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Abstract
The Search And Tracking (SAT) problem is concerned
with enabling an autonomous UAV to search for a mo-
bile target and tracking it after it is found. Since state-
of-the-art probabilistic approaches to SAT suffer high
computational cost that makes them unsuitable for com-
plex problems, we propose an alternative technique
based on automated planning: we track the target re-
actively while it is in view and plan a recovery strat-
egy that relocates the target every time it is lost by us-
ing a high-performing planning tool. In this paper, we
first place our work on SAT in the context of our long-
term research goal: considering SAT as a case study of a
broader range of surveillance missions characterised by
high uncertainty and restricted resources, our approach
to generating plans for a single UAV marks a first step
towards coordinating multiple intelligent vehicles en-
gaged in complex surveillance tasks through plan-based
policy learning. We then describe our approach to SAT
in detail and present a simulation that validates its po-
tential. Finally, we discuss extensions to modern plan-
ners required to enable them to reason about SAT tasks,
such as the ability to model obstacles within their phys-
ical environment and to handle complex spatial and ge-
ometrical constraints.

1 Introduction
Over the past ten years there has been growing interest
in using autonomous agents for surveillance applications.
Surveillance problems are characterised by two kinds of
agents: observers and targets. Observers might be mobile
(e.g., UAVs), or fixed (e.g., CCTV cameras). Targets might
be aware that they are being observed, and possibly evasive,
or not. Examples of surveillance problems are: (i) Search
And Tracking, which is the problem of searching for mo-
bile targets and tracking them after they are found; (ii) In-
telligence Gathering, in which observers are mobile and the
targets correspond to interesting sites to be found, recorded
and communicated; and (iii) Hazard Identification, in which
observers are a mixture of mobile and fixed and targets are
physical flaws in components being observed, or environ-
mental readings that exceed safety levels.
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At the heart of surveillance problems lies the need to plan
complex sequences of behaviours that achieve surveillance
goals, which are typically expressed in terms of gathering
as much information as possible given the constraints, and
communicating findings to a human operator. However, ob-
servers operate in situations in which there is very little sta-
bility, information is changing rapidly and decisions about
what action to perform and how to coordinate with other ob-
servers must be made almost instantaneously. To be effec-
tive in such situations, observers must be so highly trained
that they can react without spending time reasoning about
alternative courses of action. Hence, surveillance problems
give rise to many challenges including the management of
uncertainty in an unpredictable environment, the handling of
restricted resources and the communication of commitments
and requests between multiple heterogeneous observers.

Although forward planning is certainly required in order
to avoid the observers behaving in a purely reactive (and
therefore easily distracted) manner, planning problems in-
volving metric resources, continuous time and concurrency,
as would be required in the solution of non-trivial surveil-
lance problems, are time-consuming to solve. This com-
plexity is greatly exacerbated if uncertainty is captured ex-
plicitly within the planning domain models. Online plan-
ning, and plan repair in the case of failure, are feasible in
stable situations, but they take too long in situations that are
changing rapidly. Online planning also requires significant
on-board computational resources, which are often not avail-
able in surveillance vehicles. Planning under uncertainty
cannot therefore be done online in situations typical of many
surveillance problems, where computational resources are
limited and rapid responses are frequently required.

Since online planning and planning under uncertainty
are both unrealistic for large-scale, fast-moving surveillance
problems, we propose to follow an alternative approach
based on plan-based policy learning via Monte Carlo sam-
pling. Under the assumption that time and resources are
available offline to train effective policies, we can sample
many instances of the stochastic problem, each instance be-
ing a challenging temporal and metric planning problem.
We can then solve each instance using a high-performing
planner, and apply a classifier to learn a policy as a map-
ping from states to actions, using the set of solutions as in-
put. Hence, instead of on-board planning, we propose offline



planning and policy-learning and on-board policy execution.
In this context, a policy can be seen as a small piece of soft-
ware that compiles a vast planning experience, requires neg-
ligible computation to execute and can equip agents with the
means of making intelligent on-the-fly decisions. The effec-
tiveness of this approach has been already demonstrated in
two single-agent cases: management of the loading of mul-
tiple batteries (Fox, Long, & Magazzeni 2011), and the con-
trol of an autonomous underwater vehicle following the edge
of a patch in the coastal waters of the Monterey Bay (Fox,
Long, & Magazzeni 2012) (see Section 7 for details). The
resulting policies are very high-performing in terms of ro-
bustness to the high degree of uncertainty that often occurs
in the physical execution environment. The high quality of
the policies is a result of the investment in offline planning.
Furthermore, if a metric, temporal and continuous planner is
used in this offline training phase, the obtained policies are
much more expressive than those that can be learned using
other techniques in the literature.

In order to scale up the approach taken in the batteries and
patch-following cases to the management of multi-target and
multi-observer surveillance tasks, we are faced with three
significant challenges:
1. Planning: at the heart of the policy-learning strategy

is the ability to formulate surveillance tasks as planning
problems and plan high quality solutions to the determin-
istic sampled instances of such problems. In the scenar-
ios considered above, a planner capable of reasoning with
suitably rich models involving temporal, spatial and con-
tinuous constraints is required.

2. Policy learning: after generating and solving thousands
of planning instances, a classification process is used to
obtain a policy from these solutions. Although we plan to
use off-the-shelf classifiers for this task (e.g. the WEKA
toolset (Hall et al. 2009)), a good set of features needs
to be identified in order to obtain high-quality and robust
policies. This is usually a time-consuming task as iden-
tifying a good set of state variables is one of the most
challenging technical aspects of learning policies.

