
Global Optimization with Hill Climbing

in Earth Observation Mission Planning

Christian Wozar and Robin Steel

Telespazio VEGA Deutschland GmbH

Europaplatz 5, D-64293 Darmstadt, Germany

christian.wozar@telespazio-vega.de, robin.steel@telespazio-vega.de

Abstract

We describe an algorithm for the global optimization of im-
age take and downlink planning of a single satellite Earth
observation mission. The algorithm is based on hill climb-
ing methods with a suitably chosen search space. It is shown
how subproblems of the planning can be solved exactly, and
how this enables the integration of a hierarchical constraint
solving and optimization process into the hill climbing. For
a test data set of 500 Earth observation requests we compare
benchmark results against other methods and exact optimi-
zation results, at least for a subset of constraints. The shown
algorithm is found to be superior to simple greedy searches
and as powerful as simulated annealing. In special cases it
can reach a solution quality close to exact solutions.

Introduction

The PRISMA mission (“Precursore IperSpettrale della
Missione Operativa”) of the Italian Space Agency (ASI) is
devoted to the in orbit demonstration and qualification of
an Italian Earth observation mission using state-of-the-art
hyperspectral/panchromatic technologies. It is primarily in-
tended for the public good, to enable scientific and institu-
tional end users to acquire imaging data for knowledge and
management of environment and natural resources. In the
scope of this mission, VEGA is developing a mission plan-
ning system (MPS) for Telespazio SpA (responsible for the
overall ground segment) to optimize the use of satellite re-
sources and to enable the global optimization of the image
acquisitions under a set of complex (temporally local and
non-local) constraints. The planning is request and priority
driven, with priorities assigned by the users to every single
image take, so that the algorithmic aim is the maximization
of a priority dependent target function for the oversub-
scribed planning problem of image request planning.
 In the following we report on the performance of the
implemented planning algorithm and we make (in a simpli-
fied constraint context) comparisons to exactly know solu-
tions of the planning problem.

Copyright © 2013. All rights reserved.

Planning Scope

PRISMA is a single satellite LEO mission on a Sun syn-
chronous orbit. The driving factor for the design of the al-
gorithm is given by the agility of the satellite that allows to
take images in a roll angle range of [−18°, +18°] w.r.t. na-
dir. No flexibility in pitch is given, so that the possible im-
age take timings are completely fixed by the orbit geome-
try and the target area.
 The planning is performed using the “VEGA Planning
Toolkit – Earth Observation” (VPT-E), which is a general
purpose extensible planning system framework derived
from the Enhanced Kernel Library for Operational Plan-
ning and Scheduling (Noll and Steel 2005). PRISMA spe-
cific extensions of VPT-E are responsible for the file based
I/O and the concrete realization of the planning algorithm.

Objects in the Planning Process

The main object to be planned is the User Request (UR),
which is a request for an image that has to be fulfilled in a
specific time horizon (validity time, up to four weeks).
URs for PRISMA can appear in two different types:

• Standard: A single “spot” image, specified by a target
point. An area of 30×30 km is recorded (at nadir).

• Stripmap: An image of a strip, specified by a target
point and the duration (expressed as L km,
L ∊ {30, 60, …, 1800}).

For the description in this article we only consider standard
requests, although the method is directly generalizable to
stripmap images.

Figure 1: DTOs (purple) are contained within the UR validity

time range (blue). For the latest DTO one DTA (red) is planned.

 To fulfill an UR, exactly one image must be taken in a
Data Take Activity (DTA). Associated to each single UR
there are possible Data Take Opportunities (DTO), i.e.
time ranges during which a DTA can take place, see Figure
1. So for every UR there will be, in general, several possi-
ble DTOs, which is a fact that makes the global optimiza-

mailto:christian.wozar@telespazio-vega.de
mailto:robin.steel@telespazio-vega.de

tion problem exceptionally complex – an exact solution
would need to consider any combination of assignments
from the URs to their DTOs.
 The timings of the DTOs are directly derived from the
predicted orbit. An additional parameter is the roll angle
that must be kept during the associated DTA, which itself
lasts for the full DTO duration. In addition to the DTAs
there must be a download of the recorded data that happens
during a Downlink Activity (DLA). The timing for a DLA
is constrained by the availability of the receiving station.
 The MPS is in charge to make the “best” selection
among the URs and DTOs, to assign DTAs to the URs,
whose timing and roll angle is given by the DTO parame-
ters. Further, DLAs must be assigned, such that the record-
ed data is eventually downlinked and no memory overflow
situation is planned. Under nominal operation, the planning
problem will be oversubscribed and only a subset of the
URs can be fulfilled.
 For this article we do not consider any impact of satellite
unavailability periods on the planning. Although those
have to be taken into account for real satellite operations,
e.g. by using the Language for Mission Planning (Sousa
and Noréus 2010) to modify and filter activities, no impact
on algorithm quality and runtime performance is expected.

