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Abstract

NASA and the international aviation community are in-
vesting in the development of a commercial transporta-
tion infrastructure that includes the increased use of
rotorcraft, specifically helicopters and civil tilt rotors.
However, there is significant concern over the impact of
noise on the communities surrounding the transporta-
tion facilities. In this paper we address the rotorcraft
noise problem by exploiting a powerful search tech-
nique coming from artificial intelligence coupled with
simulation to design low-noise flight profiles which can
be tested in through field tests. In particular, this paper
investigates the use of simulation based on predictive
physical models, combined with the A* path planning
algorithm to design for low-noise approach trajectories
for rotorcraft. Novel features of our approach include
the use a discrete search space with a resolution that
can be varied, and the coupling of search with a robust
simulator to evaluate candidates.

Introduction
The problem of designing low noise flight profiles can be
viewed as a trajectory optimization problem (TOP) (LaValle
2006). Informally, a TOP consists of a set of states, a vec-
tor of control decisions, a start and goal state, a cost func-
tion, and a set of constraints. A state represents locations
(i.e. points in a 3D space), velocity and heading. A control
decision is a vector representing change in velocity, altitude,
heading, and in turn radius. The TOP can be stated infor-
mally as follows: given a set of states and control actions,
find a sequence of actions (trajectory) that minimizes a cost
function subject to a set of dynamic constraints, and con-
straints on start- or end-states.

The objectives of this paper are to formulate a 3D trajec-
tory noise optimization problem, and to investigate the effec-
tiveness of a path planning solution method for the problem
using discrete heuristic search. The problem formulation is
based on a model that is comprised of a tunable discretiza-
tion of the state and control-space; a constraint-based dy-
namics model of the rotorcraft; a restriction of the solution
space to a class of standard approach patterns; a set of con-
straints related to pilot procedure and passenger safety and
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comfort; and a noise cost function that aggregates noise in-
tensities predicted by a ground noise simulator.

The Study of Noise

Helicopter noise sources include the main rotor, the tail ro-
tor, the engine(s), and the drive systems. The most notice-
able acoustical property of helicopters is referred to as BVI
(Blade Vortex Interaction) noise. This impulsive noise oc-
curs during high-speed forward flight as a result of blade
thickness and compressible flow on the advancing blade.
This causes the blades airloads to fluctuate rapidly and re-
sults in impulsive noise with shock waves that can propagate
forward. At lower airspeeds, and typically during a descent,
BVI can occur when a blade intersects its own vortex system
or that of another blade (Fly 2009).

One of the most common noise measures is the Sound
Exposure Level (SEL). SEL summarizes the variable energy
level of an event with arbitrary duration by mapping it to an
event of one second duration with the same overall energy
and a constant energy level. SEL provides a comprehensive
way to describe noise events for use in modeling and com-
paring noise environments. The average SEL value over the
plane is called the SEL average (SELav). One equation for
SELav (Goplan et al. 2003) is

SELav = 10log10Σn(Σi10
SPLdB,i,n/10∆ti,n/T0)∆An/A0 [1]

Here, n ranges over the locations on the ground plane and i

refers to path elements. SPLdb,i,n refers to the Sound Pres-
sure Level in decibals for a location and a path element,
and the ∆s are elemental ground- or trajectory elements. A0

refers to the area of the ground plane and T0 is a reference
interval of one second.

A procedure called Q-SAM (Quasi-Static Acoustic Map-
ping) can be used to compute the BVI noise for a rotorcraft
in slowly maneuvering flight. (Sim, Schmitz, and Gopalan
2002). Using Q-SAM one can specify a flight path (in terms
of acceleration and flight path angle) time history and com-
pute the effective SEL at any location along the path. The
result is usually displayed as a contour plot (Figure 1) over a
ground plane. Each color corresponds to a dB level (redder
and lighter colors noisier).



Figure 1: A Noise Contour Plot.

