

Experiments with a Parallel Multi-Objective
Evolutionary Algorithm for Scheduling

Matthew Brown
University of Southern California,

Los Angeles, CA, 90089
matthew.a.brown @ usc.edu

Mark D. Johnston
Jet Propulsion Laboratory/Calif. Inst. of Technology,

Pasadena, CA 91109
mark.d.johnston @ jpl.nasa.gov

Abstract
Evolutionary multi-objective algorithms have great potential
for scheduling in those situations where tradeoffs among
competing objectives represent a key requirement. One
challenge, however, is runtime performance, as a conse-
quence of evolving not just a single schedule, but an entire
population, while attempting to sample the Pareto frontier as
accurately and uniformly as possible. The growing availa-
bility of multi-core processors in end user workstations, and
even laptops, has raised the question of the extent to which
such hardware can be used to speed up evolutionary algo-
rithms. In this paper we report on early experiments in par-
allelizing a Generalized Differential Evolution (GDE) algo-
rithm for scheduling long-range activities on NASA's Deep
Space Network. Initial results show that significant
speedups can be achieved, but that performance does not
necessarily improve as more cores are utilized. We describe
our preliminary results and some initial suggestions from
parallelizing the GDE algorithm. Directions for future work
are outlined.

 Introduction

In the context of scheduling NASA's network of deep
space communications antennas, shared among dozens of
users, the use of multi-objective optimization provides
some unique capabilities. It enables the explicit representa-
tion of user and system objectives, and therefore supports
their tradeoffs, which can be user-to-user, or can be among
users and the network operations as a whole. As part of a
JPL project to upgrade the Deep Space Network (DSN)
scheduling applications and databases, we have been inves-
tigating multi-objective optimization including problem
representation, algorithms, performance, and user interfac-
es. In this paper we describe the overall long-range sched-
uling problem, and then specifically some recent progress
on a parallel multi-core evolutionary algorithm.
 There are a variety of approaches to parallelizing search
algorithms, and specifically evolutionary algorithms. In the
latter, a population of candidates is evolved to approxi-

mately sample the Pareto frontier. We have been particu-
larly interested in multi-core parallelism that would allow
the use of readily available hardware in a higher perfor-
mance mode. In the following we first describe the sched-
uling domain of interest – NASA's Deep Space Network
(DSN) – and how it is planned and scheduled. We then de-
scribe the evolutionary algorithm we are using and how we
have applied it to the DSN application domain, and our de-
sign of a parallel multi-core version based on the Java
ForkJoin library classes. This is followed by a description
of our experiments and our initial results, including per-
formance improvements of nearly an order of magnitude
speedup on commodity hardware. Finally we conclude
with a brief description of plans for future work.

Long-Range Scheduling for NASA’s DSN

NASA’s Deep Space Network (DSN) (Imbriale 2003) is
comprised of a set of large (34m and 70m diameter) anten-
nas and the associated equipment required to communicate
with spacecraft, from those in high Earth orbit to the most
distant man-made objects. These antennas are situated at
three Deep Space Communications Complexes (DSCC),
spaced roughly equally in longitude, to provide round the
clock coverage for missions anywhere in space. Although
capabilities vary from one antenna to another, and one
complex to another, overall the DSN provides a range of S,
X, and Ka band up- and downlink services to both NASA
and international partner missions. These services include
support for spacecraft telemetry, command, and tracking,
as well as radio science, radio astronomy and Very Long
Baseline Interferometry (VLBI), radar, and calibration.
 Currently the DSN supports 37 spacecraft or service us-
ers, counting all those with regular requirements for sched-
uled time on any antenna. The mission users span a wide
range of distance and orbit type: high earth orbit, lunar or-
bit, solar orbit, probes at Mercury, Venus, Mars, and Sat-

Copyright © 2013. All rights reserved.

urn (and en route to Jupiter and Pluto/Charon), and the as-
teroids, out to the two Voyager spacecraft in interstellar
space. Ground-based users conduct radio science and radio
astronomy using the antennas, including coordinated pro-
grams with international partners. Other activities that must
be scheduled include routine and special maintenance, cal-
ibration, engineering, and test activities. The collected set
of DSN users imposes a very wide range of usage require-
ments on the network due to differing designs and operat-
ing modes. Some users require occasional contacts of only
a few hours per week, but this ranges up to continuous
coverage during certain mission phases, such as post-
launch and during critical mission events. At the present
time, a typical week includes about 500 scheduled activi-
ties on the antennas of the three DSN complexes.