Constraint Setup

The operational requirements of the PRISMA mission lead
to several constraints that need to be fulfilled within any
planned time range. With the whole set C-1 through C-5,
the constrained optimization problem becomes computa-
tionally hard and does not allow for a direct construction of
the exact solution. We are therefore bound to use approxi-
mate methods to come close to the optimum of the target
functions under the following constrains.

Maneuver Duration (C-1). Between any two planned
DTAs it is necessary to perform a maneuver to change the
roll angle. The corresponding duration depends on the roll
angle difference (between 0° and 36°) and varies between
70 s and 190 s.

Earth Pointing Duration per Orbit (C-2). For any orbit
(duration of approx. 97 min) it is only a maximum duration
of 15 min allowed between the start of the first DTA/DLA
and the end of the last DTA/DLA. This amounts to a max-
imum of about 13 images per orbit, assuming a minimal
maneuver duration of 70 s between two image takes.

Payload Duty Cycle (C-3). For thermal reasons, only four
orbits in a row are allowed for image acquisitions (DTAs).
Whenever such a sequence ends (which may also happen
after less than four orbits), at least four orbits without im-
age acquisitions are required.

Memory Fill Level (C-4). The on-board memory has a ca-
pacity 256 Gbit, which allows to store roughly 100 spot
images. Memory can be reused for new acquisitions direct-
ly after downlink of the old data. The downlink duration
depends on the image size and is about a factor four longer
than the image acquisition duration due to the used data
rates.

Downlink Budget (C-5). The PRISMA satellite has the
capability to downlink old or new data during the acquisi-
tion. The link budget, however, depends on the roll angle
taken during the acquisitions, so that only part of a possible
downlink contact may be used for downloading data. The
longest contact duration that is available for download dur-
ing a satellite visibility of the downlink stations forms the
Downlink Opportunity (DLO), which depends on the
planned DTAs. DLAs may only happen during a DLO.
 If no DTA is on-going during a station visibility, for in-
stance during nighttime contacts, the satellite can use the
full visibility duration as DLO.

Target Function

The planning process aims at optimizing multiple objec-
tives. These are

1. The maximization of the number of planned requests,
taking into account the request priorities, and

2. The minimization of the “time to downlink”, such that
the data is downlinked as early as possible. Again the
request priorities should be taken into account.

The corresponding target functions (which are to be max-
imized by the MPS) are given by

(1) F1 = q (# planned urgent requests) + Σi (1/Pi),

(2) F2 = Σi Wi (T0 − td(i)),

where the following definitions apply:

• i runs through all successfully planned URs (i.e. with
DTAs assigned) in the sums.

• Pi is the priority level assigned to request i, where lower
level indicates a higher priority. Multiple URs may have
the same priority. P = 1 is reserved for urgent requests.

• q is an arbitrarily high number, which ensures that no
urgent request is dropped in favor of a lower priority
one. In practice we use q = 10,000.

• Wi is a weighting factor, dependent on the priority level
and with Wi > Wk for Pi < Pk.

• td(i) is the start time of the downlink of request i. If only
a data take has been assigned but no downlink, the end
time of the current planning horizon is used.

• T0 is the start time of the current planning horizon.

The second objective F2, however, is only of minor im-
portance, so that the function to be considered for quality
measurements will be F1 or, to be more specific, the three
functions

(3) F1′ = # planned urgent requests,

(4) F1″ = Σi (1/Pi), and

(5) R = # planned requests in total,

with the sum in F1″ running only over non-urgent planned
requests.
 During the planning algorithm the target functions are
therefore not considered simultaneously and no real multi
objective optimization is performed. Rather the MPS first
maximizes F1 and afterwards (on the so obtained set of to

be planned requests) maximizes F2. Note that two values of
F2 can only be reasonably compared if the same set of suc-
cessfully planned URs (with assigned DTAs) is involved.

Planning Strategy

The Global Planning Loop – Hill Climbing

We base our planning algorithm on the iterative procedure
of (perturbed) hill climbing (Russell and Norvig 2009) to
arrive at an optimal solution of the constrained optimiza-
tion problem to maximize the target functions under the
constraints that are introduced above.
 Because of the fact that a rather complex subproblem of
the optimization can be solved exactly, namely the alloca-
tion of DTAs within an orbit and the payload duty cycle,
the search space (a.k.a. “configuration space”) for the hill
climbing will be given by the possible assignments of URs
to their DTOs, similar to the selection of variables in image
planning for SPOT 5 (Bensana et al. 1999). Therefore, we
obtain a hierarchical algorithm in which the hill climbing is
used to iterate on the inputs to the (nearly) exactly solvable
inner optimization loop.

Figure 2: Global planning concept with preselection (hill climb-

ing) and optimization (for every hill climbing step).