3. Policy integration and switching: since the different ob-
servers need to coordinate their actions, possibly with the
help of a human operator, a mechanism to integrate poli-
cies is required. In addition, if a complex surveillance task
is divided into several stand-alone tasks, the best results
might be obtained by learning policies for each sub-task,
with the observer switching between policies as it moves
between sub-tasks.
In this paper, we give an high-level overview of our ap-

proach to address the first challenge, planning, and use SAT
missions as a case study for surveillance applications. We
choose SAT among the possible surveillance applications
because the ability to search for and track a moving target
is common to a number of autonomous UAV missions. The
interested reader can find a full technical account of our ap-
proach to SAT in (Bernardini et al. 2013). In addition, we
discuss the other two challenges, policy-learning and policy-
integration, which are the goals of our future work.

The paper is organised as follows. In Sections 2, we
present the SAT problem. In Section 3, we examine as a SAT

task decomposes into separate phases and explore the role
of planning amongst them. We identify a planning problem
that arises in this mission and show how it can be modelled
and solved using generic planning technology. In Sections
4, we present a simulation that we developed for demon-
strating the potential of our technique and the results that we
obtained. In Section 5, we discuss possible extensions to our
current approach to SAT. Section 6 presents how we intend
to carry out policy learning and integration in detail. Finally,
Sections 7 and 8 present related work and conclusions.

2 Search and Tracking Missions
As explained in detail in (Bernardini et al. 2013), we con-
sider SAT missions in which the target is a vehicle being
sought and tracked through a mixed urban, suburban and ru-
ral landscape and the observer is a single fixed-wing UAV.
The objective of the mission is to follow the target to its des-
tination. A possible interpretation of this scenario is that a
police drone is tracking the car of a suspected criminal target
that is trying to reach a certain destination.

We make the following assumptions on the SAT mission:
(i) The low-level control of the UAV is managed by sub-
systems underpinning the abstract deliberation level of our
plans and policies. (ii) The UAV is equipped with imag-
ing systems to observe the target. Observation is susceptible
to error and interference from terrain (in urban, suburban,
forested and mountainous areas the probability of spotting
the target is reduced). (iii) The imager has two modes: wide-
angle mode (180◦) used to increase the area being scanned
at the cost of a lower probability of successfully observing
the target; and narrow-angle mode (90◦) in which the view-
ing area is reduced, but the probability of detecting the target
is higher. (iv) A faster moving target in the viewing zone is
considered easier to spot. (v) The target follows the road
networks and does not perform significant evasive actions.

In general, a SAT mission proceeds in two phases, which
interleave until the target stops or until the observer ac-
knowledges it has lost the target irrevocably:
• Tracking: the UAV flies in a standard pattern over the tar-

get, observing its progress; and
• Search: the UAV has lost the target and flies a series of

manoeuvres intended to rediscover the target.
Once the target is rediscovered, the UAV switches back to
tracking mode.

Tracking is managed by a reactive controller: the problem
is simply one of matching the flight path to the target path. In
general, UAVs fly much faster than road vehicles drive, but
fixed-wing UAVs cannot hover. Therefore, the flight path of
a fixed-wing UAV in tracking mode is a circle of fixed radius
centred on the target. The radius cannot be greater than the
range of the imaging equipment and cannot be shorter than
the turning radius of the UAV. We assume that the UAV flies
in a mid-range circle between these extremes. As the target
moves the circle moves with it, so the flight path of the UAV
describes a spiralling pattern over the ground.

If the UAV fails to observe the target, it must attempt to
rediscover it. How this is achieved depends on the time since
the observer last observed the target. For a short period after
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Figure 1: Initial state and search plan for the SAT mission.

losing the target, the UAV continues to track at low confi-
dence, i.e. it assumes that the target is still progressing along
the same route, and it follows this route for a time in the hope
of picking up the target at a later point. However, after a pe-
riod, it will be necessary to make a more systematic effort
to rediscover the target by directing the search into specific
places. At this point, the following information is available
to the UAV: the current state includes information about the
last known location and velocity of the target, the average
velocity over the period the target has been tracked, the map
of the terrain and the current position of the UAV. Based on
this information, it is possible to formulate the task of re-
discovering the target as a planning problem (see Figure 1):
a search plan is constructed from a set of candidate search
patterns that can be arranged in a sequence to attempt to op-
timise the likelihood of rediscovering the target. If, while
flying this search plan, the target is rediscovered, the ob-
server switches back to tracking mode.

3 Search as Planning
We propose that the UAV exploits standard search patterns
to try to find the target. We use these patterns as the building
blocks for a search plan that attempts to maximise the expec-
tation of rediscovering the target. In particular, we consider
two standard search patterns:
• Spiral pattern: we use spirals for covering areas of high

density road network, e.g. urban or suburban terrain.
• Lawnmower pattern: we use rectangular lawnmowers for

covering more elongated areas corresponding to a major
road and including some possible side roads.

The challenge is to decide how to distribute these search pat-
terns over the terrain in order to find the target. This se-
lection of search patterns can be seen as a planning prob-
lem: if each search pattern is assigned a value correspond-
ing to the expectation of finding the target in a search of that
area, the planner can choose the sequence of search patterns
that maximises the accumulated expectation of rediscovery.
Note that the value associated with a search pattern is a func-
tion of time, since the target will not be found in an area that
is far from its last known location until sufficient time has
passed for the target to have reached the area, while it is un-
likely that the target will be found in the area once sufficient
time has passed for it to have driven through the area.