Scheduling the DSN
The DSN scheduling process (Johnston et al. 2012) con-
sists of three phases, which do not have sharply defined
boundaries:

 Long-Range Planning and Forecasting. Long-range
planning is based on user-provided high-level require-
ments, spanning from the present day to the anticipated end
of mission. Long-range planning has several major purpos-
es:

• studies and analyses: periods of particular interest or
concern are examined to determine where there is like-
ly contention among missions, for example around
launches or critical mission events (maneuvers, plane-
tary orbit insertion or landings), or when construction
of a new DSN antenna is under investigation

• downtime analysis: identifying periods of time when
necessary antenna or other maintenance can be sched-
uled, attempting to minimize the impact on missions

• future mission analysis: in proposal phase, missions can
request analysis of their proposed DSN coverage as
part of assessing and costing proposals for new mis-
sions
The time range for long-range planning is generally six

months or more into the future, frequently as much as
years.

Planning Request Specification

Scheduling Request Specification

Service Configuration Req'ts

Timing requirements
Duration (min/max)
splittable? overlap, contiguous, gaps
min split duration, max # split segments

DSN asset options (antennas and equipment)

Priority

Visibility from various DSN antennas

Viewperiod Requirements

Non-visibility based timing constraints

Event Intervals

To other tracks/requests
including min/max nominal gaps

Timing Relationships

DSN Domain Model
DSN Assets

Antennas including time-phased availability
Complexes
Equipment (antenna-specific and shared)
Downtime

Mission Service Configurations
Legal configuration choices
Default track attributes

Viewperiods
Computed visibility intervals

Network Parameters
MSPA mission groups and rules
Constellations
Conflict parameters, RFI rules

edit
activities

invoke
strategies

edit scheduling requests

Scheduling
Engine S3 Users

Planning Request Phases/Timing
Mission phases and subphases
Repetition pattern, coverage
Fallback/alternative request parameters
Override and supplemental requests per phase

Planning
Engine +

Multiobjective
Optimizer

Planning/Forecasting Objectives
Objectives

Max utilization, min contention levels
Max request satisfaction w/o fallback DSN Planning

Users
generated

scheduling
requests

edit /submit
planning
requests

run planning scenarios

Planning
reports

Figure 1. Block diagram of LAPS showing commonality with the DSN mid-range scheduling software. New el-
ements for LAPS include Planning Requests (left), an explicit representation of objectives, a new planning en-
gine, and a user interface and reporting mechanism (top). The illustrated user interface (lower right) is from

the S3 mid-range scheduling system web application.

 Mid-Range Scheduling. The mid-range scheduling phase
is when detailed user requirements are specified, integrat-
ed, negotiated, and all tracking activities finalized in the
schedule. Starting at roughly 4-5 months before execution,
users specify their detailed scheduling requirements on a
rolling weekly basis. These requirements include:

• detailed tracking time and services required
• constraining time intervals and relationships
• visibility constraints
• flexibilities

Further discussion of the nature of these requirements
and flexibilities is provided elsewhere (Johnston et al.
2012). The mid-range scheduling process includes an au-
tomated phase where conflicts are detected and minimized
by the DSN Scheduling Engine, after which users collabo-
ratively negotiate any remaining conflicts using the S3 web
application.
 Near Real-time Scheduling. The (near) real-time phase
of DSN scheduling starts roughly eight weeks from execu-
tion and includes the period through execution of all the
scheduled activities. Late changes may occur for various
reasons, and these can impact the mid-range phase as well.