 This is shown as preselection in Figure 2. I.e. for every
UR we choose one DTO without taking into account any
constraints. It is then subject to the constraint solving and
optimization part (see below) to optimize among these pre-
selected DTOs to fulfill all constraints with maximizing the
target function F1. This part will plan the DTAs that are
chosen from the preselected DTOs together with their
DLAs. Thus, hill climbing considers all DTOs on the plan,
but the constraint checking (performed as part of every hill
climbing step) works only on a subset of the DTOs, given
by the preselection. No additional ranking (apart from the
URs’ priorities) is introduced by the hill climbing, which is
different to methods with a priority driven iterative plan-
ning, such as Squeaky Wheel Optimization (Joslin and
Clements 1999).

 Of course, this procedure only arrives at an optimal solu-
tion for the preselected DTOs. To arrive at the global op-
timum (or at least close to it), this procedure is combined
with the hill climbing among the different possible prese-
lections.
 The hill climbing procedure involves the following
steps:

1. Iterate over all URs. For every UR:

a) Compute the optimum of F1 for a preselection of this
UR to its different DTOs. This is done with keeping
the preselection for DTOs for all the other URs fixed.

b) Select the optimal DTO of this UR in the sense of
maximizing F1. (See “local optimization” below.)

c) If there is no unique optimal DTO, then select (with a
sufficient amount of randomness) one of the optimal
DTOs.

2. If a new optimal F1 is reached, introduce a small pertur-
bation into the system.

This iteration will loop over the URs until a fixed (and
configurable) number of hill climbing trial steps is reached.
 While most hill climbing techniques operate on a con-
tinuous search space where they may be able to use gradi-
ent driven steepest ascent determination to find the next
solution and allow to express locality by means of geomet-
ric distances, our search space is discrete, given by the as-
signments of URs to their DTOs. Locality is therefore de-
fined for the given problem by a configuration that differs
only on the assignment of at most one UR to its DTO.

Local Optimization on One UR

To perform the iteration on the configuration space we
need to step towards the next local optimum, with locality
defined as above.
 As part of one hill climbing trial step, exactly one UR is
chosen on which the DTOs are varied. For every resulting
combination of DTOs (i.e. exactly one DTO per UR) the
optimization procedure is performed, taking into account
the constraints and optimizations that are described below.
Under this optimization not every DTO will evolve into a
DTA (or DLA). The main result of one hill climbing step is
therefore not the combination of DTAs but only the com-
bination of DTOs (which implies by means of constrained
optimization a set of DTAs, which can be recorded as
well). The value F1 of a combination of DTOs is then de-
fined as the implied value F1 of the resulting DTAs.
 Note that in our implementation one fixed UR is chosen
per hill climbing iteration and only the DTOs of that par-
ticular UR are varied and the best solution is chosen. Then,
the iteration proceeds with the next UR according to a
well-defined ordering, e.g. by an UR identifier. According
to the locality definition, however, any trial configuration
that differs on one arbitrary UR from the current configura-
tion would be acceptable. A true steepest ascent algorithm
would have to test all neighboring configurations before
choosing the new optimum. Therefore, our procedure is a
coordinate ascent hill climbing version, which, in the giv-

UR 1

UR 2

UR 3

DTO 1-1

DTO 1-2

DTO 2-1

DTO 2-2

DTO 2-3

DTO 2-4

DTO 3-1

DTO 3-2

DTO 3-3

DTA 1-1

DTA 2-3

P
R

E
S

E
L

E
C

T

O
P

T
IM

IZ
E

en use case, ensures a fast convergence without the need to
probe a whole lot of configurations per iteration.

Perturbed Hill Climbing

Standard hill climbing procedures are constrained to only
increase the target function. In the case that many local
maxima in the search space exist, the algorithm is likely to
get stuck in such a local maximum (see Figure 3). In order
to step out of such a local optimum, and having a chance to
reach an even better local maximum, we introduce a per-
turbation.

Figure 3: Hill climbing gets stuck in a local maximum.

 While standard hill climbing will accept a new solution
only if the target new function Fnew is greater or equal than
the last solution Flast,

(6) Fnew ≥ Flast,

we now allow to accept a new solution if

(7) Fnew ≥ Flast − G(t).

For this, we compute F1 for all DTOs of the current UR
and select randomly a DTO that fulfills Eq. (7). t is the
number of hill climbing trial steps since the last best max-
imum has been found, while G(t) is the slight perturbation,
which is modeled as linear function, characterized by the
start value G0 and the number of steps t0 at which G(t) = G1
(see Figure 4).

Figure 4: Perturbation function used to improve the convergence

towards the global optimum.

 This procedure will lead to trajectories that can leave a
local optimum in favor of a better local (or even a global)
maximum of the target function, see Figure 5. During the
whole iteration we keep track of the maximum Fopt that has

been observed, which is the output of the hill climbing al-
gorithm.

Figure 5: Hill climbing with perturbations. Steps shown in red al-

low for moves to better local maxima.

