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Abstract 
Evolutionary multi-objective algorithms have great potential 
for scheduling in those situations where tradeoffs among 
competing objectives represent a key requirement. One 
challenge, however, is runtime performance, as a conse-
quence of evolving not just a single schedule, but an entire 
population, while attempting to sample the Pareto frontier as 
accurately and uniformly as possible. The growing availa-
bility of multi-core processors in end user workstations, and 
even laptops, has raised the question of the extent to which 
such hardware can be used to speed up evolutionary algo-
rithms. In this paper we report on early experiments in par-
allelizing a Generalized Differential Evolution (GDE) algo-
rithm for scheduling long-range activities on NASA's Deep 
Space Network. Initial results show that significant 
speedups can be achieved, but that performance does not 
necessarily improve as more cores are utilized. We describe 
our preliminary results and some initial suggestions from 
parallelizing the GDE algorithm. Directions for future work 
are outlined. 

 Introduction 

In the context of scheduling NASA's network of deep 
space communications antennas, shared among dozens of 
users, the use of multi-objective optimization provides 
some unique capabilities. It enables the explicit representa-
tion of user and system objectives, and therefore supports 
their tradeoffs, which can be user-to-user, or can be among 
users and the network operations as a whole. As part of a 
JPL project to upgrade the Deep Space Network (DSN) 
scheduling applications and databases, we have been inves-
tigating multi-objective optimization including problem 
representation, algorithms, performance, and user interfac-
es. In this paper we describe the overall long-range sched-
uling problem, and then specifically some recent progress 
on a parallel multi-core evolutionary algorithm. 
 There are a variety of approaches to parallelizing search 
algorithms, and specifically evolutionary algorithms. In the 
latter, a population of candidates is evolved to approxi-

mately sample the Pareto frontier. We have been particu-
larly interested in multi-core parallelism that would allow 
the use of readily available hardware in a higher perfor-
mance mode. In the following we first describe the sched-
uling domain of interest – NASA's Deep Space Network 
(DSN) – and how it is planned and scheduled. We then de-
scribe the evolutionary algorithm we are using and how we 
have applied it to the DSN application domain, and our de-
sign of a parallel multi-core version based on the Java 
ForkJoin library classes. This is followed by a description 
of our experiments and our initial results, including per-
formance improvements of nearly an order of magnitude 
speedup on commodity hardware. Finally we conclude 
with a brief description of plans for future work.  

Long-Range Scheduling for NASA’s DSN 

NASA’s Deep Space Network (DSN) (Imbriale 2003) is 
comprised of a set of large (34m and 70m diameter) anten-
nas and the associated equipment required to communicate 
with spacecraft, from those in high Earth orbit to the most 
distant man-made objects. These antennas are situated at 
three Deep Space Communications Complexes (DSCC), 
spaced roughly equally in longitude, to provide round the 
clock coverage for missions anywhere in space. Although 
capabilities vary from one antenna to another, and one 
complex to another, overall the DSN provides a range of S, 
X, and Ka band up- and downlink services to both NASA 
and international partner missions. These services include 
support for spacecraft telemetry, command, and tracking, 
as well as radio science, radio astronomy and Very Long 
Baseline Interferometry (VLBI), radar, and calibration. 
 Currently the DSN supports 37 spacecraft or service us-
ers, counting all those with regular requirements for sched-
uled time on any antenna. The mission users span a wide 
range of distance and orbit type: high earth orbit, lunar or-
bit, solar orbit, probes at Mercury, Venus, Mars, and Sat-
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urn (and en route to Jupiter and Pluto/Charon), and the as-
teroids, out to the two Voyager spacecraft in interstellar 
space. Ground-based users conduct radio science and radio 
astronomy using the antennas, including coordinated pro-
grams with international partners. Other activities that must 
be scheduled include routine and special maintenance, cal-
ibration, engineering, and test activities. The collected set 
of DSN users imposes a very wide range of usage require-
ments on the network due to differing designs and operat-
ing modes. Some users require occasional contacts of only 
a few hours per week, but this ranges up to continuous 
coverage during certain mission phases, such as post-
launch and during critical mission events. At the present 
time, a typical week includes about 500 scheduled activi-
ties on the antennas of the three DSN complexes. 