We exploit the period in which the UAV tracks the pre-
dicted location of the target to perform planning. Once the

plan has been formulated and dispatched, the UAV executes
the search patterns following the sequence specified by the
plan, linking patterns together with a series of flight paths.
As soon as the target is found, the plan is abandoned and
the target is tracked. Replanning occurs if the target is lost
again at a later time. So, in our approach, the plan is rel-
evant until the target remains undiscovered, and somewhat
counter-intuitively, “plan-failure” corresponds to the situa-
tion in which the target is found. Despite the inherent un-
certainty in the situation, the problem is deterministic, since
the plan is constructed entirely under the assumption that the
target remains undiscovered.

3.1 Planning Domain
The domain model for the search problem has a very simple
structure: there is a flight action that allows the UAV to fly
from one waypoint to another and there are actions allow-
ing the UAV to perform each of the basic search patterns.
We use spiral searches and small and large lawnmowers, al-
though we are currently adding new patterns to handle obsta-
cles in the physical environment (see Section 5). The search
pattern actions all have similar forms: they have an entry and
an exit waypoint and the effect is to move the UAV and to
increase the reward, which is the accumulated expectation of
finding the target. The actions are durative and their duration
is fixed in the problem instance to be the correct (computed)
value for the execution of the corresponding search. The
search patterns can only be executed so that they coincide
with a period during which the target could plausibly be in
the area the pattern covers. This is calculated by consider-
ing the minimum and maximum reasonable speeds for the
target and the distance from where the target was last ob-
served. While we refer the reader to (Bernardini et al. 2013)
for a full description of the SAT domain, we report here the
specification of the action doSpiral as an example of how
search actions are modelled in PDDL2.1:

(:durative-action doSpiral
:parameters (?from ?to - waypoint

?p - spiral )
:duration (=?duration (timefor ?p))
:condition (and

(at start (beginAt ?from ?p))
(at start (endAt ?to ?p))
(at start (at ?from))
(at end (active ?p)))

:effect (and
(at end (at ?to))
(at start (not (at ?from)))
(at end (increase (reward)

(rewardof ?p)))))

3.2 Planning Problem
The problem has no goal, but the plan metric measures the
value of the plan in terms of the accumulated expectation of
finding the target. A few examples of problems of this sort
have been considered before, e.g. one variant of the satellite
observation problem used in the 3rd International Planning
Competition (Long & Fox 2003) had this character.

To create the initial states for the planning problems, we
have to manage two tasks: (i) identifying candidate search
patterns; and (ii) assigning appropriate rewards to them.
The first task is made difficult by the fact that there are in-
finitely many patterns that could be used, while the second
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Figure 2: Time-dependent reward function used to assign
rewards to search patterns.

is made difficult because of the lack of knowledge about the
intentions of the target.

To address the first problem we observe that the planner
can only consider a finite subset of search patterns and, since
we want to perform planning in real time, is limited to being
able to consider a reasonably small number of candidates.
Therefore, we generate a sample of possible search patterns
by randomly selecting a set of shapes (circles for spirals and
large and small rectangular areas for lawnmowers) and plac-
ing them onto the general search area. There are three steps
involved in this (see (Bernardini et al. 2013) for additional
technical details on each step):
1. Search area selection: we first select a subset of the gen-

eral search area in which the target is more likely to be
rediscovered. This area is identified on the basis of the
last known location of the target and its average bearing
over the period the target has been observed. Search pat-
terns are generated only within this area.

2. Sampling: once the relevant search area is identified, we
then sample points using a probability distribution laid
over this area, which is based on the density of roads
across the sector, the terrain type and the distance from
the last known location of the target.

3. Search pattern generation: finally, we decide the type
of pattern to use for each point. We favour spirals in the
part of the search closest to the origin, where spirals give
good coverage of the area in which the target might be
found, and lawnmowers in rural areas or areas of lower
road density, where spirals are likely to cover significant
areas of little value in the search.
As for the second problem, i.e. reward assignment, we as-

sociate with each pattern a reward by using a time-dependent
function. The shape of this function, shown in Figure 2,
is constructed to represent an approximate lifted Gaussian
distribution, with no reward until the target could plausibly
have arrived at the search area and no reward after the target
is unlikely to be still present in the area. Between these ex-
tremes, the reward peaks at the point where the target would
be in the centre of the search pattern if driving at average
speed. This time-dependent reward function is managed by
timed-initial fluents in the problem specification that change
the reward of the patterns as time progresses.

3.3 Planning and Plan-Based Policy
We use a version of POPF (Coles et al. 2010), called OP-
TIC (Benton, Coles, & Coles 2012), designed to perform
anytime, cost-improving search. We use a time-bounded

search of 10 seconds given that we are in a time-critical sit-
uation. The planner will typically find a first solution very
easily, since the empty plan is already a feasible solution,
but it will then spend the additional time improving on this
by adding further search patterns to the plan, or trying differ-
ent collections of patterns. The plans produced in this way
are monotonically improving, so the final plan produced is
the one we select for execution. We have chosen OPTIC
because it is very fast at producing its first solution and pro-
vides an any-time improvement behaviour. We have found
that, on average, OPTIC produces around 6 plans in its 10
second window per problem instance, and the last of these
is selected for execution.