Optimization and Constraint Solving

In the course of finding the optimal choice of planned
DTAs (and DLAs) for the given preselection of DTOs it is
necessary to arrive at an optimal and consistent solution.
This is done by processing the given DTOs in a specific
order:

1. Temporal constraints are solved, such that a consistent
and optimal solution is found, which takes into account
the maneuver duration (C-1) and the maximum daylight
Earth pointing durations (C-2).

2. The resulting orbits are optimized under the constraint of
the payload duty cycle (C-3).

3. This result is processed, such that downlinks are planned
(taking into account the attitude profile via C-5) and the
memory consumption constraints are fulfilled (C-4).

Altogether this procedure keeps in every step the DTAs
(and DLAs) on the plan that can still be planned out of the
DTAs from the previous step (see Figure 6). Steps 1 and 2
optimize F1 while step 3 optimizes F2. Only if DTAs are
removed in step 3, the function F1 is considered again.
Therefore, a hierarchization of the constraints has been
made according to their interdependencies and expected
impacts on the planning result.

Figure 6: Constraint solving and optimization steps within one

hill climbing trial.

F

Search Space

G(t)

G0

t0 tG1

F

Search Space

Input

DTOs

DTAs

DTAs

DTAs

DLAs

1.

2.

3.

Timing Constraints within One Orbit

The input for this timing constraint is, that for any of the
URs one DTO is selected during which the DTA may be
implemented. We are therefore left with a set of (in the
global hill climbing part preselected) DTOs, each of which
will provide the time range to implement the corresponding
DTA. In this respect, implementing the corresponding
DTA means that the DTA is planned with the time range
and roll angle given by the corresponding DTO.
 Due to constraint C-1 we need to fulfill

(8) sn+1 – tn ≥ A(n+1,n).

A(n+1,n) computes the minimal attitude change duration
from the attitude information that is stored along with the
DTAs n+1 and n. sn denotes the start time of the n

th
 DTA

on the plan and tn denotes the end time of the n
th

 DTA.
DTAs are assumed to be ordered according to the start
time.
 In addition we need to fulfill C-2 by the following con-
ditions:

• The maximum time from start of first acquisition to end
of last acquisition, the “Acquisition Interval” (AI), with-
in one orbit is set via a parameter TT (nominally 15 min).

• There can be maximally one such session per orbit.

The optimization problem consists in choosing the AI and
the contained DTAs in a way that F1 is maximized. This
proceeds in the following steps (assume that the DTOs are
ordered according to their start time):

1. Construct the distinct maximum sets Sn of DTOs that are
consistent with TT.

2. Optimize within the every such set the choice of DTAs
according to F1.

3. Select the optimal set S
*
 according to F1.

An example to illustrate the first step is given in Figure 7.
There are three maximum sets and any further possible set
consistent with TT will be a subset of an already existing
one.

Figure 7: On the timeline, three maximum sets of DTOs (red) de-

termined for TT (blue) are indicated by arrows.

 For every such set Sn we then solve the optimization
problem of selecting the DTOs within that set that are con-
sistent with the attitude maneuver timing (given by the roll
angle change) and which maximize F1. This can directly be
done via dynamic programming (DP), see (Bellman 1954).
An explicit application of DP is given below for the duty
cycle constraint. Linear programming is not applicable for
solving this type of constraints, because an explicit selec-
tion on the DTOs must be made.

 The result of the first optimization step is an exact solu-
tion for the constraints C-1 and C-2 under the preselection
of one DTO per UR.

Payload Duty Cycle Constraint

After the first step of the temporal acquisition planning we
are left with a set of orbits and their optimal values for F1.
We then have to select among these orbits the ones that op-
timize the global F1 under the payload duty cycle constraint
C-3, which covers the following:

• There can be up to NE = 4 consecutive daylight Earth
pointing sessions.

• After such a sequence there shall be at least NS = 4 con-
secutive orbits without DTAs.

An example of the situation before optimizing and solving
for the payload duty cycle is shown in Figure 8.

Figure 8: Orbits with associated F1 after solving for C-1 and C-2.

 The optimization of F1 for the duty cycle constraint is
again based on dynamic programming. Starting from the
first orbit, we iterate over all orbits on the plan which are
available (i.e. have F1 different from zero). For every orbit
we iteratively construct the optimal choice of orbits under
the C-3, including orbits only up to this one. This optimiza-
tion involves the following steps for a given orbit OE:

• For every orbit OS prior to OE, for which OS to OE are
building a complete sequence of up to NE orbits with F1
different from 0:

◦ Merge the sequence [OS, OE] with the optimal choice
of sequences for the orbits before OS, taking into ac-
count NS orbits without DTAs.

 ◦ Compute the value F1 of the merged sequence.

• Choose the optimal OS, such that F1 is optimized for the
given sequences.

• Compare this F1 with the already computed optimal F1’s
for the previous OE’s.

• Record the optimal sequence, taking into account the
previous optima, for the end orbit OE. In case there are
two possibilities with same value F1, choose the one that
has already been computed for a previous OE.