Rotorcraft Noise Model Simulation Tool
The Rotorcraft Noise Model (RNM) (Conner, Burley, and
Smith 2006) is a simulation program that predicts how the
sound of a rotorcraft will propagate through the atmosphere
and accumulate on the ground. The core of the RNM method
is a database of vehicle source noises defined as sound
spheres. Spheres are obtained through measured test data or
through models. The spheres allow for a representation of
the 3D noise directivity patterns associated with the operat-
ing rotorcraft. A sphere is associated with one noise source
and one flight condition (flight path angle, nacelle angle (for
tilt-rotors) and airspeed). Each sphere represents constant
airspeed conditions for a given flight path angle. During sim-
ulation, RNM performs an ordering of the spheres based on
similarity with the flight conditions along the input path.
The sound source properties are extracted from the sphere
database using a linear interpolation of both required speed
and flight path angle (Page, Wilmer, and Plotkin 2007).

The input to RNM consists of a set of computational pa-
rameters, including identity of rotorcraft, and the dimen-
sions and resolution of a grid that will display output noise;
a specification of points of interest; and a specification of
the flight trajectory, including position, velocity and orienta-
tion. The input data are interpolated for a user-specified time
spacing using a trajectory model, producing a description of
the ground track of the rotorcraft, as well as the operating
state of the aircraft (velocity, flight path angle), as well as
the vehicle orientation (heading and yaw). The flight track
is passed into a propagation module which constructs the
sound profile at each ground position as a function of time.
The main propagation loop advances point by point through
the flight path and, for each vehicle position, the individual
noise sources are propagated independently. The propaga-
tion model expresses the sound level at a distance from the
source as a sum of the sound at the source with other factors
such as the atmospheric absorption, ground reflection and
wind effects. RNM also integrates the Q-SAM method for

modeling longitudinal acceleration and deceleration. Con-
sequently, RNM is capable of calculating cumulative noise
exposures such as A-weighted SEL (see (Page, Wilmer, and
Plotkin 2007) for more details).

Related Work

Trajectory Optimization is a vast and diverse research field
that had its modern origins in the exploration of space,
specifically, in the design of spacecraft trajectories. Methods
for solving Trajectory Optimization Problems are based ei-
ther on methods of optimal control or on approximations to
optimal control problems based on non-linear programming
methods (NLP) (Betts 1998).

Recently, direct sample methods have evolved as the op-
timization algorithms of choice. These algorithms may re-
quire orders of magnitude increases in the number of func-
tional samples but exhibit robustness to non-smoothness in
the trajectory model. Examples include: genetic algorithms,
stochastic sampling methods, and hill climbing algorithms.
Other methods of trajectory design and optimization ad-
dress the challenges of high-dimensional, non-linear sys-
tems by using randomized path-planning methods. To ap-
ply any of these methods, the state- or control-space must
be discretized, and many different methods of discretization
have emerged. Examples of recent trends include Rapidly
expanding Random Trees (RRT) (Cheng and Lavalle 2002)
and Probabilistic Road Maps (Kavraki, Kolountzakis, and
Latombe 1998),(Pettersson and Doherty 2004). Finally, of
relevance to our work are heuristic grid-based path planners
such as A* and D*, and the problem of finding smooth paths
in grids (Ferguson and Stentz 2005).

Much of the previous work on ground noise minimiza-
tion for Rotorcraft uses sampling-based approaches for opti-
mization. The work described in (Padula et al. 2009) uses
a genetic algorithm to search a space of in 2D (X-Z, no
turns) trajectories. It employs a set of trajectory design vari-
ables based on pre-compiled low-noise strategies employed
in practice by pilots, in order to reduce the dimensionality of
the search space.

Another discretization of the search space employs cell
decomposition (in 2D space) (Atkins and Xue 2004) and
k-ary tree structuring (for 3D modeling) (Xue and Atkins
2006a). These approaches allow for the handling of obsta-
cles that may be due to rotorcraft landing environments that
intersect with fixed-wing landing corridors. The result of
cell decomposition is a connectivity graph which is then
searched by using a uniform cost search (i.e., A* with h =0).

The TOP model that we use in this paper is inspired by the
work in (Morris et al. 2012). In particular, we use the same
parameters and constraints but we modify the cost func-
tion in order to incorporate the information on human an-
noyance level. We also adopt a completely different solving
approach, since in (Morris et al. 2012) an incomplete local
search approach was presented, while here we also consider
a complete path planning technique.



Problem Formulation

In this section we transform the TOP into a discrete optimal
planning problem following the work presented in (Morris
et al. 2012). This involves defining a discretization of the
world, the state of the rotorcraft, and the set of actions avail-
able to the pilot; defining a set of constraints on the discrete
space; and defining a cost function for evaluating and order-
ing trajectories.