In our current version we have implemented a static pol-
icy which is based on replanning. The observer enters a
planning phase every time it loses the target. We allow the
observer 10 seconds for planning at each of these points.
We currently “freeze” time while the observer is planning
because the simulation runs at approximately 50 times real
time, but the CPU requirements for planning have to be met
in real time. As we shall discussed in Section 6, we aim
to later replace this planning behaviour with an essentially
instantaneous action selection using a learned policy.

4 SAT Simulation and Experimental Results
In order to evaluate the behaviour of our plan-based ap-
proach to SAT, we have developed a simulation. This was
built in consultation with our industrial collaborators and is
intended to provide an appropriately abstracted view of the
problem. The key abstraction is that our dispatcher identi-
fies waypoints and turning circles for the UAV according to
the flight path and search pattern being executed, but we do
not consider control of flight surfaces or altitude.

The area of operations of the simulation is a part of Scot-
land of about 100 kilometres square, with Glasgow and Ed-
inburgh approximately defining its lower corners. Terrain
types were defined by hand, along with an approximate road
network for the major roads and rural minor roads. The
simulation determines success in spotting and tracking the
target, according to terrain, speed and discrepancy between
anticipated and actual target positions. The target follows a
path acquired using Google Maps, using a configurable ori-
gin and destination. This information is also used to decide
what speed is appropriate for the target, based on distance
between waypoints in the route proposed by Google Maps
and terrain type. The simulation integrates the planner and
displays the stages of the planning process. Figures 3 and 4
show an example of an initial state and a plan, respectively.

The simulation tool offers various opportunities for inter-
action, including redirecting the target, repositioning the ob-
server, speeding and slowing the simulation and modifying
parameters that govern spotting probabilities, flight dynam-
ics, target behaviour and so on. These values were chosen
to broadly represent characteristics of a prototypical UAV as
described to us by our industrial collaborators.

By using our simulation, we conducted experiments to
compare plan-based search with a static policy proposed by
our industrial collaborators. Here, we give a brief overview
of the experimental results that we have obtained, while we



Figure 3: A screenshot showing an initial state: rectangles
and circles are search patterns that the planner will consider.

Figure 4: The search patterns that have been selected by the
planner ready for execution.

refer the reader to (Bernardini et al. 2013) for a more com-
prehensive description of them.

The static policy works as follows: the observer tracks
the target until it has lost sight of it. It continues to track
the predicted location of the target for about three minutes.
If it has not rediscovered the target, the observer then exe-
cutes a fixed sequence of search patterns. It first performs
a spiral search around the point where it lost the target and
then executes a large lawnmower pattern over a 20 kilome-
tre square area. We use a configuration of our plan-based
search that tracks the predicted location of the target for the
same period as the static policy, before planning and execut-
ing a search plan. We generated 20 routes and executed the
simulation on each route 1000 times (the simulation has a
non-deterministic spotting model and target behaviour), for
each of the 2 strategies (a total of 40000 runs). The sim-
ulation begins with the target undetected, but in the search
arc of the observer. simulation does not use a search plan
in this first stage, so failure at this point leads to an early
abort. We discount these runs (less than 0.5%) in our anal-
ysis. The metric that we use here to evaluate the strategies
is the proportion of runs in which the target is tracked to its
destination, as shown in Figure 5. The plan-based search
strategy is consistently better than the fixed strategy. The
static policy has an overall success rate of under 50%, while
the plan-based search yields better than 60% success rate.
There are a few cases where the static policy appears to do
better than the plan-based search and we are still investi-
gating the reason for this. In general, on shorter routes the
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Figure 6: The probability of recapturing the target over time

plan-based approach appears to perform worse, which ap-
pears to be because the search patterns are biased towards
an assumption that the target is driving to a distant location.

We also analysed the data to find the probability distribu-
tion, over time, of relocating the target after losing it, consid-
ering only the cases in which it was successfully relocated.
Figure 6 shows how this probability changes over time: the
planned search is far more robust than the fixed search, offer-
ing significant probability of rediscovery of the target even
after half-an-hour. Oh the other hand, the static policy only
finds the target after it has been lost for 10 minutes in less
than 4% of cases. The figure shows the probability of find-
ing the target at a particular time after losing it. A slightly
different question is how likely it is that the static policy will
find the target once it has entered the lawnmower search. We
found that to be approximately 13%, which indicates that the
lawnmower is not as ineffective as Figure 6 might suggest.
We found that the plan-based search very rarely finds the
target after the fourth search pattern in a plan.

Our results clearly demonstrate a better performance us-
ing planning than using the static policy, but there remains
considerable scope for improvement. There is weakness in
the way we position the time windows around search pat-
terns and we are investigating how to improve that.

5 Obstacles and Spatial Reasoning
We are currently working on extending our approach to SAT
in two main directions: (i) including the effects of obstacles
that prevent the UAV from tracking the target; (ii) modelling
and handling qualitative spatial constraints.