• Go to the next OE.

The result of this procedure for the given example is shown
in Figure 9. Only DTAs within green orbits are taken over
to the memory and downlink planning.

F1

Time

Figure 9: Optimally assigned orbit sequence for the whole plan-

ning horizon.

Memory Constraints

As a last optimization step we consider the memory con-
straints C-4 and C-5. For that reason the memory consump-
tion is modeled by increasing the used memory level
whenever an image take happens during a DTA. In addi-
tion the download of images will lower the amount of used
memory.
 The main input to the downlink planning is the roll angle
profile (and orbit use profile) along the plan. Depending on
the planned acquisitions there are two possible cases:

• If an orbit is not used for acquisitions it can safely be
used for nighttime downlinks. Thus a corresponding
downlink window will be fully available.

• If an orbit contains already some DTAs, then we have to
calculate the maximum available uninterrupted downlink
time by using the roll angle profile in combination with
given contact time offsets for the different roll angles, as
provided in a flight dynamic sequence of events file.

After the useable downlink times have been generated, we
assign for every DTA a DLA. To account for the different
priorities expressed in Eq. (2), we assign the DTAs in order
of priority and start time to the first possible time slot.
 With this assignment of DTAs and DLAs we compute
the resulting memory profile and check it against the mass
memory size.
 If there are no constraint violations, then the solution of
the downlink planning is found. Otherwise, we need to re-
move some DTAs from the plan to allow for a valid
memory profile. This removal can be directly constructed
in a way that is optimal in the sense of F1.

Calculation of the Maximum Downlink Window. The
input for the daytime downlink window consists of:

• Planned DTAs and associated roll angles,

• Contact durations and offsets for different roll angles,

• Maximum AI duration TT.

Based on this information, we compute the maximum du-
ration of a downlink contact by superimposing the roll an-
gle profile onto the contact durations per roll angle. The
longest uninterrupted sequence is taken.

Figure 10: Possible downlink windows (green) within one contact

for a given set of DTAs (blue). Only the filled areas are available

for downlink.

 This is shown as example in Figure 10. There, the roll
angle profile (purple) and the DTAs (blue) are used to de-
termine the possible downlink durations (green). Note that
the time during the attitude maneuvers is not used here, be-
cause the maneuvers are not entirely within the roll angle
limits and we cannot assume a linear roll angle vs. time re-
lationship during the maneuvers. Because two windows are
possible we choose the first one as DLO for this contact,
i.e. the one that has the longer duration. Note that this
choice is made, because planning for PRISMA requires to
have only one uninterrupted link per contact.
 In case the contact duration extends beyond the time
range used for the DTAs, the maximum AI duration is
used, such that the planned Earth pointing activities (acqui-
sitions and downlinks) are contained within that interval.
Before the first acquisition (or after the last, if applicable)
the satellite is commanded to nadir pointing attitude, to
maximize the downlink time.

Computation of Downlink Activities. The assignment of
stored images (from DTAs) to DLAs proceeds in order of
priority level. In case of same level the first acquired image
is downlinked first. For every image sequence to be down-
linked we assign the first possible time slot within the pre-
viously determined downlink windows, see Figure 11. This
ensures an approximate (greedy) optimization of F2 for the
given set of DTAs.

Figure 11: Order of assignment of DLAs (green) during the

DLOs (orange) for a given set of DTAs (blue) with associated

priority levels P.

Memory Profile and Conflict Resolution. Derived from
the assigned DTAs and DLAs the memory profile is then
directly constructed by increasing the memory fill level at
the beginning of a DTA and decreasing the fill level after
downlink.
 In case the memory capacity is exceeded, this conflict
must be solved. In a first step it is determined which DTAs
contribute to the conflict. These are simply the ones that

F1

Time

Roll

Time

Time

1.2. 3.

P = 5 P = 3P = 8

occur in an interval between the time where the memory is
full and the last empty state.
 After the possible conflict causing DTAs are deter-
mined, the DTA with the highest priority level is removed
from the plan to keep the maximum possible F1. In case
that there are multiple such DTAs, the one with the largest
memory contribution is chosen. After that, the memory
profile is recalculated, going again through the downlink
planning steps above to account for any changes in the roll
angle profile.
 Special care has to be taken if the last remaining DTA
within one orbit is removed. In that case, a full impact as-
sessment on the orbit selection must be made, because an
orbit sequence of C-3 might become broken.

Benchmark Results

The benchmarks are computed with an input set of 500
URs for standard spot images (30×30 km area) that are dis-
tributed all over the world (see Figure 12). These URs are
supported by 2103 DTOs in a time range of 28 days.

Figure 12: Target points of the test data set.

Table 1: Priority level distribution.

Priority 1 10 11 12 13 14 15 16

Count 4 141 126 51 41 46 53 38

 The distribution of URs to the priority levels is listed in
Table 1 while the histogram of DTOs per UR can be seen
in Figure 13.