Model parameters

We employ a standard approach to discrete motion planning
by introducing a grid of points in 3D space. This discretiza-
tion is virtually identical to parameters specified in RNM
input files discussed above. We define a size and resolution
of the grid in terms of the lower left and upper right values
of (X,Y ), and the distance (in feet) between grid points, re-
spectively. Altitude (Z) will have the range [0, zmax], where
zmax is defined by the starting point of the problem (in
these experiments, between 1000 and 1500 feet). Typically,
but not necessarily, the grid will define the space for which
we’re interested in measuring ground noise.

We define a state as a 5-tuple of values from the vari-
ables S = (X,Y, Z, V,H) consisting of location in 3-
space, velocity and heading. Similarly, an action (control)
vector is a 5-tuple of values from the variables U =
(∆X,∆Y,∆Z,∆V,∆H) defined as changes to position,
velocity and heading. Given a state s, let s(X) (s(Y ), etc.)
be the value of s for state variable X , etc. A path (trajectory)
is a sequence s0, u0, s1, u1, . . . , st, ut, st of state and action
pairs, based on a transition function F : S × U → S, which
captures the dynamical and other constraints governing ro-
torcraft control. A feasible path based on F is one in which
for all i = 1 . . . t− 1, sk+1 = F (sk, uk).

Figure 2: Visualizing search resolution. The rotorcraft is at
the state marked by the blue dot. The feasible states of the
next state of the rotorcraft are marked by the colored balls.
The colors reflect the predicted noise produced by that ac-
tion. Note that this control space is not to be confused by the
state space, which is 4D space of X,Y,Z and V.

Constraint Model
The constraint model defined here arises from considera-
tions of safety and passenger comfort, defined by pilot pref-
erence and standard procedure, as well as rotorcraft dynam-
ics. For the experiments here, which focus on approach and
landing, we allow only deceleration and only descent (al-
though this constraint is by no means imposed by the ap-
proach we take, and can easily be removed). There are three
kinds of constraints:
• on initial and final state, s0, st;
• boundary constraints on v and z; and
• constraints on flight path angle and rate of deceleration.

Based on standard procedure, we limit the initial state
s0(V ) to range from 100 to 135kts and for s(Z) to range
from 1000 to 1500 feet. The final state st is constrained
in the obvious way so that S(V ) = s(Z) = 0. Second,
there are a minimal velocity and altitude (vmini, zmini) that
a rotorcraft must have when starting the final part of the ap-
proach (that is at the so-called landing decision point).

The third class of constraints state that any part of a
trajectory will be be characterized by an angle of de-
scent γ ∈ [0o, 12o] and a deceleration a ∈ [0g, 0.1g]
(or a ∈ [40ft/sec2, 201ft/sec2]). Such restrictions induce
constraints on the change of velocity and altitude as follows.
Given a pair of nodes Ni, Nj and a path between them of
distance distij we have:
• the deceleration constraint (dec):

∆vi ∈ {δv�∃a ∈ [0, 0.1], δv =
�

v
2
i + 2a× distij−vi},

where a is expressed in gs.
• the angle-of-decent constraint (aod):

∆zi ∈ {δz�∃γ ∈ [0o, 12o], tan(γ) =
δz

distij
}

.
A trajectory is said to be flyable if it satisfies all three kinds
of constraints just defined for the model.

The constraint model induces a transition function F and
a definition of the set of feasible paths based on F . To apply
F in a discrete search setting, a further discretization of the
control space U is required. The result of the discretization
is called the search resolution and is visualized in Figure 2.
The search resolution defines a two-dimensional space of
discrete altitudes and velocities that the rotorcraft can ob-
tain at each state of a trajectory, given the upper and lower
bounds defined by the boundary constraints. Each ball in the
figure thus represents a pair �v, z� of feasible velocity and
altitude values in a transition from some current state. This
space of feasible transitions is used during the search. No-
tice that each state (ball) is colored to indicate the predicted
impact of choosing the state on the overall noise profile (red-
der means noisier). In this way, as we’ll discuss later in more
detail, the feasible transitions can be ordered to guide the
search to the best solution.