5.1 Obstacles
Our current technique and simulation assume that the UAV
is free to fly everywhere with no restrictions. However, a
more realistic model of the problem needs to include ob-
stacles, which are regions that the UAV cannot violate or
regions that the UAV can enter with an associated risk of
not being able to track the target or even to fly safely. Ob-
stacles can be used to represent a number of entities, from
buildings to weather conditions, and might present differ-
ent characteristics: hard vs. soft, dynamic vs. static, per-
meant vs. temporary, see-through vs. opaque and big vs.
small. In addition, we need to distinguish whether the target
is able or not to drive in an area considered an obstacle for
the UAV. For example, a military no-fly-zone is an obstacle
for the UAV, but not for the target. Clearly, an evasive target
might enter such areas to elude pursuit. Following Meuleau
et al. (2009), we identify the following categories of obsta-
cles: (i) Urban development; (ii) Terrain (vegetation, moun-
tains, etc.); (iii) Adverse weather conditions (rain, showers,
thunderstorms, etc.); and (iv) Prohibited or restricted areas
(commonly called “no-fly zones”). Urban development, ter-
rain, and no-fly zones are hard, static and permanent obsta-
cles. They cannot be violated and can be incorporated in
the model of the environment. Weather conditions are soft,
dynamic and temporary obstacles. They need to be mod-
elled in real-time and a risk model needs to be associated
with them. Since these four types of obstacles are colum-
nar and we do not consider altitude in our simulation, we
model obstacles as convex polygons. This choice is com-
mon to a number of approaches that consider obstacles (e.g.
(Meuleau et al. 2009)). Currently, we have considered hard
static obstacles of small-medium size with respect to our 100
km square grid, while addressing soft obstacles with an as-
sociated risk model is one of our future goals.

When dealing with an environment with obstacles, we
need to solve the following issues: (i) how to react to the tar-
get entering an area that is an obstacle for the UAV, while the
UAV is in tracking mode; (ii) how to treat obstacles during
the search pattern generation phase; and (iii) how to navigate
between obstacles.

The size and the ability to see inside the obstacle influence
how we tackle these issues. If the target enters an area corre-
sponding to an obstacle while the UAV is in tracking mode,
then two situations can occur. If the obstacle is small enough
to be within the observation range of the UAV’s imaging sys-
tem, then the UAV can simply keep tracking the target if the
obstacle is see-through or execute a circular holding pattern
in the vicinity of the obstacle, if the obstacle is opaque. If the
obstacle is bigger than the observation range, then the UAV
identifies the most probable exit side for the target, flies to
one of the vertices of such side and does a patrol search pat-
tern along it. The most probable exit side is calculated based
on the density and significance of roads across the sector,
the terrain type and the distance from the symmetry axis and
from the last known location of the target.

As for the creation of the search patterns in the presence
of obstacles, if the size of the obstacle is smaller than the ob-
servation range of the UAV, then we create a circular search
pattern centred at the centre of the polygon. If the obstacle

is not opaque, the UAV could potentially see the position
of the target inside the obstacle and continue to track it at
a distance. On the other hand, if the size of the obstacle is
larger than the observation range of the UAV, the UAV will
not be able to observe inside the obstacle regardless if it is
opaque or not. Hence, we follow the sides of the polygon
associated with the pattern more precisely in order to max-
imise the chances to rediscover it. We create a patrol search
pattern that goes along the sides of the polygon. The entry
waypoint for the patrol search pattern is one of the vertices
of the most probable exit side, which is calculated as de-
scribed above for the tracking mode case.

With regard to navigation, recently there has been con-
siderable progress on path planning and obstacle avoidance
(see Choset et al. (2005) for a survey) and several tech-
niques have been proposed to efficiently solve this problem
including probabilistic roadmap (Choset et al. 2005) and
Rapidly-exploring Random Trees (RRTs) (Cheng, Shen, &
LaValle. 2001). Currently, we are working under the as-
sumption that there are only a few obstacles in our 100 km
square grid and the path planning is managed by the low-
level control of the UAV so that we do not need to explicitly
address it. However, if we want to deal with environments
cluttered with obstacles, we might need to incorporate a path
planning algorithm in the search pattern generation phase.
We are exploring the idea of using RRTs to this end.

5.2 Spatial Reasoning
The surveillance scenarios that we consider involve poly-
gons to represent obstacles, spirals and rectangles to repre-
sent search patterns, segments to represents roads. In order
to plan a course of action for the UAV, we need to be able
to reason about the relative positions of these geometrical
entities as well as the UAV position in relation to them. Cur-
rently, spatial constraints, and indeed geometric and trigono-
metric functions, cannot be modelled in any of the languages
in the standard planning language family, PDDL, neither
they can be handled by any state-of-the-art planner, includ-
ing advanced planners such as OPTIC or COLIN. We aim
to extend our planning technology to cope with these novel
features introduced in modelling surveillance problems.

We have investigated different ways of representing and
reasoning about spatial knowledge and focused on qualita-
tive techniques. Qualitative spatial reasoning is concerned
with representing and reasoning about spatial knowledge
without using exact numerical values. Spacial information
is represented by using a finite number of possible relation-
ships. A variety of approaches to qualitative spatial reason-
ing has been proposed (see Cohn et al. (2001) for a sur-
vey). The fundamental ontological choices that distinguish
the various approaches are: (i) what it the primary spatial en-
tity among points and regions of space; and (ii) what qual-
itative aspects are considered among topology, orientation,
distance, direction, size, shape and their combinations. Al-
though we are still exploring several possibilities, we identi-
fied two approaches that meet our requirements:
• Region Connection Calculus (RCC), which is a first-order

theory for representing topological relationships between
regions of space (Randell, Cui, & Cohn 1992). RCC is



based on a single primitive relation: given two spatial re-
gions x and y, the relation C(x, y) means that x and y are
connected (i.e. they have one common point).
RCC-8 is a specialisation of RCC that focuses on 8 topo-
logical base relations of special importance: (i) x discon-
nected from y, (ii) x externally connected to y, (iii) x
partially overlaps y, (iv) x is equal to y, (v) x is tan-
gential proper part of y, (vi) x is non-tangential proper
part of y, (vii) and (viii) are the inverse of the previous
two. Constraint-based reasoning techniques originally de-
veloped for qualitative temporal reasoning can be used to
reason in RCC-8 as well as RCC-8 can be regarded as
the spatial counterpart of the temporal (one-dimensional)
interval algebra introduced by Allen (Allen 1983).