Loading Analysis and Planning Software (LAPS)
The DSN has undertaken an overall unification and simpli-
fication of the scheduling software systems (Johnston et al.
2012) of which the first increment has been operational
since June 2011. This is called the Service Scheduling
Software (SSS, or S3) and has initially been applied only to
the mid-range process. The long-range component is in de-
velopment now, designated the Loading Analysis and
Planning Software, or LAPS.
 LAPS builds on the mid-range scheduling component
that is already deployed operationally. However, it must
additionally deal with some other factors, such as:

• numerous and sometimes intrinsic sources of uncertain-
ty, including:
- unpredictable spacecraft locations for some mis-

sions and trajectory types, leading to uncertainties
in visibility times from the different DSN antennas

- unknown science targets beyond some time horizon
in the future

- uncertainties in the mission set, due to funding
changes, launch date changes, or mission extensions

• optimization criteria and scenarios that differ from mid-
range, where the main objectives are to minimize con-
flicts in the schedule and violations of user require-
ments; for long-range a variety of other objectives may
come into play, including:
- identifying best times to schedule extended down-

time for preventive maintenance, minimizing the
impact on active missions

- identifying best times to schedule special flexible
but resource intensive operations, such as reference
frame calibration activities

- maximizing the satisfaction of requirements where,
due to contention, not all requirements can be satis-
fied across the entire DSN user base

In addition, long range planning needs to provide in-
formation to mission planners about where contention with
critical events may occur, so that this can be taken into ac-
count as early as possible in each mission’s planning pro-
cess. In many cases this needs to be provided during the
mission proposal phase when, for both feasibility and cost-
ing, it is necessary to map out DSN allocation needs to
some preliminary level of accuracy.
 Finally, long-range planning needs to support specifica-
tion of a more abstract type of requirement with less detail
than would be acceptable in mid-range. This serves two
purposes: it represents at a coarse level some of the uncer-
tainty in requirements, and it makes it easier to specify
“what if” alternative scenarios.
 Figure 1. shows an overall block diagram of the LAPS
software, emphasizing commonality with the mid-range
system. One of the major new components is the planning
engine and optimizer, the subject of further discussion be-
low.

Multi-Objective Scheduling with an
Evolutionary Algorithm

In the DSN scheduling problem there are numerous objec-
tives from the missions and other users, as well as from
overall system operations. Conventional approaches to
schedule optimization would combine these into a single
objective value to optimize. However, there is a significant
drawback to this approach, in that it pre-specifies the
tradeoffs among the different objectives. That is, for any
given value of the combined single objective, the results of
optimization will not distinguish between cases where any
one mission’s objectives are satisfied anywhere from fully
to not at all. From the perspective of a mission or user,
such an optimization process is at least cause for concern.
 An alternative approach is to use multi-objective optimi-
zation techniques, which retain the information in separate
objectives until the end of the optimization process: see
e.g. (Johnston 2006; Johnston 2008; Johnston & Giuliano
2011a; Giuliano & Johnston 2008) and references therein.
When there remains contention to be resolved, a multi-
objective approach will provide explicit information about
the tradeoffs involved. Such visibility is important to users
who may be required to compromise on the achievement of
their objectives.
 Among techniques developed to solve multi-objective
optimization problems, evolutionary algorithms (Deb

2001) have become popular for a variety of reasons, in-
cluding their capability to deal with objectives that are not
mathematically well behaved (e.g. discontinuous, non-
differentiable). A solution is called Pareto-optimal when
no improvement can be made to one objective which does
not make worse at least one other objective. Because evo-
lutionary methods maintain a population of solutions, they
can trace out the Pareto frontier, an approximation to the
entire set of Pareto-optimal solutions. Evolutionary algo-
rithms also lend themselves to parallelization, which can
be an advantage for large problems. Two important per-
formance characteristics of a multi-objective evolutionary
algorithm are convergence to the Pareto frontier, and di-
versity so as to maximally sample the frontier.
 The multi-objective optimization problem we consider is
that of minimizing a set of M objectives subject to K con-
straints:

minimize: (){ }xfi


, Mi …1=

subject to: ()() 0≤Tj xg  , Kj …1=

Here x


 represents a vector in decision space of dimension
D. Where necessary below, we refer to the ith member of
the population at generation g as gix ,


.