Scheduling the DSN 
The DSN scheduling process (Johnston et al. 2012) con-
sists of three phases, which do not have sharply defined 
boundaries: 

 Long-Range Planning and Forecasting. Long-range 
planning is based on user-provided high-level require-
ments, spanning from the present day to the anticipated end 
of mission. Long-range planning has several major purpos-
es: 

• studies and analyses: periods of particular interest or 
concern are examined to determine where there is like-
ly contention among missions, for example around 
launches or critical mission events (maneuvers, plane-
tary orbit insertion or landings), or when construction 
of a new DSN antenna is under investigation 

• downtime analysis: identifying periods of time when 
necessary antenna or other maintenance can be sched-
uled, attempting to minimize the impact on missions 

• future mission analysis: in proposal phase, missions can 
request analysis of their proposed DSN coverage as 
part of assessing and costing proposals for new mis-
sions 
The time range for long-range planning is generally six 

months or more into the future, frequently as much as 
years. 

Planning Request Specification

Scheduling Request Specification

Service Configuration Req'ts

Timing requirements
Duration (min/max) 
splittable? overlap, contiguous, gaps
min split duration, max # split segments

DSN asset options (antennas and equipment)

Priority

Visibility from various DSN antennas

Viewperiod Requirements

Non-visibility based timing constraints

Event Intervals

To other tracks/requests 
including min/max nominal gaps

Timing Relationships

DSN Domain Model
DSN Assets

Antennas including time-phased availability
Complexes
Equipment (antenna-specific and shared)
Downtime

Mission Service Configurations
Legal configuration choices
Default track attributes

Viewperiods
Computed visibility intervals

Network Parameters
MSPA mission groups and rules
Constellations
Conflict parameters, RFI rules

edit 
activities

invoke 
strategies

edit scheduling requests

Scheduling 
Engine S3 Users

Planning Request Phases/Timing
Mission phases and subphases
Repetition pattern, coverage
Fallback/alternative request parameters
Override and supplemental requests per phase

Planning 
Engine + 

Multiobjective 
Optimizer  

Planning/Forecasting Objectives
Objectives

Max utilization, min contention levels
Max request satisfaction w/o fallback DSN Planning 

Users
generated 

scheduling 
requests

edit /submit 
planning 
requests

run planning scenarios

Planning 
reports

 
 

Figure 1. Block diagram of LAPS showing commonality with the DSN mid-range scheduling software. New el-
ements for LAPS include Planning Requests (left), an explicit representation of objectives, a new planning en-
gine, and a user interface and reporting mechanism (top). The illustrated user interface (lower right) is from 

the S3 mid-range scheduling system web application. 



 Mid-Range Scheduling. The mid-range scheduling phase 
is when detailed user requirements are specified, integrat-
ed, negotiated, and all tracking activities finalized in the 
schedule. Starting at roughly 4-5 months before execution, 
users specify their detailed scheduling requirements on a 
rolling weekly basis. These requirements include: 

• detailed tracking time and services required 
• constraining time intervals and relationships 
• visibility constraints 
• flexibilities 

Further discussion of the nature of these requirements 
and flexibilities is provided elsewhere (Johnston et al. 
2012). The mid-range scheduling process includes an au-
tomated phase where conflicts are detected and minimized 
by the DSN Scheduling Engine, after which users collabo-
ratively negotiate any remaining conflicts using the S3 web 
application. 
 Near Real-time Scheduling. The (near) real-time phase 
of DSN scheduling starts roughly eight weeks from execu-
tion and includes the period through execution of all the 
scheduled activities. Late changes may occur for various 
reasons, and these can impact the mid-range phase as well. 