• Double-Cross Calculus (DC-calculus), which is charac-
terised by points as the primary entity and orientation and
direction as the qualitative spatial features (Freksa 1992).
This calculus allows one to specify the qualitative posi-
tion of one point with respect to an oriented line segment
and express concepts as “to the right of”, “behind of”,
“beyond of”. More formally, DC-calculus defines the di-
rection of a located point to a reference point with respect
to a perspective point. Three axes are used: one is spec-
ified by the perspective point and the reference point, the
other two axes are orthogonal to the first one and are spec-
ified by the reference point and the perspective point, re-
spectively. These axes define 15 different ternary base
relations: left-forward, straight-front, right-forward, left-
perpendicular, straight-second-point, right-perpendicular,
left-centre, straight-centre, right-centre, left-line, straight-
same-location, right-line, left-back, straight-back, right-
back. Since this calculus allows one to combine and eval-
uate path descriptions, DC-calculus has been used to sup-
port navigation in a qualitative way (e.g. (Scivos & Nebel
2001)). For example, we can make the following state-
ments: (i) from point A go to point B and make a right
turn aiming forward to a point C; (ii) from point B go to
point C and make a perpendicular right turn going to point
D. From these two descriptions, it is possible to infer
that points A and D cannot be identical. The satisfiability
problem of constraint systems over DC relations is NP-
hard, but the reasoning problem is solvable in PSPACE.

We plan to use specialised external solvers to manage these
kinds of constraints, instead of doing this inside the plan-
ner. This approach is common to a number of other com-
plex high-level control architectures that need to handle spa-
tial reasoning (e.g., (Doherty, Kvarnström, & Heintz 2009)).
We are currently experimenting with two publicly available
solvers. The first is GQR (Generic Qualitative Reasoner), a
solver for binary qualitative constraint networks, developed
by the University of Freiburg (2013). GQR takes a calculus
description and one or more constraint networks as input,
and solves the networks using path consistency and back-
tracking. RCC-8 is predefined in GQR. The second solver,
SparQ, was developed by the University of Bremen (2013)
as a collection of tools for qualitative spatial reasoning and
directly supports DC-calculus.

The extensions needed to PDDL+ (Fox & Long 2006) to
capture RCC-8 and DC-calculus constructs as well as how

to integrate answers from the external solver into a develop-
ing plan is ongoing work. One of the most difficult technical
questions concerns the development of heuristic functions
that will guide search effectively in the complex problem
spaces produced by metric, temporal and spatial models.
While powerful heuristic functions for temporal planning
and for continuous planning have been successfully devel-
oped (Coles et al. 2009; Benton, Coles, & Coles 2012), it is
an open research challenge to try to extend these to work ef-
fectively in solving much more complex planning problems
involving spatial constraints.

6 Policy Learning and Policy Integration
We see our approach to generating plans for a single UAV
involved in a SAT mission as a first step towards coordinat-
ing multiple intelligent vehicles engaged in complex surveil-
lance tasks through plan-based policy learning. In this sec-
tion, we discuss our long-term research goal in this respect.

Policy-learning is a powerful way to manage uncertainty,
and it has been explored in a range of different ways in-
cluding reinforcement learning (Sutton & Barto 1998) and
sample-based approaches such as policy rollout (Bertsekas
& Castanon 1999). In other work, management of un-
certainty in decision-making has been addressed directly,
for example in planning under uncertainty (Thiebaux et al.
2006), plan execution and repair (Woods et al. 2009) and
in the use of techniques like hindsight optimisation (Yoon
et al. 2008). In reinforcement learning and planning tech-
niques, the uncertainty is modelled explicitly, resulting in
very large state spaces. Although these methods are very
powerful, they are resource intensive and systems relying
on on-board plan generation are typically not agile or capa-
ble of rapid response. Sample-based approaches are much
more promising in dynamic situations because they avoid
modelling uncertainty explicitly in the representation of the
problem, and instead rely on the power of offline learning to
cover the space of possibilities. An implicit representation
of the uncertainty is required to arrive at a suitable probabil-
ity distribution from which to sample. These approaches are
based on the principles of Monte Carlo simulation (Rubin-
stein & Kroese 2007).

In work on sample-based approaches such as policy roll-
out, policies are randomly generated and then “rolled out”
against real examples of a class of control problems. When
the policy is unable to recommend an action, or recommends
a poor action, it is improved by adding the missing (state,
action) pair or associating the state with a better choice of
action. On each iteration, a poor choice of action is replaced
by a better option, leading to different states being visited.
Following a process of iterative improvement, in which each
improvement propagates its effect, the policy ends up be-
ing able to respond well to any state. Although promising
behaviour has been obtained using this method in simple
scenarios (ones that can be modelled in propositional lan-
guages) (Yoon, Fern, & Givan 2007), the techniques have
not been shown to scale to reasoning about complex mod-
els with time, metric resources and continuous effects, all of
which typify many real problems.