Summarizing, a Trajectory Noise Optimization Prob-
lem (TNOP) is a tuple �S,D, s0, sf , aod, dec, vmini, zmini�,



where S is a set of states, D a set of decisions, s0, sf are
initial and final states, aod, dec are deceleration and de-
scent angle constraints, and vmini and zmini are as just
defined. A feasible solution to a TNOP is a flyable path
P = s0, u0, s1, u1 . . . , sk.

As a final restriction on the size of this space for the work
described in this paper, we limit the X,Y values to define
a pattern that is considered ’standard’ by pilots, involving
a downwind leg and two turns. The standard approach we
use we call a ’box’ pattern, such as the one shown in Fig-
ure 3. Consequently, the search space is limited here to two

Figure 3: A standard approach pattern (reprinted from (Page,
Wilmer, and Plotkin 2007)).

actions: change in V and change in Z.

Cost Function
In (Morris et al. 2012) a scalar cost function that summarizes
the data in a contour map such as the one in Figure 1 was pre-
sented. Here we redefine noise ranges so that they roughly
correspond to different levels of annoyance (low, medium,
high, very high). Then, for each trajectory and associated
contour map, we count the number of dB values that fall
into each range, and take the weighed sum as the noise score
for that trajectory (lower scores better).

To assign reasonable weights we draw upon previous hu-
man factors research on noise tolerance (on Noise 1992),
which plotted Day-Night Average Sound Level in dB against
the percentages of human subjects that classified that level
as annoying. From this we established a weight distribution
for our cost function.

Formally, we define a Binning Heuristic function (BIN )
as follows. Given in input a solution t, RNM computes the
A-weighted SEL value for each of the grid points. Let us
denote with SEL(t, x, y) such a value for the grid point
(x, y) given trajectory t. We define a sequence of decreas-
ing ranges, �r1, r2, . . . , rn� partitioning the SEL values of
the grid points. Given a trajectory t let us denote by Si(t) =
{(x, y)|SEL(t, x, y) ∈ ri}. We define the following vector
b(t) = �b1(t), b2(t), . . . , bn(t)� where bi(t) = |Si(t)|. The
BIN-score of solution t is BIN(t) = Σi=1...nwibi(t) where
wi is the weight associated to the i-th bin, wi > wi+1 and

Σi=1,...,nwi = 1. Thus a solution that assigns lower levels of
noise to larger regions of the grid is to be preferred. Weights
are used to penalize the presence of, even small, extremely
noisy regions. The goal will be that of minimizing the BIN

value.

Optimization Approach
We employ a two-phase architecture, consisting broadly of
a search step phase and an evaluation phase. The output of
the search step phase is a trajectory P , which becomes input
to the evaluation phase. The output of the evaluation phase
is a score for P . The evaluation phase components are the
RNM simulator, which produces a contour map, and the cost
function, which calculates the BIN score from the contour
map, as defined above. For optimizers we choose complete
search using A* and incomplete search using Stochastic Lo-
cal Search (SLS). With A*, the search step phase produces
an expansion of a partial plan; for SLS the same phase al-
ways produces a complete trajectory as output.

A* Heuristic for TNOP A* is complete and optimal pro-
vided the heuristic function h never overestimates the cost of
achieving the goal through s. A common cost function de-
sign method for A* is to find a relaxation of the problem to
be solved, and to define a heuristic that is a perfect predictor
of the relaxed problem; the same heuristic is also admissi-
ble for the original problem. The approach used here is a
heuristic in which the estimated cost for a node is the cost
of a trajectory in which altitude is maintained until the goal,
but airspeed is reduced as fast as possible to the minimum
velocity (vmin). This fly high and slow heuristic has been
empirically confirmed to be admissible.

Non-factorability of the BIN cost A* requires a way of
aggregating a path-cost g as a solution is generated, where
g(x) is the cost from an initial state of the solution to x.
Given two states, x, y, an edge distance d(x, y) is defined;
the aggregate cost is g(y) = g(x) + d(x, y). Unfortunately,
aggregating the cost for noise is problematic, because the
cost is not a simple sum. It is rather, as indicated by [1], an
average of the noise over time.

