning system ingests to perform the final validation of
the plan by propagating state variables and control if all
constraints holds, and later, to generate the pass scripts with
the command that will be upload.

The translation is done by another configurable feature
that links each Activity to a BACT. That is, orbit events
are linked to activities, and in turn, activities are linked to
BACT implementations. This is done in a two steps process
to allow changing one relation without changing the other.
For example, the Flight Operations Team can change the
sequence of commands that implements a given activity, and
the idea was to allow changing that without having to change
the rules that generate the activities. Hence, in this way,
the specification of some periodic activities are linked with
the BACT concept, which is the data structure that connects
the high level representation of the plan with the low-level
implementation in terms of sequences of Basic Actions (i.e.
sequences of commands).

All these steps are automatic –just a few mouse clicks
to start the process are required–, and the generated plan is
validated by checking resource usage of each instrument, i.e.
we check if they are in agreement with the assigned budgets.
If a constraint is violated, an activity is left out of the plan.
This is also an easy task because each activity inherits a
priority level from the orbit event parent. The activity with
the lower priority level is erased.

This plan, implemented in terms of BACs is then validated
with the BA models, that gives a causal validation at the
lowest possible level of abstraction (i.e. the command level).

Figure 4 shows a data flow diagram presenting this
function.

The system is currently allowing the automatic insertion
of a few hundreds of activities per week, that were managed
manually or semi manually before.

An example of these generated activities is the real-time
HSC camera acquisitions. The acquisitions are called
real-time because the instrument downloads the image
while is being taken, and it is not stored. For this
reason, the periodic real time acquisitions are associated to
some specific previously agreed ETC passes (specifically,

Figure 4: Data flow diagram of the activity generation
function.

descendant passes 1, 5, 9, 14, 23, 27). The orbit event (i.e.
the ground station passese), contains the following data:

<Event>
<eventID>ETC</eventID>
<start>2012/04/03T11:21:02.0</start>
<stop>2012/04/03T11:28:02.0</stop>
<duration>0:07:00</duration>
...

</Event>

For descending passes, because of the sensibility of the
camera, it is better to do the acquisition as close to the LOS
of the pass as possible. This means that the reference point
to start the acquisition is the end of the orbit event. For
pass elevation considerations, the acquisition must start 702
seconds before the LOS.

The command for an acquisition has a parameter named
PassDuration that is bound to the fixed value of 600 seconds.
Because of thermal matters, the camera can only acquire ten
minutes.

The following is the configuration file that specify all that
constraints.

<codsEventActivityInstance>
<aic:activityType>HSC_RT_Acquisition

</aic:activityType>
<timeOfInterest>

<ts:timeSeries>
<ts:surveyPeriod>

<ts:min>2012-11-05T00:00:00
</ts:min>

<ts:max>2014-12-31T23:59:59
</ts:max>

</ts:surveyPeriod>
<ts:occurrences>2</ts:occurrences>
<ts:periodicityRange>

<ts:min>7.0</ts:min>
<ts:max>7.0</ts:max>

</ts:periodicityRange>
</ts:timeSeries>

</timeOfInterest>
<startTimeBinding>

<aic:binding>stop</aic:binding>
<aic:delay>-702</aic:delay>

</startTimeBinding>



<aic:parameterBindings>
<aic:parameter>

<aic:activityParameter>PassDuration
</aic:activityParameter>

<aic:activityParameterValue>600
</aic:activityParameterValue>

</aic:parameter>
</aic:parameterBindings>
<aic:filters>

<aic:minimumAccessTime>426
</aic:minimumAccessTime>

<aic:selectedOccurrences>1,5,9,14,23,27
</aic:selectedOccurrences>

</aic:filters>
...
</codsEventActivityInstance>

4 Plan Execution Validation
This second functionality of the new planning system that
we are presenting here can be summarized as follows:

The system shall allow the traceability of the correct
execution of telecommands. More specifically,
the system shall have the capability of processing
telemetry in order to verify the successful execution of
the commands in the plan (whenever there is telemetry
that allows the verification without ambiguities).

Plan execution validation is implemented in many
planning system that are used in practice like in (Chien et
al. 2000), (Jónsson et al. 2000) and (Chien et al. 2003).
Our approach does not introduce a brand new concept, but
we consider important to describe the design details of our
approach with the objective of allowing other people to
contrast with theirs, compare advantages and disadvantages,
and through this process helping with the development of
better systems. Even if at a first approach we might consider
that this is not part of the core of planning, this is not the
case when we understood that the modeling done in planning
provides most key things for this validation. Both things are
critically coupled. The planning system at the MOC usually
is the only system that has the knowledge of what is expected
to happen on board. This is the only system capable of
forecasting in detail the expected behavior of several key
parameters in tied connection with the commanding plan
that it is synthesized.