 An evolutionary algorithm formulation for multi-
objective optimization consists of a population of N solu-
tion candidates. With each step (generation) of the algo-
rithm, we evolve the population according to method-
specific rules for crossover and mutation. Crossover com-
bines elements of parent solution candidates to generate a
new offspring candidate for evaluation. Mutation introduc-
es randomized variation in the offspring.
 Depending on the procedure, following the crossover
and mutation steps, the size of the population may have in-
creased. If so, it is reduced back to N through a selection
procedure. The overall process repeats, with a cutoff gen-
erally determined by a specified maximum number of gen-
erations Gmax.

Generalized Differential Evolution (GDE3)
GDE3 (Kukkonen & Lampinen 2005) is an algorithm that
uses Differential Evolution (DE) (Storn & Price 1997) as
the basis for crossover and mutation operations, and non-
dominated sorting and crowding distance in a manner simi-
lar to NSGA II (Deb et al. 2002). DE is an evolutionary al-
gorithm for optimization, initially developed in a single ob-
jective context. DE is defined on real-valued decision
spaces. It generates offspring through the following proce-
dure:

1. For each parent ix


, select three distinct population
members

321
,, rrr xxx


, all different and different from
parent

2. Calculate a trial vector iy


 as:
 ()

321 rrri xxFxy


−⋅+=
 where F is a scaling factor

3. Modify the trial vector by binary crossover with parent
with probability CR

4. Calculate the objective and constraint values for the
trial vector

The result is compared with the parent as follows:
• in the case of infeasible vectors, the trial vector is se-

lected if it weakly dominates the parent vector in con-
straint violation space, otherwise the parent vector is
selected

• in the case of feasible and infeasible vectors, the feasi-
ble vector is selected

• if both vectors are feasible, then the trial is selected if it
weakly dominates the parent in objective space; if the
parent dominates the trial, then the parent is selected,
and if neither dominate, then both are selected

The selected vectors may constitute a set of size >N, in
which case the population size is reduced by non-
dominated sorting, using crowding distance as a tie-breaker
in order to bias selection towards better coverage of the Pa-
reto frontier (Deb et al. 2002).
 GDE3 is appealing for several reasons: it provides a nat-
ural treatment of the K constraints, while reducing to
standard DE when the number of objectives M=1. The
treatment of constraints makes it straightforward to change
constraints into objectives when investigating overcon-
strained problems. GDE3 performs very well in initial
comparisons with other algorithms, and does not introduce
any additional control parameters beyond F and CR from
the original formulation of DE.

DSN Long-Range Plan Optimization
We have adapted the MUSE implementation of GDE3
(Johnston & Giuliano 2009; Johnston & Giuliano 2011b)
as the multi-objective algorithm for the LAPS long-range
planning engine. In our current experimental version, deci-
sion variables represent the relative priority of each DSN
user, binned into an adjustable interval duration. For the
experiments report here, we used one-week intervals. As
an additional decision variable we allow requirements to be
tagged as nominal, reduced, or minimal, so that the loading
analysis can automatically consider tradeoffs with reduced
requirement scenarios. In our current experiments, howev-
er, all requirements were left at nominal.
 For planning objectives we are currently using a very
simple set of two minimization objectives:

• O1: unscheduled requirement time, i.e. total time speci-
fied as required by users, but not able to fit into the
plan

• O2: total track duration scheduled on all antennas

Objective O2 may seem unusual, but for a multi-objective
formulation it is very informative: for a given level of un-
scheduled requirement time O1, a better schedule is one
with more open antenna time, which would allow for addi-
tional new requirements to be met.
 Our test problem includes requirements for a 16 week
time span in 2012, totaling just over 3,000 requirements
requesting 962 days of time on the 13 large (34m and 70m)
DSN antennas. Typical scheduling runs place over 4,500
activities on the schedule during these 16 weeks. There is
less than 10% oversubscription, but there is no feasible
schedule with all requirements met.