A simple example illustrates the aggregation problem for
cost functions based on average. Let A and B be paths that
are adjacent in the sense that they share a common state
such that their join, AB is a feasible path. Let BIN(A)
be the BIN cost of trajectory A. Let A and B have du-
rations dur(A) and dur(B). Assume at 1 second intervals
noise from the source is propagated to the ground. Follow-
ing equation (1) above, assume that the noise is computed
at each data point by a simple averaging the noise mea-
surements over the duration of the path. Thus, for path A,
the noise level assigned is the sum Σini divided by the
duration of A, similarly for B. Suppose we join the two
paths into AB. Then to compute the noise level for each
data point, we again sum over all the individual measure-
ments and divide by the duration of AB, which by definition
is dur(A) + dur(B). In general, however, BIN(AB) �=
BIN(A) + BIN(B), because the least common multiple
of two (non-zero) integers is never equal to their sum.



As a consequence, when a path P = S1 . . . Sk is ex-
panded by adding a new state Sk+1, A* does not compute
the cost BIN(Sk)+BIN(Sk, Sk+1). Instead, we compute
the cost BIN(S1S2 . . . Sk+1), i.e., we recompute the noise
cost from the start state to the new state. This improves the
accuracy of the ’cost to come’ g, but it does not completely
solve the aggregation problem. In general, what is required
is a ’factorability’ property, in the sense that the contribu-
tion made by a segment of a path P should not change if P
is expanded. But again this property clearly does not hold.
For example, suppose a ground location ∆L is directly un-
derneath the rotorcraft at the beginning of some trajectory,
and the rotorcraft moves further and further away from ∆L

as it proceeds along the trajectory. Then each noise measure-
ment taken at ∆L will diminish over time, and so the over-
all time-averaged noise for ∆L will be less for the complete
trajectory than for the initial segment. On the other hand,
other locations at different places along the path will un-
dergo different changes in how they contribute to the noise
of the whole path. Consequently, in general, one only knows
for certain the contribution made by a specific location to
the overall noise of a given path by evaluating the entire
path. In other words, noise is not factorable in space or time.
Despite this result, in the experiments reported below we
employ the cost function in which we assume factorability;
in effect we assume that the noise cost contributed by an in-
dividual location ∆L for an arbitrary segment of any path is
the same as its noise cost for the entire path. Although not
true in general, experiments with the approximate cost func-
tion have assured us that the version of A* does produce a
solution that is close to optimal, and enables the sort of cost
aggregation required by the algorithm.

Stochastic Local Search
In order to better assess the performance of our implementa-
tion of A∗ we have implemented a slightly modified version
of the stochastic local search approach (SLS) described in
(Morris et al. 2012).

The parameters to this algorithm are the objective func-
tion, and a value MAXTRIES that indicate how many steps
are allowed before termination. SLS iteratively takes search
steps using a neighborhood function.

The neighborhood function works as follows. Given the
set of states s0, s1, . . . , st of the current path, let again
F (si)p be the set of feasible states for si in p, as described
above. This set is determined by the constraints on flight
path angle and deceleration relating si−1, si, and si+1 (with
different conditions defined at the path boundaries). Let
Neighbors(p) =

�
1≤i≤t F (si)p. Thus each neighbor p

�

of p can be expressed as a triple �i, v, z�, such that p� is the
result of replacing si in p by a state s

�
i with s

�
i(V ) = v and

s
�
i(Z) = z.

A neighborhood function takes a feasible solution and
makes small changes to it, resulting in a new feasible solu-
tion. There are two kinds of steps, greedy and noisy, which
are decided by a third parameter, called greedy 1. SLS keeps

1We could have called it ’noisy’ but that might cause some con-
fusion given the problem domain.

track of a current estimate of the best solution p
∗, and its cost

function score, as well as a current solution p, and its score.
In an initialization step, an arbitrary path pinit is generated.

A greedy step is one that enumerates over all the neigh-
bors of the current solution p until the first solution p

� is
found that improves on the score of current solution (this
makes our version of SLS an instance of so-called hill-
climbing search). If no such improvement exists, the current
path is set to the last path examined. A noisy step, on the
other hand, randomly chooses a neighbor of p and it be-
comes the current path. SLS also has a restart condition,
which happens in the case that a current state has no feasible
neighbors. SLS restarts by resetting the current path to pinit.
The purpose of the greedy parameter, as described in detail
in (Mengshoel 2008), is to better understand the difficulty of
the problem space. For example, adding randomness can im-
prove the performance of SLS on problem spaces with many
’traps’ in local optima.