We propose to use a completely new and much more
powerful approach to Monte Carlo-based policy learning, in
which we benefit from using a planner to find high-quality
solutions to each of the sampled cases, and then a classi-
fier to associate actions with the states encountered in these
samples. The policy rollout process is similar to a random
walk in the space of policies, starting from an arbitrary ini-
tial policy. By contrast, our approach leads to a high quality
policy as a result of our investment in offline planning. Fur-
thermore, we plan to use state-of-the-art metric, temporal
and continuous planning technology in this offline training
phase, resulting in policies that are much more expressive
than those that can be learned by using other techniques in
the literature. There are two phases to this approach:
1. A very large number of samples are taken of initial states

of the problem to be solved. Each of these samples consti-
tutes one fully observable case which contains combinato-
rial choice and (depending on the domain of the problem)
might require reasoning about continuous quantities such
as time and metric process effects. These cases can be
solved using deterministic planning techniques as demon-
strated by the SAT case. This first phase, therefore, con-
sists of generating and solving thousands of instances to
produce thousands of high quality solutions to a represen-
tative sample of instances of the problem.

2. The second phase is to obtain a policy from these solu-
tions by means of a classification process. Using an off-
the-shelf classifier, such as the J48 classifier from WEKA
(Hall et al. 2009), we can learn a decision-tree representa-
tion of a policy that captures the vast planning experience
embedded in the training data. The quality of the policy
depends on the state variables that were chosen to record
the planning decisions during training. Usually, it is nec-
essary to experiment with different variables in order to
achieve a high level of discrimination in the partitioning
of the variables during classification. Identifying a good
set of state variables is one of the most challenging tech-
nical aspects of this approach to policy-learning.

Although the training phase is expensive in terms of time
and computational resources, we see this as an offline pro-
cess which is not strongly resource-bounded. The classifica-
tion phase produces a policy in the form of a decision tree,
the execution of which does not require significant compu-
tational resource. The benefit of this approach is that, fol-
lowing the offline training phase, we can produce a software
encoding (which can even be realised in hardware) of a pol-
icy that stands alone and that can be demonstrated to exhibit
very robust behaviour across unseen examples of the control
problem at hand.

An important aspect of the class of surveillance problems
being considered is that multiple heterogeneous agents of-
ten need to cooperate in the achievement of tasks. In such
a situation, each agent needs a quick and search-free way
of deciding what is the best thing to do next, in the context
of the actions of other agents. If each agent is executing its
own policy independently of the others, there might be un-
wanted side-effects (such as vehicles not being in the right
places at the right times to execute planned joint activities).
If the agents are cooperating in the achievement of a task

then their behaviours occasionally need to be synchronised.
Choreographing these interactions is usually managed by the
human operator. Another crucial task can also be assign to
the human operator. If a complex surveillance task can be
broken down into several stand-alone tasks, the best results
might be obtained by learning policies for each task compo-
nent. This means that an agent will need to switch between
policies as it moves between sub-tasks. Instead of learning
single, task-specific policies for each agent, the agents might
select between alternative policies, depending on their high-
est priority task. When an agent switches between policies,
which we call mode-switching, the choice of which policy to
select next can be made by the human operator. We assume
that it will be necessary for agents to signal to the human op-
erator when tasks have been completed, to call for assistance
in a task and to make commitments about the parts of the
task for which they are responsible. Therefore, it is neces-
sary to define an mixed-initiative framework in which multi-
agent surveillance will be performed, specifying a commu-
nication language enabling the agents to convey commit-
ments and requests to the operator, and a control interface
allowing the operator to coordinate the agents and perform
mode-switching.

The policy learning approach focusses on providing a
rapid response capability in situations where an agent must
decide quickly between alternative actions which are expen-
sive to evaluate in detail. It is less suitable in situations
where careful plan-execution monitoring is required (for ex-
ample, in the dismantling of dangerous equipment). Here,
offline planning combined with closely monitored execution
and expert plan modification are better suited to the task.
Potentially, our approach could be combined with plan ex-
ecution and repair in cases where both rapid response and
carefully monitored behaviour are required.

7 Related Work
7.1 Probabilistic Approaches to SAT
Over the past ten years there has been growing interest in ef-
ficient SAT. An approach that has been extensively explored
relies on the use of Bayesian techniques. Although research
originally considered the two areas of searching and tracking
separately and focused on scenarios with a single target and
a single vehicle (Bourgault, Furukawa, & Durrant-Whyte
2006), the field has rapidly evolved and a unified approach
to SAT has been proposed by Furukawa et al. (2006) for
complex problems featuring multiple targets and observers.

The probabilistic approach to SAT relies on the use of Re-
cursive Bayesian Estimation (RBE) techniques that recur-
sively update and predict the Probability Density Function
(PDF) of the target’s state with respect to time, under the
assumption that the prior distribution and the probabilistic
motion model of the target are known. The target is usually
assumed to be subjected to external disturbances and not to
move on the basis of its own intentions (e.g., a UAV might
search for and track life-rafts drifting with wind and cur-
rent). As RBE techniques are computationally expensive,
several approaches have been explored to compute them
efficiently, including grid-based methods (Bourgault, Fu-



rukawa, & Durrant-Whyte 2006), particle filters (Chung &
Furukawa 2006), and element-based techniques (Furukawa,
Durrant-Whyte, & Lavis 2007).