Loading Analysis and Planning Software (LAPS) 
The DSN has undertaken an overall unification and simpli-
fication of the scheduling software systems (Johnston et al. 
2012) of which the first increment has been operational 
since June 2011. This is called the Service Scheduling 
Software (SSS, or S3) and has initially been applied only to 
the mid-range process. The long-range component is in de-
velopment now, designated the Loading Analysis and 
Planning Software, or LAPS. 
 LAPS builds on the mid-range scheduling component 
that is already deployed operationally. However, it must 
additionally deal with some other factors, such as: 

• numerous and sometimes intrinsic sources of uncertain-
ty, including: 
- unpredictable spacecraft locations for some mis-

sions and trajectory types, leading to uncertainties 
in visibility times from the different DSN antennas 

- unknown science targets beyond some time horizon 
in the future 

- uncertainties in the mission set, due to funding 
changes, launch date changes, or mission extensions  

• optimization criteria and scenarios that differ from mid-
range, where the main objectives are to minimize con-
flicts in the schedule and violations of user require-
ments; for long-range a variety of other objectives may 
come into play, including: 
- identifying best times to schedule extended down-

time for preventive maintenance, minimizing the 
impact on active missions 

- identifying best times to schedule special flexible 
but resource intensive operations, such as reference 
frame calibration activities 

- maximizing the satisfaction of requirements where, 
due to contention, not all requirements can be satis-
fied across the entire DSN user base 

In addition, long range planning needs to provide in-
formation to mission planners about where contention with 
critical events may occur, so that this can be taken into ac-
count as early as possible in each mission’s planning pro-
cess. In many cases this needs to be provided during the 
mission proposal phase when, for both feasibility and cost-
ing, it is necessary to map out DSN allocation needs to 
some preliminary level of accuracy. 
 Finally, long-range planning needs to support specifica-
tion of a more abstract type of requirement with less detail 
than would be acceptable in mid-range. This serves two 
purposes: it represents at a coarse level some of the uncer-
tainty in requirements, and it makes it easier to specify 
“what if” alternative scenarios. 
 Figure 1. shows an overall block diagram of the LAPS 
software, emphasizing commonality with the mid-range 
system. One of the major new components is the planning 
engine and optimizer, the subject of further discussion be-
low. 

Multi-Objective Scheduling with an  
Evolutionary Algorithm 

In the DSN scheduling problem there are numerous objec-
tives from the missions and other users, as well as from 
overall system operations. Conventional approaches to 
schedule optimization would combine these into a single 
objective value to optimize. However, there is a significant 
drawback to this approach, in that it pre-specifies the 
tradeoffs among the different objectives. That is, for any 
given value of the combined single objective, the results of 
optimization will not distinguish between cases where any 
one mission’s objectives are satisfied anywhere from fully 
to not at all. From the perspective of a mission or user, 
such an optimization process is at least cause for concern. 
 An alternative approach is to use multi-objective optimi-
zation techniques, which retain the information in separate 
objectives until the end of the optimization process: see 
e.g. (Johnston 2006; Johnston 2008; Johnston & Giuliano 
2011a; Giuliano & Johnston 2008) and references therein. 
When there remains contention to be resolved, a multi-
objective approach will provide explicit information about 
the tradeoffs involved. Such visibility is important to users 
who may be required to compromise on the achievement of 
their objectives.  
 Among techniques developed to solve multi-objective 
optimization problems, evolutionary algorithms (Deb 



2001) have become popular for a variety of reasons, in-
cluding their capability to deal with objectives that are not 
mathematically well behaved (e.g. discontinuous, non-
differentiable). A solution is called Pareto-optimal when 
no improvement can be made to one objective which does 
not make worse at least one other objective. Because evo-
lutionary methods maintain a population of solutions, they 
can trace out the Pareto frontier, an approximation to the 
entire set of Pareto-optimal solutions. Evolutionary algo-
rithms also lend themselves to parallelization, which can 
be an advantage for large problems. Two important per-
formance characteristics of a multi-objective evolutionary 
algorithm are convergence to the Pareto frontier, and di-
versity so as to maximally sample the frontier. 
 The multi-objective optimization problem we consider is 
that of minimizing a set of M objectives subject to K con-
straints: 

minimize: ( ){ }xfi


, Mi …1=  

subject to: ( )( ) 0≤Tj xg  , Kj …1=  

Here x


 represents a vector in decision space of dimension 
D. Where necessary below, we refer to the ith member of 
the population at generation g as gix ,


. 