Furthermore, to be useful, the feedback about the plan
execution that is contained in the stored telemetry must be
later impacted in the plan. This means that some kind
of translation from the satellite telemetry variables to the
planning SVs is needed. For example, when something went
differently from what was planned, it is needed to re-plan
taking into account what actually happened: we need to
correct some SV which values were propagated at planning
time, replacing its expected values with the observed ones.

The approach we used for implementing the plan
execution validation new features mirrors that we used for
commanding. We associate low level satellite telemetry
variables values with the values of the SVs and compare
them appropriately.

At the MOC, a specialized scripting language called
Telemetry Specification Language (TSL) is used to define
telemetry. The MOC tools use these definitions to decode
the values of the telemetry variables. This language includes
several libraries with specific functions for this task. It
includes all mathematic functions of any programming
language together with functions for easy bit/byte low-level
manipulation and bit/byte extraction from the telemetry
frames.

First, we identify already existing telemetry variables
whose values corresponds with higher level SVs. With the
remaining set of SVs whose values that do not match exactly
with lower level telemetry variables definitions, we defined
derived telemetry variables that actually match its values
exactly.

The final result is a subset of all the telemetry variables
whose values precisely correspond with each SV value at
the planning system. Notice that the domain of these
telemetry variables corresponds exactly with the domain of
the corresponding state variables.

For the comparison, it is important to consider that
all telemetry variables have an intrinsic latency that is
not necessary the same (some commands effects can be
observed in the telemetry after a few seconds and for
others it might be necessary to wait hours). We use some
configuration parameters for each SV to register this natural
latency and only compare when adequate.

When the telemetry is processed, a telemetry product with
the decoded values is created. This is an xml file containing
all records of the TSL decoded telemetry within a time
frame. This product is later processed by the new module of
the planning system called Uplink and Execution Analyzer.
If there is a difference between the state variable propagated
at planning time and the report based on telemetry, the plan
is updated.

The configuration file that links a telemetry variable with
a state variable includes the following fields:

• SV id. The id of the state variable that is used for the
comparison.

• Tlmy Var id. The id of the telemetry variable to be
compared with the SV values.

• Accepted Latency. Two integer fields (named after and
before) that indicate the pre and post SV change accepted
margin (in seconds). If the SV change its value from val1
to val2, at instant t0, the system looks for the same value
change in the interval [t0 − after, t0 − before]. This
gives the flexibility needed because of the latency in the
recorded telemetry, and the small difference that could



also be introduced in the exact execution of the command.

• Accepted Margin. These are two numeric fields (named
upper and lower). These are meant only for SV/TlmyVar
with numeric domains (int, float, etc). They add some
margin in the changes in the values to be searched. The
exact meaning is that, if a numeric SV change its value
from val1 to val2, at instant t0, the change to be search
in the actual telemetry is a change from a value ˆval1 ∈
[val1 − lower, val1 + upper] to another value ˆval2 ∈
[val2 − lower, val2 + upper]. This margins are needed
because power consumptions or temperatures cannot be
predicted with extreme accuracy at planning time. Notice
that the margins that are considered are uniform for the
SV/TlmyVar pair, and does not depend on the considered
value of the variable. This is a simplification that is
acceptable for our case and that other applications might
consider different.

All the above parameters can be easily identify by
studying the variations in the actual telemetry received from
the satellite.

Remember that at checking time, the SVs time-lines
include the value changes implied by all basic action effects,
and fulfill all basic action execution conditions. This means
that any unexpected change in the comparison would mean
an unexpected behavior in the execution of the commands
that cannot bee detected by the usual control of off-limit
alarms.

5 Future work
For future CONAE’s SAOCOM L-Band SAR mission, its
MOC will be receiving from users a lot of requests in terms
to areas of interest to be covered by the instrument data
takes. The decomposition of the areas of interest in several
acquisitions can be done as presented in this paper, but the
decomposition will lead to an over-subscribed plan. We
envisage to add a tool for the automatic selection of the
activities that produces an optimal plan considering all users
preferences and their priorities and quotas. Currently, we are
investigating the application of various techniques to model
this problem.

6 Conclusion
In this paper we described the design and implementation
of two new functionalities added to the SAC-D/Aquarius
mission planning system, highlighting several details that
contribute to the system robustness, and how they are used
in our mission. These functionalities are:

1. The automatic synthesis of the satellite activity plan from
orbit events, including the generation of the instruments
acquisition plan needed to acquire the science targets.
We also explained how these plan is further translated
into a low level plan of commands to be uploaded. This
approach can be applied in the automatic generation

of orbit related activities (such as down-links) for any
low-orbit satellite mission with periodic orbit (virtually
all earth observation science satellite missions). This
not only reduces the work load, but also reduces manual
human errors, contributing to the robustness of the
mission operations.

2. The validation of the correct execution of the satellite
activity plan, by comparing the values in the stored
telemetry with the expected values computed at planning
time.

The first is already operational and the second in the final
validation and deployment phase.
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