Based on the calculated PDF, the search control prob-
lem is solved in a greedy fashion over a very short planning
horizon; typically, a one-step lookahead horizon is adopted.
This myopic planning approach is used to control the com-
putational cost of the technique, which quickly becomes
intractable as the number of lookahead steps, the size of
the search area, or the number of dimensions of the search
space, increases. A unified objective function is used for
both search and tracking, allowing a vehicle to switch from
one mode to the other while maintaining information gained
during the previous phases.

Probabilistic-based SAT has proven successful for prob-
lems involving stationary targets or targets moving in small
geographical areas, simple motion models in which the tar-
gets do not show any evading or intentional behaviour, static
search spaces, and short-term missions. Whenever these as-
sumptions are not satisfied, especially for SAT operations
over large geographical areas, complex target motion mod-
els and long-term operations like those we are interested in,
RBE techniques perform poorly due to the high computa-
tional cost of accurately maintaining a large state space that
includes all the possible positions of the moving targets.

7.2 Orienteering Problem
From a theoretical point of view, our formulation of SAT as a
planning problem resembles the Orienteering Problem with
Time Windows (OPTW) (Kantor & Rosenwein 1992). In a
classical orienteering problem (OP), a set of vertices with as-
sociated rewards is given as well as a starting and an ending
vertex. For all the vertices, the amount of time tij needed to
travel from vertex vi to vertex vj is known. Finally, a max-
imum time budget Tmax is established. The goal of the OP
is to determine a path that visits a subset of the vertices in
the available time Tmax in order to maximise the total col-
lected reward. In the time window variant of the OP, each
vertex is associate with a time window and a visit to that
vertex can only start during that window. Considering our
planning problem, the set of search patterns corresponds to
the set of vertices of the OPTW problem, whereas the time
slots in which the search patterns are active correspond to
the OPTW time windows. As in the OPTW, we also want
to maximise the total reward in the available amount of time
(limited by the window of the latest possible search). How-
ever, in our case and differently from the OPTW, the planner
can choose to visit each location more than once and needs
to decide which search pattern to use at each location. In the
context of planning, the OP has been used to provide suitable
heuristic advice on the goals and the goal order that should
be considered by a planner that deals with over-subscription
problems (Smith 2004).

7.3 Plan-based Policy Learning
The policy-learning approach has been successfully apply-
ing to the control of single agents acting under uncertainty
in two distinct domains. The first is in managing the load-
ing of multiple independent battery cells, in order to max-

imise their lifetime and reduce switching between batteries
(Fox, Long, & Magazzeni 2011). Experimental results sug-
gest that this strategy can reduce the number (and weight) of
batteries required to service loads, and this might have im-
portant impact in the design of battery-powered field equip-
ment. The second is in controlling an underwater vehicle in
executing an exploratory mission at sea (Fox, Long, & Mag-
azzeni 2012). In particular, the mission was to track the edge
of a large patch in the water, such as an algal bloom, which
is moving and is subject to disturbances caused by the ocean
dynamics. Tracking a patch involves following the circum-
ference of the patch while it is moving. A plan-based policy
can decide how to move based on previous experience with
tracking similar patches during training. By sampling many
instances of bloom shapes, and planning to track them suc-
cessfully, it is possible to learn policies that exhibit excellent
tracking behaviour in unseen situations.

One of the great advantages of planning is that it can be
seen as a rapid prototyping tool, since generic PDDL mod-
els are easier to build than specialised solutions. Neverthe-
less, there are challenges in building good planning domain
models. For example, the battery domain model is com-
plex, because the battery is subject to the non-linear pro-
cess of recovery. If the battery is allowed to rest at intervals,
then more charge becomes available through the recovery
effect. This complex continuous behaviour makes planning
very challenging. The task is to extend the lifetimes of the
batteries as far as possible by carefully timing the use and
rest periods. A good plan is one that gets as close as pos-
sible to the maximum lifetime of the batteries, and does so
with the smallest number of switches. The continuous plan-
ner COLIN(Coles et al. 2009) was used to generate the de-
terministic plans.

8 Conclusions and Future Work
We have presented a planning approach to SAT, viewing the
search problem as a planning problem in which search pat-
terns must be selected and sequenced to maximise the ex-
pectation of rediscovering the target. Our results indicate
that the approach is promising and certainly outperforms
static search strategies. By using this approach we have been
able to tackle SAT problems on a large scale — a 100 km
square area represents a significant challenge to the problem
of search, far beyond the capabilities of current alternatives.

Besides performance, we see other advantages in the use
of a plan-based approach to SAT. When following a plan, the
behaviour of the UAV is predictable and well understood.
A plan can be used as a common medium of exchange be-
tween the UAV and human observers, allowing safer inter-
action between the UAV and other air traffic. In addition,
although there is clearly a possibility to construct more spe-
cialised planning for the SAT problem, an important benefit
of the use of a generic planner is that we can readily mod-
ify the collection of search actions, add alternative actions
and otherwise extend the domain model. This flexibility is
particularly important during prototyping and development.

Finally, in this paper, we have discussed our approach to
SAT in the context of our long-term research goal, which fo-
cuses on automatically learning efficient, light-weight plan-



based policies for the high level operation of multiple intelli-
gent vehicles engaged in surveillance in highly dynamic, and
potentially hostile, situations. The effectiveness of this ap-
proach has been demonstrated in two single-agent cases (the
battery and the patch-following domains) and we now aim to
scale up the approach to the multi-agent coordination prob-
lem, addressing the challenges that arise when many agents
are coordinating in solving a problem that requires the inte-
gration of multiple policies.
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