 An evolutionary algorithm formulation for multi-
objective optimization consists of a population of N solu-
tion candidates. With each step (generation) of the algo-
rithm, we evolve the population according to method-
specific rules for crossover and mutation. Crossover com-
bines elements of parent solution candidates to generate a 
new offspring candidate for evaluation. Mutation introduc-
es randomized variation in the offspring. 
 Depending on the procedure, following the crossover 
and mutation steps, the size of the population may have in-
creased. If so, it is reduced back to N through a selection 
procedure. The overall process repeats, with a cutoff gen-
erally determined by a specified maximum number of gen-
erations Gmax. 

Generalized Differential Evolution (GDE3) 
GDE3 (Kukkonen & Lampinen 2005) is an algorithm that 
uses Differential Evolution (DE) (Storn & Price 1997) as 
the basis for crossover and mutation operations, and non-
dominated sorting and crowding distance in a manner simi-
lar to NSGA II (Deb et al. 2002). DE is an evolutionary al-
gorithm for optimization, initially developed in a single ob-
jective context. DE is defined on real-valued decision 
spaces. It generates offspring through the following proce-
dure: 

1. For each parent ix


, select three distinct population 
members 

321
,, rrr xxx


, all different and different from 
parent 

2. Calculate a trial vector iy


 as:  
 ( )

321 rrri xxFxy


−⋅+=   
 where F is a scaling factor 

3. Modify the trial vector by binary crossover with parent 
with probability CR 

4. Calculate the objective and constraint values for the 
trial vector 

The result is compared with the parent as follows: 
• in the case of infeasible vectors, the trial vector is se-

lected if it weakly dominates the parent vector in con-
straint violation space, otherwise the parent vector is 
selected 

• in the case of feasible and infeasible vectors, the feasi-
ble vector is selected 

• if both vectors are feasible, then the trial is selected if it 
weakly dominates the parent in objective space; if the 
parent dominates the trial, then the parent is selected, 
and if neither dominate, then both are selected 

The selected vectors may constitute a set of size >N, in 
which case the population size is reduced by non-
dominated sorting, using crowding distance as a tie-breaker 
in order to bias selection towards better coverage of the Pa-
reto frontier (Deb et al. 2002).  
 GDE3 is appealing for several reasons: it provides a nat-
ural treatment of the K constraints, while reducing to 
standard DE when the number of objectives M=1. The 
treatment of constraints makes it straightforward to change 
constraints into objectives when investigating overcon-
strained problems. GDE3 performs very well in initial 
comparisons with other algorithms, and does not introduce 
any additional control parameters beyond F and CR from 
the original formulation of DE. 

DSN Long-Range Plan Optimization 
We have adapted the MUSE implementation of GDE3 
(Johnston & Giuliano 2009; Johnston & Giuliano 2011b) 
as the multi-objective algorithm for the LAPS long-range 
planning engine. In our current experimental version, deci-
sion variables represent the relative priority of each DSN 
user, binned into an adjustable interval duration. For the 
experiments report here, we used one-week intervals. As 
an additional decision variable we allow requirements to be 
tagged as nominal, reduced, or minimal, so that the loading 
analysis can automatically consider tradeoffs with reduced 
requirement scenarios. In our current experiments, howev-
er, all requirements were left at nominal. 
 For planning objectives we are currently using a very 
simple set of two minimization objectives: 

• O1: unscheduled requirement time, i.e. total time speci-
fied as required by users, but not able to fit into the 
plan 

• O2: total track duration scheduled on all antennas 



Objective O2 may seem unusual, but for a multi-objective 
formulation it is very informative: for a given level of un-
scheduled requirement time O1, a better schedule is one 
with more open antenna time, which would allow for addi-
tional new requirements to be met. 
 Our test problem includes requirements for a 16 week 
time span in 2012, totaling just over 3,000 requirements 
requesting 962 days of time on the 13 large (34m and 70m) 
DSN antennas. Typical scheduling runs place over 4,500 
activities on the schedule during these 16 weeks. There is 
less than 10% oversubscription, but there is no feasible 
schedule with all requirements met. 