Figure 13: Histogram of number of DTOs per UR.

 For the downlink planning we consider only one down-
link station at Matera, so that either two or three contacts
are available every single day and every single night.

Algorithm Shootout

We compare the perturbed hill climbing (PHC) on the full
problem scope (including C-1 through C-5) with three al-
gorithmic variants:

• Standard hill climbing (SHC): Here, the perturbation
function G(t) is set to zero for all t.

• Simulated annealing (SA): Our version of SA draws
configurations by randomly altering the DTO preselec-
tion of single URs. The new configuration is accepted
with probability Q = exp[(F1,new − F1,old)/Z(t)]. Z is con-
structed as Z(t) = Z0×(1 − t/K)

2
, where K is the total

number of steps and t is the current step number. The re-
sult of the SA is the best value of F1 that has been found
during the iteration.

• Simple greedy search (SG): We order the URs accord-
ing to their priority. Then, starting with the most im-
portant UR, we try to add a DTA of the UR to the plan
by testing all its DTOs. The earliest possible DTO is
chosen and will be fixed for the UR during the pro-
cessing of all subsequent URs. The result after one loop
over the URs determines the value of F1.

The parameters of the PHC are taken to be K = 20,000 it-
erations, G0 = 0.2, G1 = 0.0001, t0 = 20. Further, regular
perturbations are included with a height of
G0′ = G0×(1−t/K) every 809 iterations (which corresponds
to the number of URs times the golden ratio).
 For the SHC we only set the perturbations of the PHC to
zero and perform the same number of iterations.
 The SA is performed with K = 100,000 iterations. A
manual optimization among different Z0 reveals a best
normalization factor of Z0 = 0.1.
 The SG has no tunable parameters, so that the results are
computed in a straightforward way.
 In addition to the quality measures, we also keep track
of the wall time W that is required for planning. All meas-
urements have been taken on a Intel Xeon X5560 CPU
(2.8 GHz). Programs are compiled with gcc 4.3.4 and flags
‘–O3 –march=core2 –mfpmath=sse –msse4.2’. Note that
the optimization flags lead to a speedup factor between 2.5
and 3 compared to ‘–O0 –g'.

Table 2: Planning quality comparison for different algorithms.

Method PHC SHC SA SG

F1′ 4 4 4 4
F1″ 21.364 20.702 21.596 16.066
R 244 236 248 181
W [sec] 49.8 51.6 59.6 1.1

 As shown in Table 2 the PHC algorithm is superior to
the SHC alternative while requiring about the same amount
of computation time.
 SA slightly outperforms the PHC in terms of solution
quality. The SA results, however, depend very much on the
chosen factor Z0. With Z0 = 0.2, for instance, only
F1″ = 20.990 and R = 241 were found. Such a strong de-
pendency on algorithm parameters has not been observed
by us in the PHC.

 0

 20

 40

 60

 80

 100

 120

 140

 160

0 1 2 3 4 5 6 7 8 9 10 11

DTOs per UR

Figure 14: Wall time dependence of intermediate results for PHC

and SA.

 We further compare the intermediate results during the
optimization for PHC and SA, see Figure 14. The PHC has
a much smoother convergence towards its optimum than
SA and show a steeper increase of the target function at
early planning times. Therefore the PHC should be pre-
ferred whenever a limitation of available planning time
may lead to a premature stop of optimization, such as in
urgent replanning situations close to an uplink contact.
This observation is similar to the comparison of (determin-
istic) Squeaky Wheel Optimization with (stochastic) genet-
ic algorithms (Barbulescu et al. 2004), where the stochastic
method becomes superior to the deterministic one for a
large number of iterations.
 The SG is inferior to all the other algorithmic options.
We conclude that a certain amount of (pseudo) random-
ness, as given in the PHC and SA, is beneficial to the algo-
rithm quality.

Planning Horizon Dependency

The full problem description is given on a time scale of
four weeks. We analyze the effects of planning this time
scale in subsequent blocks of size B = 14, 7, 4, and 2 days.
I.e. we start with the full set of URs on the first block and
only the so far unplanned URs are considered in the second
block, etc. Boundary conditions are taken from the previ-
ously planned block. The algorithm to be used is PHC as
described above. Note that the operational concept for the
PRISMA mission nominally foresees a DTA planning
horizon of only one day.

Table 3: Planning quality with different block sizes.

B 28 14 7 4 2

F1′ 4 4 4 4 4
F1″ 21.364 20.395 19.789 19.311 19.178
R 244 237 229 223 221

 The results of Table 3 show that for a fixed problem set-
ting it is highly beneficial to plan the complete time range
as a whole, given that enough computation power is avail-
able. The improved planning quality for larger blocks indi-
cates that global optimization is effective, i.e. the algo-
rithm successfully considers globally optimal solutions.

