
An Ad-hoc Planner for the Mars Express Mission

Martin Kolombo, Martin Pecka, Roman Barták
Charles University, Faculty of Mathematics and Physics

Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic
{kolombomartin,peci.jh}@gmail.com, bartak@ktiml.mff.cuni.cz

Abstract

Complete planning and scheduling of all spacecraft op-
erations is a challenging area with the remote agent ex-
periment at Deep Space 1 being a pioneering system.
Still the complete approach is rare in practice. For ex-
ample, in the Mars Express (MEX) mission, planning
and scheduling techniques are used to solve some sub-
problems namely scheduling command upload and data
download. In this paper we describe an approach to gen-
erate a complete schedule of the spacecraft that includes
planning and scheduling of science, command uplink,
data downlink, maintenance, and pointing operations.
The proposed solving approach was designed to plan
operations on the Mars Express (MEX) mission and it
was motivated by the MEX challenge at the Fourth In-
ternational Competition on Knowledge Engineering for
Planning and Scheduling. The method is based on in-
cremental addition of operations to a partial schedule
and modifying the time allocation of already scheduled
operations to fit the newly added operation. Despite its
simplicity, the method seems to perform very well on
experimental data, though a deeper evaluation with real
data is still necessary. The paper briefly describes the
problem solved, the integrated planning and scheduling
algorithm, and the initial experimental results.

Introduction
The Mars Express Mission (MEX) is a successful mission
of the European Space Agency with the spacecraft orbit-
ing around Mars and producing 2-3 Gbit of scientific data
per day. It is also one of the successful examples of ap-
plication of planning and scheduling techniques in space.
MEXAR 2 (Cesta et al. 2007) and RAXEM (Rabenau et
al. 2008) are two tools operational at ESA-ESOC. MEXAR
2 was develop to schedule Data Dumping activities while
RAXEM schedules Data Uplink activities. However, these
tasks (downlink and uplink) are just two types of tasks nec-
essary to operate the spacecraft. Naturally, the core role of
MEX consists of scientific (observation) tasks that are com-
plemented by the command uplink and data downlink activi-
ties. There are also maintenance activities necessary to keep
the spacecraft in a good condition. Currently the complete
planning process is realized through a collaborative problem
solving process between the science team and the mission
planning team. Two teams of human planners iteratively re-

fine a plan of all activities of the mission. In 2012 this com-
plex planning problem has been proposed as a challenge for
the Fourth International Competition on Knowledge Engi-
neering for Planning and Scheduling (ICKEPS 2012). The
goal was to develop a system that takes the description of
scientific operations together with operational constraints,
ground station visibility, a spacecraft trajectory etc. as its
input and generates a complete schedule of all the uplink,
science, downlink, maintenance, and auxiliary operations.
Notice in particular that the flight dynamics is not part of
the solution as the spacecraft trajectory is given as the in-
put. The schedule must respect all operational constraints
and maximize the scientific outcome.

In this paper we describe a solving approach that we de-
veloped for the ICKEPS challenge. We see the problem
mainly as a scheduling problem because we can generate
(plan) the main activities to be scheduled (uplink, science,
downlink, maintenance) in advance and only some auxil-
iary activities (pointing) need to be inserted to make the
schedule consistent. This is very similar to inserting setup
activities in the manufacturing scheduling problem (Barták
2003), which is a problem with some but weak planning
component, where the scheduling component prevails. Our
approach is based on incremental extension of a partial
plan/schedule to which we add the science activities with
their supporting (uplink and downlink) activities. This is
similar to the approach used in the Mars Exploration Rovers
employed by MAPGEN (Bresina et al. 2005). Science ac-
tivities to be scheduled are explored by backtracking search
while the time allocation of activities is done using a form
of local search. Some pre-processing and post-processing is
used to add the maintenance and pointing activities.