Parallelizing the GDE3 Algorithm 

The GDE3 algorithm includes a loop that generates N new 
trial population members as described above; each new 
member requires the evaluation of the objective function 
values, which is the most time-consuming part of the algo-
rithm. However, because each such evaluation is inde-
pendent of the others, it is possible to parallelize this gen-
erate/evaluate portion of the algorithm. Each one of the N 
trials can be evaluated independently of the others, provid-
ed no dependencies are introduced by the evaluation mech-
anism. Once all N have been evaluated and selected (or 
not), the next step is to sort and reduce the population back 
to size N for the next generation. 
 An algorithm with this structure lends itself well to de-
composition into multiple independent computational 
tasks. Such tasks can be managed by execution frame-
works that have been developed for use in many languages 
and systems. Since LAPS is implemented in Java, we have 
investigated Java capabilities that support parallelism. The 
Java language itself includes thread primitives that could 
be used to implement parallel executing tasks suitable for 
this problem. However, the latest release of the Java lan-
guage, Java 7, includes a ForkJoin framework explicitly 
aimed at facilitating multi-core implementation of algo-
rithms in Java. We have evaluated this new framework and 
found that it provides a straightforward mechanism for 
parallelizing the GDE3 algorithm, as follows: 

• (Fork) For each generation, create N Java Callable 
tasks that implement steps 1-4 above, including time-
consuming the objective calculation 

• (Join) When all N tasks have completed, perform the 
population reduction as needed, then prepare for the 
next generation 

The ForkJoin implementation in Java defaults to creating 
the maximum number of parallel activities supported by 
the hardware platform. However, it provides parameteriza-
tion so that the user can run with a specified degree of par-
allelism. When set to a value of 1, the framework runs es-
sentially serially. We have used this parameterized capabil-

ity to evaluate the increasing benefit of more cores, and to 
see where diminishing returns sets in. 

Results 

We have conducted a series of experiments on three differ-
ent multi-core computers described in Table 1. Two of the-
se are end-user systems such as may be found in a typical 
high-end office environment. The Linux server is a more 
expensive ($25K) rack-mounted server such as might be 
found in a typical data center. 
 

System Description Processor RAM cores 
A Laptop – Mac-

Book Pro (2012 
retina display) 

2.7 GHz 
Core i7 

16 GB 8 

B Desktop – Mac 
Pro (2011) 

2x 2.93 
GHz Xeon 
X5670 

64 GB 24 

C Linux server 
Sunfire x4450 
(2009) 

4x 2.66 
GHz Xeon 
X7460 

128 GB 24 

Table 1. The experimental system configurations. 
 
For an initial set of experiments, we modified the serial 
GDE3 algorithm to make use of the Java 7 ForkJoin 
framework and compared run times when ForkJoin was 
constrained to use just a single core. We found the results 
to be virtually identical, and so as a basis of comparison we 
use the “1-core” results to measure speedup. 
 The effect of adding additional cores for system A (lap-
top) is shown in Figure 2A. For these runs, the maximum 
heap size was set at 12GB. Going from one to two cores 
led to a speedup factor of 1.8, but the improvement leveled 
out quickly and the maximum speedup (with 8 cores) was a 
factor of 3.0. In contrast, the desktop system (Figure 2B), 
with a total of 24 cores, continued to show noticeable im-
provement until about half of these were utilized: the over-
all speedup factor topped out at about 7.3.  
 This uniform improvement with increasing number of 
cores on systems (A) and (B) did not hold on the third sys-
tem (C) however. Figure 2C shows the results of executing 
the test on the Linux server system (C). This server has 
somewhat older and slower processors and so took longer 
per generation than the other two systems by about a factor 
of 2 to 3. Increasing the number of cores to 12 showed a 
similar proportional improvement to system (B), about 
7.3x speedup, but adding more cores initially made little 
difference, then performance worsened dramatically: using 
24 cores was about the same as 2! This effect, while unex-
pected, has been reported as a consequence of memory 
bandwidth limitations (Singer 2009), which is consistent 
with it appearing on the oldest of our test systems. 
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(A) Macbook Pro (2012) - 8 cores
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(B) MacPro (2011) - 24 cores
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(C) Sunfire x4450 (2009) - 24 cores