Parallelizing the GDE3 Algorithm

The GDE3 algorithm includes a loop that generates N new
trial population members as described above; each new
member requires the evaluation of the objective function
values, which is the most time-consuming part of the algo-
rithm. However, because each such evaluation is inde-
pendent of the others, it is possible to parallelize this gen-
erate/evaluate portion of the algorithm. Each one of the N
trials can be evaluated independently of the others, provid-
ed no dependencies are introduced by the evaluation mech-
anism. Once all N have been evaluated and selected (or
not), the next step is to sort and reduce the population back
to size N for the next generation.
 An algorithm with this structure lends itself well to de-
composition into multiple independent computational
tasks. Such tasks can be managed by execution frame-
works that have been developed for use in many languages
and systems. Since LAPS is implemented in Java, we have
investigated Java capabilities that support parallelism. The
Java language itself includes thread primitives that could
be used to implement parallel executing tasks suitable for
this problem. However, the latest release of the Java lan-
guage, Java 7, includes a ForkJoin framework explicitly
aimed at facilitating multi-core implementation of algo-
rithms in Java. We have evaluated this new framework and
found that it provides a straightforward mechanism for
parallelizing the GDE3 algorithm, as follows:

• (Fork) For each generation, create N Java Callable
tasks that implement steps 1-4 above, including time-
consuming the objective calculation

• (Join) When all N tasks have completed, perform the
population reduction as needed, then prepare for the
next generation

The ForkJoin implementation in Java defaults to creating
the maximum number of parallel activities supported by
the hardware platform. However, it provides parameteriza-
tion so that the user can run with a specified degree of par-
allelism. When set to a value of 1, the framework runs es-
sentially serially. We have used this parameterized capabil-

ity to evaluate the increasing benefit of more cores, and to
see where diminishing returns sets in.

Results

We have conducted a series of experiments on three differ-
ent multi-core computers described in Table 1. Two of the-
se are end-user systems such as may be found in a typical
high-end office environment. The Linux server is a more
expensive ($25K) rack-mounted server such as might be
found in a typical data center.

System Description Processor RAM cores
A Laptop – Mac-

Book Pro (2012
retina display)

2.7 GHz
Core i7

16 GB 8

B Desktop – Mac
Pro (2011)

2x 2.93
GHz Xeon
X5670

64 GB 24

C Linux server
Sunfire x4450
(2009)

4x 2.66
GHz Xeon
X7460

128 GB 24

Table 1. The experimental system configurations.

For an initial set of experiments, we modified the serial
GDE3 algorithm to make use of the Java 7 ForkJoin
framework and compared run times when ForkJoin was
constrained to use just a single core. We found the results
to be virtually identical, and so as a basis of comparison we
use the “1-core” results to measure speedup.
 The effect of adding additional cores for system A (lap-
top) is shown in Figure 2A. For these runs, the maximum
heap size was set at 12GB. Going from one to two cores
led to a speedup factor of 1.8, but the improvement leveled
out quickly and the maximum speedup (with 8 cores) was a
factor of 3.0. In contrast, the desktop system (Figure 2B),
with a total of 24 cores, continued to show noticeable im-
provement until about half of these were utilized: the over-
all speedup factor topped out at about 7.3.
 This uniform improvement with increasing number of
cores on systems (A) and (B) did not hold on the third sys-
tem (C) however. Figure 2C shows the results of executing
the test on the Linux server system (C). This server has
somewhat older and slower processors and so took longer
per generation than the other two systems by about a factor
of 2 to 3. Increasing the number of cores to 12 showed a
similar proportional improvement to system (B), about
7.3x speedup, but adding more cores initially made little
difference, then performance worsened dramatically: using
24 cores was about the same as 2! This effect, while unex-
pected, has been reported as a consequence of memory
bandwidth limitations (Singer 2009), which is consistent
with it appearing on the oldest of our test systems.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0
 2
 4
 6
 8

tim
e

pe
r g

en
er

at
io

n
(s

ec
on

ds
)

cores

(A) Macbook Pro (2012) - 8 cores

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0
 5
 10
 15
 20
 25
tim
e

pe
r g

en
er

at
io

n
(s

ec
on

ds
)