Memory Size Dependency

In all benchmark results above there are effectively no
constraints implied by the memory capacity. Therefore we
measure the effects on the planned DTAs per priority level
if the memory capacity is lowered to less than ten spot im-
ages in the 28 day scenario. Firstly, we have considered the
full set of constraints. In that case the PHC algorithm al-
lows to reach a high level of planned requests (>90% of
maximum) down to a capacity of three images, see Figure
15. The value of F1″ drops at exactly the same rate, indicat-
ing that the planned URs of the individual priority levels
are reduced by the very same factor when the memory ca-
pacity is lowered. The results further show that a high level
of service can be maintained, even if part of the memory
becomes unavailable (as it might happen on a long dura-
tion mission).

Figure 15: Planned URs and value of F1″ for varying memory

capacity.

 In a second run we have removed the constraint C-3. In
that case we find that the planned requests of the individual
priority levels drop at different rates, see the values of Q[P]
in Figure 16, which denote the ratio of the contribution to
F1″ from the priority P at specified memory capacity to the
value at maximum memory size. We conclude that the pay-
load duty cycle introduces a binding between different pri-
ority levels, because DTAs from different orbits are related
irrespective of their priority.

Comparison to (Nearly) Exact Results

By considering only the constraint C-1 with a fixed ma-
neuver duration of 70 seconds it is possible to obtain via
brute force optimization an exact result of F1 for a subset of
247 URs. In addition, we have invested about two days of
CPU time into stochastic optimization methods on the re-
maining URs to generate an (approximate) reference value
for the full set of 500 URs with the simplified constraint.
These results are F1′ = 4, F1″ = 33.482, and R = 394. After
only about 5 CPU seconds, the PHC method with the pa-
rameters given above reaches already F1″ = 33.042 (98.7%
of the reference), plans all urgent requests, and reaches
R = 387 (98.2% of the reference). Investing about 47 CPU
seconds (K = 200,000) further increases these values to
F1″ = 33.281 and R = 390. For comparison, SHC comes
pretty close to these results with F1″ = 33.228 and R = 390
using K = 200,000.

 12

 14

 16

 18

 20

 22

 0 10 20 30 40 50 60

F1''

W [sec]

PHC

SA

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10
 0

 5

 10

 15

 20

 25

R
F1''

Memory Capacity [Spot Images]

Figure 16: Priority dependence of the contribution to F1″ at dif-

ferent memory capacity.

Algorithmic Extensions

The algorithm as described above is very well suited to ex-
tensions. This allows for easy refinement and adopting to
different planning requirements.

Boundary Condition Handling

Any planning process is affected by the boundary condi-
tions, which dictate the constraints to be fulfilled at the be-
ginning of the planning horizon. These boundary condi-
tions are taken into account at the single constraint level.
E.g. the maneuver planning between two DTAs considers
the last DTA before the planning horizon and ensures that
enough time is given to perform a roll maneuver to reach
the first DTA within the planning horizon, while only the
memory constraint optimization considers the memory fill
level at the planning horizon start.

Replanning Strategies

The PRISMA mission does not pose any strict require-
ments for replanning scenarios. Therefore, the basic strate-
gy is given by replanning from scratch, i.e. the whole
timeline is planned again with the same input data.
 There are, however, more advanced strategies possible.
Any new to be planned URs on an already planned (and
uplinked) time range may be considered with their full set
of DTOs, while only the UR/DTO combinations are kept
that have been present as DTAs on the given time range.
The hill climbing is then started with these DTOs only, and
a quick and efficient replanning is achieved in the case that
the new URs are very important. Such a procedure implies
a replanning that discards any old DTAs that are in conflict
with the new requests.
 In case more flexibility is required in the replanning,
DTAs may be discarded and shifted just by considering all
DTOs of the already planned URs, but choosing as start
configuration for the hill climbing procedure the previous-
ly planned DTAs.

Parallelization

We have implemented the presented algorithm in a non-
threaded fashion. Nevertheless, there is room for parallel-

ization within the hill climbing iterations. For every itera-
tion solutions for multiple DTOs of the same UR need to
be computed. This point can be easily parallelized, for in-
stance by using OpenMP that has widely implemented
compiler support. In our test scenario we gain a speedup
factor of 1.5 by using two CPU cores.
 Using a parallelized version of the algorithm, a larger
CPU gain can be made by using multiple cores if instead of
coordinate ascent hill climbing the full neighborhood of a
given DTO selection is computed in a hill climbing step. In
that case, the total required CPU time per hill climbing step
scales with the number of URs.

Target Function Optimizations

The hill climbing loop does not directly depend on the tar-
get function that needs to be optimized. Therefore, the
freedom to define the target function can be used do prefer
early DTOs of urgent URs by means of putting a penalty
on F1 for later DTOs.

Limitations of the Algorithm

Downlink Planning

Although the planning of the timings within an orbit and
the planning of the optimal sequence of orbits can be done
in a mathematically exact way, the planning of the down-
link sequence is only an approximation to the optimal solu-
tion in terms F2. This behavior is a tradeoff between solu-
tion quality and planning speed, because in a situation
where memory capacity becomes a limiting factor, the
planning slows down severely.