 
Figure 2: (A) Time per generation speedup for the 
laptop system vs. number of cores. The maximum 
speedup is about a factor of 3; (B) same for the desk-
top system vs. number of cores. The maximum 
speedup is about 7.3x but levels out at about 12 
cores; (C) same for the Linux server system vs. num-
ber of cores. The maximum speedup is also about 
7.3x for 12 cores, but worsens as more cores are used 
to the point that 24 cores are not much better than 2. 

 We conducted some investigation of the effect of maxi-
mum heap size on our results. First, it is necessary to point 
out that for this particular problem, the objective calcula-
tion requires the generation of a large number of transient 
Java objects that need to be reclaimed from the heap when 
no longer needed. Java has very efficient garbage collec-
tion mechanisms, but it does introduce some coupling 
among the multiple independent tasks that they are sharing 
the Java heap. For the laptop system A, we found that run-
ning with a 4GB heap size (vs 12GB) caused a slowdown 
of about 25% in runtime for the most parallel runs, but a 
negligible slowdown for small numbers of cores. This is to 
be expected as the large number of parallel tasks tends to 
consume a correspondingly large amount of heap space. 
On the desktop system, we found that running with a very 
large heap (48GB) led to only a 13% improvement over 
runs with a 12GB heap, the same as the maximum on the 
laptop system A. Clearly it is important to allocate enough 
heap for the multiple parallel tasks to run with minimal 
contention, but providing much more heap does not make a 
significant difference. 
 To help those interested in applying this ForkJoin mech-
anism to their own algorithms, we offer the following sug-
gestions: 

• design the objective function evaluation with minimal 
writing to shared data structures, and be sure that any 
such access is synchronized 

• allocate only a single ForkJoin instance (which creates 
the worker threads as a relatively expensive operation) 
and make multiple calls to invoke the parallel tasks 

• ensure sufficient heap size to allow the desired number 
of parallel tasks to coexist without being close to the 
maximum heap – this will minimize slowdowns due to 
garbage collection 

• assess performance as more cores are added to ensure 
that memory bus contention does not negate the gains 
arising from increased parallelism 

Relationship to Previous Work 
Previous work related to ours falls into several categories. 
First, there has been a good deal of general investigation of 
parallel evolutionary algorithms of all kinds. The ability to 
decompose computations on different population members 
has been explored in a wide range of parallel algorithms, 
for example (Alba & Tomassini 2002; Luque et al. 2005; 
Nedjah et al. 2006). In addition, there has been specific 
work on parallelizing the single objective form of differen-
tial evolution (DE), such as described in (Tasoulis et al. 
2004) and (Storn 2008). Finally, some researchers have 
addressed single objective multi-core parallel DE with al-
gorithm variants, on test problem sets (Tagawa & Ishimizu 
2010) and as applied to medical image registration (Cao et 
al. 2009). The parallelization of single objective DE and 



multi-objective GDE3 follows very similar lines, but we 
are not aware of any published results for parallelized mul-
ti-objective DE. 

Conclusions 

In this paper we have described the application of an evo-
lutionary multi-objective algorithm to the DSN long-range 
scheduling problem, and of our initial experience in paral-
lelizing this algorithm to take advantage of standard com-
mercial multi-core hardware. We have measured speedups 
between 3x and 7x on laptop and desktop systems, respec-
tively, which represent a major performance boost. How-
ever, we also encountered a system where increasing paral-
lelism did not continue to improve performance. 
 The next stage in our investigation of these algorithms is 
to explore how solution quality varies with parameter 
(population size, number of generations, etc.), and our par-
allel multi-core implementation will enable a much more 
efficient investigation.  
 Additionally, we are investigating: 

• the use of local search techniques to further improve 
generated schedules 

• how alternative decision variable representations affect 
solution quality 

• user presentation techniques to enable visibility into 
tradeoffs among objectives 
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