cores

(B) MacPro (2011) - 24 cores

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0
 5
 10
 15
 20
 25
tim
e

pe
r g

en
er

at
io

n
(s

ec
on

ds
)

cores

(C) Sunfire x4450 (2009) - 24 cores

Figure 2: (A) Time per generation speedup for the
laptop system vs. number of cores. The maximum
speedup is about a factor of 3; (B) same for the desk-
top system vs. number of cores. The maximum
speedup is about 7.3x but levels out at about 12
cores; (C) same for the Linux server system vs. num-
ber of cores. The maximum speedup is also about
7.3x for 12 cores, but worsens as more cores are used
to the point that 24 cores are not much better than 2.

 We conducted some investigation of the effect of maxi-
mum heap size on our results. First, it is necessary to point
out that for this particular problem, the objective calcula-
tion requires the generation of a large number of transient
Java objects that need to be reclaimed from the heap when
no longer needed. Java has very efficient garbage collec-
tion mechanisms, but it does introduce some coupling
among the multiple independent tasks that they are sharing
the Java heap. For the laptop system A, we found that run-
ning with a 4GB heap size (vs 12GB) caused a slowdown
of about 25% in runtime for the most parallel runs, but a
negligible slowdown for small numbers of cores. This is to
be expected as the large number of parallel tasks tends to
consume a correspondingly large amount of heap space.
On the desktop system, we found that running with a very
large heap (48GB) led to only a 13% improvement over
runs with a 12GB heap, the same as the maximum on the
laptop system A. Clearly it is important to allocate enough
heap for the multiple parallel tasks to run with minimal
contention, but providing much more heap does not make a
significant difference.
 To help those interested in applying this ForkJoin mech-
anism to their own algorithms, we offer the following sug-
gestions:

• design the objective function evaluation with minimal
writing to shared data structures, and be sure that any
such access is synchronized

• allocate only a single ForkJoin instance (which creates
the worker threads as a relatively expensive operation)
and make multiple calls to invoke the parallel tasks

• ensure sufficient heap size to allow the desired number
of parallel tasks to coexist without being close to the
maximum heap – this will minimize slowdowns due to
garbage collection

• assess performance as more cores are added to ensure
that memory bus contention does not negate the gains
arising from increased parallelism

Relationship to Previous Work
Previous work related to ours falls into several categories.
First, there has been a good deal of general investigation of
parallel evolutionary algorithms of all kinds. The ability to
decompose computations on different population members
has been explored in a wide range of parallel algorithms,
for example (Alba & Tomassini 2002; Luque et al. 2005;
Nedjah et al. 2006). In addition, there has been specific
work on parallelizing the single objective form of differen-
tial evolution (DE), such as described in (Tasoulis et al.
2004) and (Storn 2008). Finally, some researchers have
addressed single objective multi-core parallel DE with al-
gorithm variants, on test problem sets (Tagawa & Ishimizu
2010) and as applied to medical image registration (Cao et
al. 2009). The parallelization of single objective DE and

multi-objective GDE3 follows very similar lines, but we
are not aware of any published results for parallelized mul-
ti-objective DE.

Conclusions

In this paper we have described the application of an evo-
lutionary multi-objective algorithm to the DSN long-range
scheduling problem, and of our initial experience in paral-
lelizing this algorithm to take advantage of standard com-
mercial multi-core hardware. We have measured speedups
between 3x and 7x on laptop and desktop systems, respec-
tively, which represent a major performance boost. How-
ever, we also encountered a system where increasing paral-
lelism did not continue to improve performance.
 The next stage in our investigation of these algorithms is
to explore how solution quality varies with parameter
(population size, number of generations, etc.), and our par-
allel multi-core implementation will enable a much more
efficient investigation.
 Additionally, we are investigating:

• the use of local search techniques to further improve
generated schedules

• how alternative decision variable representations affect
solution quality

• user presentation techniques to enable visibility into
tradeoffs among objectives

Acknowledgments

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of Technol-
ogy, under a contract with the National Aeronautics and
Space Administration.