Experiments
The main purpose of the experiments reported here is to as-
sess the performance of the solution method based on A*
and to compare it against local search. The performance cri-
teria are solution quality (BIN score) and run time. We are
restricted here to the ’box pattern’ described above. By mak-
ing the comparison we hope to reveal how close SLS can get
to the optimal solution when A* is able to generate a solu-
tion, and also what classes of TNOP problems (defined in
terms of search or grid resolution) SLS can solve that A*
cannot. Since A* is deterministic and SLS is not, we com-
pare an average performance on SLS, but not on A*. For
these experiments we average over 10 runs of SLS.

In these experiments, we placed a setting of 55 on the
depth of SLS search, and set the SLS ’greedy’ parameter to
.5, which means that on average, SLS will make a greedy
step half the time, and a random move half the time. In fu-
ture reports, we will present data summarizing the effects of
varying these parameters (search depth and degree of ran-
domness) on SLS performance.

As discussed earlier, we have partitioned the discretiza-
tion of the problem into search resolution and grid reso-
lution. In Figure 4 we show three plots, each for a dif-
ferent setting of search resolution (4X4, 5X5, 6X6). The
X axis shows variable settings of grid resolution (700-
1000). Symmetrically, Figure 5 shows three plots, each for
a different setting of grid resolution (800, 900,1000). The
X axis shows variable settings of search resolution (from
4X3=12,4X4,5X4,5X5, 6X5, 6X6, to 7X6=42). The left plot
documents time to solution, with a cutoff point of 21,600K
seconds (6 hours); the right plot documents BIN score (the
score is arbitrarily set to 0 when an algorithm times out) . 2

The results allow us to draw the following conclusions
(some of which are preliminary and require more experi-

2Keep on mind therefore that lower grid number means higher
grid resolution, whereas higher search number means higher search
resolution. The toughest problems are therefore with high grid res-
olution (lower number) and high search resolution (higher num-
ber).



ments to verify). First, A* times out on a highest setting of
search resolution (7X7) for virtually all grid resolutions ex-
amined (an exception being seen on the bottom right panel
of Figure 4 where the spike at 900 indicates that A* hap-
pened to find a solution at that grid resolution). This con-
clusion could be the result of a weak heuristic (not allow-
ing for sufficiently tight bounds on best solutions), which in
turn results in its incurring the overhead of running RNM for
evaluation a prohibitive number of times.

Second, SLS seems to be competitive with A* on the
quality of solutions it generates, often at a speed that is an or-
der of magnitude improvement on A*. Indeed, the SLS BIN
score is always within 10% of the optimal A* score, which
seems to make it competitive in quality. A proper verifica-
tion of this observation requires an examination of the actual
optimal trajectories generated by A* and SLS (space limita-
tions prohibits a display of these trajectories). Also, we are
currently running tests that increases the depth if SLS search
to see whether SLS can converge to global optimal, and at
what depth this occurs.

Finally, these results indicate that running RNM to eval-
uate candidates quickly becomes prohibitive for large res-
olution problems. A current research goal is to find linear
or low-order polynomial approximations to the function de-
fined by RNM which will allow A* to bypass the invocation
of RNM for each evaluation.

Summary and Future Work
This paper offers the following advances to the develop-
ment of discrete search-based methods for trajectory opti-
mization:
• A 3D state space and 6 DOF control model of the aircraft.
• Constraints one both state transitions and control transi-

tions, related to safety and comfort.
• A cost function that aggregates data from a robust ground

noise simulator taking into account human annoyance lev-
els.

• Grid-based search space with parameters for enabling dif-
ferent resolutions.

• The implementation and experimental evaluation of a
complete path planning method (A*).

• Head to head performance comparison of the complete
method against an incomplete method ( in particular, A*
vs Local Search).

Our current research focus includes the investigation of the
use of more sophisticated sampling-based motion planning
methods, such as probabilistic road maps, to improve the
quality of trajectories generated from a high-dimensional
search space. We’re also exploring more realistic environ-
mental models based on ’land use’ constraints; for exam-
ple, residential areas, or hospitals along an approach pattern
would be viewed as ’obstacles’ in the problem.
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Figure 4: SLS vs A* varying grid resolution for three settings of search resolutions



Figure 5: SLS vs A* varying search resolution for three settings of grid resolutions