Constraint Interaction

The conflict resolution in the planning of DLAs does not
cover that a removed DTA may have an impact on the
global planning of DTAs in the previous steps. E.g. if a
DTA from one orbit is removed, this orbit may never have
been selected, or the sequence of DTAs within that orbit
would have been determined differently. So the missing
feedback into the previous stages of the sequential han-
dling of the different constraint types leads to non-optimal
solutions, which is a general problem in complex planning
problems for oversubscribed resources, for instance in the
planning of Landsat 7 (Potter and Gasch 1998)
 However, the resulting effects are expected to be very
small and may be partially cured by the global hill climb-
ing procedure.

Conclusion

The perturbed hill climbing algorithm presented in this ar-
ticle has proven to be powerful both in terms of planning
quality and performance.
 The main ingredients are the (nearly) exact treatment of
a some constraint types and the mapping of the hill climb-

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 0 2 4 6 8 10

Q[P]

Memory Capacity [Spot Images]

P=10

P=12

P=14

P=16

ing search space to the allocation of URs to the DTOs and
not to the DTAs. Therefore, the shown procedure may be
considered as an algorithmic option whenever an exact (or
nearly exact) solution is known for a subproblem of the op-
timization and different choices are possible for the as-
signment of planning requests to planned time slots. Due to
the constraint handling, a valid solution is produced at
every iteration, and the algorithm may be stopped before
the expected number of steps is reached.
 Extensions to this algorithm are possible to fulfill an ex-
tended set of planning requirements in different operational
scenarios, such as replanning of an already planned time
range. This flexibility allows for variations of the algo-
rithm to be used in a wider class of missions with increased
flexibility and agility of the platform, thus opening ways to
improve local search based solutions (Lemaître et al. 2000)
by performing global optimization if multiple DTOs per
request are given. For instance, VEGA is currently devel-
oping, based on the VPT-E framework, a planning system
for another Earth observation mission that makes heavy
use of the shown results. The planning there is driven by a
strict ordering according to priority levels and the platform
allows for full roll, pitch, and yaw flexibility along and be-
tween the image takes. The algorithmic flexibility allows
us to trade result quality for a very fast result generation, so
that “last minute” insertions of very urgent requests are
possible just before an uplink contact.

Acknowledgments

We would like to thank Giuseppe Corrao for discussions
during the design of the algorithm. This work is derived
from VEGA’s development of a mission planning system
for Telespazio SpA.

References

Noll, J., and Steel, R. 2005. EKLOPS: An Adaptive Approach to

a Mission Planning System. In Aerospace Conference, IEEE

2005.

Sousa, B., and Noréus, E. 2010. Use and abuse of the Language

for Mission Planning by Venus Express. AIAA-2010-2101. In

SpaceOps 2010.

Bellman, R. 1954. The theory of dynamic programming. Bull.

Amer. Math. Soc. 60: 503-515.

Russell, S., and Norvig, P. eds. 2009. Artificial Intelligence: A

Modern Approach. Prentice Hall.

Bensana, E., Lemaître, M., and Verfaillie, G. 1999. Earth Obser-

vation Satellite Management. Constraints 4(3): 293-299.

Joslin, D. E., and Clements, D. P. 1999. “Squeaky Wheel” Opti-

mization. Journal of Artificial Intelligence Research 10 (1999)

353-373.

Barbulescu, L., Whitley, L. D., and Howe, A. E. 2004. Leap Be-

fore You Look: An Effective Strategy in an Oversubscribed

Scheduling Problem. In Proceedings of the 19th National Confer-

ence on Artificial Intelligence, 2004.

Potter, J.W., and Gasch, J. 1998. A Photo Album of Earth :

Scheduling Landsat 7 Mission Daily Activities, In Proceedings of

the International Symposium on Space Mission Operations and

Ground Data Systems, 1998.

Lemaître, M. et al. 2000. How to Manage the New Generation of

Agile Earth Observing Satellites? In Proceedings of the Interna-

tional Symposium on AI, Robotics, and Automation in Space,

2000.

	Abstract
	Introduction
	Planning Scope
	Objects in the Planning Process
	Constraint Setup
	Target Function

	Planning Strategy
	The Global Planning Loop – Hill Climbing
	Local Optimization on One UR
	Perturbed Hill Climbing
	Optimization and Constraint Solving
	Timing Constraints within One Orbit
	Payload Duty Cycle Constraint
	Memory Constraints

	Benchmark Results
	Algorithm Shootout
	Planning Horizon Dependency
	Memory Size Dependency
	Comparison to (Nearly) Exact Results

	Algorithmic Extensions
	Boundary Condition Handling
	Replanning Strategies
	Parallelization
	Target Function Optimizations

	Limitations of the Algorithm
	Downlink Planning
	Constraint Interaction

	Conclusion
	Acknowledgments
	References