Alba, E. & Tomassini, M., 2002. Parallelism and evolu-

tionary algorithms. IEEE transactions on evolutionary com-
putation, 6(5), pp.443–462.

Cao, G., Luo, L. & Rong, C., 2009. Multicore-based parallelized
differential evolution for medical image registration.
MIPPR 2009: Medical Imaging, 7497, p.91.

Deb, K., 2001. Multi-Objective Optimization Using Evolutionary
Algorithms, New York: John Wiley & Sons.

Deb, K. et al., 2002. A fast and elitist multiobjective genetic algo-
rithm: NSGA-II. IEEE transactions on evolutionary compu-
tation, 6(2), pp.182–197.

Giuliano, M. & Johnston, M.D., 2008. Multi-Objective Evolu-
tionary Algorithms for Scheduling the James Webb Space
Telescope. In International Conference on Automated Plan-
ning and Scheduling (ICAPS). Sydney, Australia.

Imbriale, W.A., 2003. Large Antennas of the Deep Space Net-
work, Wiley.

Johnston, M.D., 2008. Deep Space Network Scheduling Using
Multi-Objective Optimization With Uncertainty. In

SpaceOps. Heidelberg, Germany.
Johnston, M.D., 2006. Multi-Objective Scheduling for NASA's

Deep Space Network Array. In International Workshop on
Planning and Scheduling for Space (IWPSS-06). Baltimore,
MD: Space Telescope Science Institute.

Johnston, M.D. & Giuliano, M., 2011a. Multi-Objective Schedul-
ing for Space Science Missions. Journal of Advanced Com-
putational Intelligence and Intelligent Informatics (JACII),
15(8), pp.1140–1148.

Johnston, M.D. & Giuliano, M., 2011b. Multi-Objective Schedul-
ing for the Cluster II Constellation. In 6th International
Workshop on Planning and Scheduling in Space (IWPSS).
Darmstadt, Germany.

Johnston, M.D. & Giuliano, M., 2009. MUSE: The Multi-User
Scheduling Environment for Multi-Objective Scheduling of
Space Science Missions. In IJCAI Workshop on Space Ap-
plications of AI. Pasadena, CA.

Johnston, M.D. et al., 2012. Automating Mid- and Long-Range
Scheduling for NASA's Deep Space Network. In SpaceOps
2012. Stockholm, Sweden.

Kukkonen, S. & Lampinen, J., 2005. GDE3: The Third Evolution
Step of Generalized Differential Evolution. In The 2005
Congress on Evolutionary Computation. p. 443.

Luque, G., Alba, E. & Dorronsoro, B., 2005. Parallel Genetic Al-
gorithms. In Parallel metaheuristics: A new …. A New
Class of Algorithms. Hoboken, NJ, USA: John Wiley &
Sons, Inc., pp. 105–125.

Nedjah, N., Alba, E. & de Macedo Mourelle, L., 2006. Parallel
Evolutionary Computations Studies in Computational Intel-
ligence, Springer.

Singer, N., 2009. More chip cores can mean slower supercompu-
ting, Sandia simulation shows. Available at:
https://share.sandia.gov/news/resources/news_releases/more
-chip-cores-can-mean-slower-supercomputing-sandia-
simulation-shows/.

Storn, R., 2008. Differential Evolution Research – Trends and
Open Questions. In Advances in differential evolution. Stud-
ies in Computational Intelligence. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 1–31.

Storn, R. & Price, K., 1997. Differential Evolution – a simple and
efficient heuristic for global optimization over continuous
spaces. Journal of Global Optimization, 11, pp.341–350.

Tagawa, K. & Ishimizu, T., 2010. Concurrent implementation of
differential evolution. In 10th WSEAS International Con-
ference on Systems Theory and Scientific Computation
(ISTASC '10). Tapei, Taiwan: World Scientific and Engi-
neering Academy and Society (WSEAS), pp. 65–70.

Tasoulis, D.K. et al., 2004. Parallel differential evolution. Con-
gress on Evolutionary Computation (CEC 2004), 2.