The paper is organized as follows. We will first shortly
describe the MEX domain, the full description can be found
in (Fratini and Policella 2012). Then we will introduce the
core concept of our approach that is is based on maintaining
a single timeline of activities. After that we will describe the
details of the proposed scheduling algorithm including the
pre-processing and post-processing stages. The paper will
be concluded by the description of current user interface and
summary of some initial experiments.

Problem Description
The MEX domain was proposed as a challenge problem for
the Fourth International Competition on Knowledge Engi-
neering for Planning and Scheduling (ICKEPS). The plan-
ning and scheduling problem is in detail described in (Fratini
and Policella 2012). For this section we extracted its core
parts that are necessary to understand the rest of the paper
(the proposed solving techniques). The problem description
for ICKEPS was already abstracted but still kept to be real-
istic. Recall that the current approach to solve the problem
is based on manual scheduling by two teams of human plan-
ners and there is no automated approach covering the whole
problem yet.

The Mars Express Orbiter (MEX) is a spacecraft operat-
ing at Mars orbit. The orbiter carries six operating scientific
instruments called payloads that collect data about Martians
atmosphere, planet’s structure and its geology:

• ASPERA - Energetic Neutral Atoms Imager,

• HRSC - High-Resolution Stereo Camera,

• MARSIS - Mars Advanced Radar for Subsurface and
Ionosphere Sounding,

• OMEGA - IR Mineralogical Mapping Spectrometer,

• PFS - Planetary Fourier Spectrometer,

• SPICAM - UV and IR Atmospheric Spectrometer.

There is one more instrument VMS (Visual Monitoring
Camera) that is no more used and hence omitted from plan-
ning. The major task is to schedule as many experiments
on the payloads as possible. In general, this is an oversub-
scribed scheduling problem though we have not performed
analysis with more scientific requests yet.

Each payload has an accompanying data store with lim-
ited capacity. This data store is used exclusively by a given
payload (no sharing), the data produced in the experiments
is saved on these data stores and has to be downloaded to
the Earth before it gets overwritten by data from another ex-
periment. The experiments require particular position of the
spacecraft in orbit and particular pointing which describes
the orientation of the spacecraft in orbit. The spacecraft can
focus on Mars in the Inertial (NAD) or Fixed (FIX) point-
ing – required by certain experiments – or the spacecraft can
be directed on Earth in the Earth pointing – for uplink and
downlink. The spacecraft can maintain NAD or FIX point-
ings for a limited time only. To transfer from one pointing to
another, the orbiter needs to perform a Pointing Transition
Action (PTA).

The main action of the spacecraft is a scientific exper-
iment, that is fully described as a Payload Operation Re-
quest (POR). A POR action always has a fixed offset time
restricting when it can be scheduled. The offset is tied to the
MEX’s passage of the orbit’s pericenter. A single orbit takes
roughly 7 hours to complete. It should be noted, that more
instruments can perform POR actions at the same time, if
the conditions for operating the instrument are met. The only
condition considered in our solution is the pointing required
by the specific instrument. The required pointing is specified
in the Payload Operation Request. It is expected that there

will be more PORs than the orbiter can accommodate, but in
our current experimental setting, all PORs can be scheduled.

In addition to experiments, the spacecraft is expected to
perform regular maintenance routines which need to run ev-
ery 3 to 5 orbits. These maintenance actions must be part of
the schedule.

The description of every action taken by the orbiter needs
to be uplinked from the Earth to the spacecraft as a TeleCom-
mand (TC). This is a part of communication actions, which
can be either downlink (DL) of data produced by an exper-
iment or uplink (UL) of TCs. The MEX can downlink and
uplink data at the same time. For the communication to be
possible, the orbiter needs to be in the Earth pointing and a
ground station needs to be available at the time of the com-
munication. The description of availability of ground sta-
tions as well as their bitrates is one of the problem inputs.

In summary, the problem input consists of the following
files:
• spacecraft orbital events produced by flight dynamic

(where and when the spacecraft will be),
• ground station availability and antennas transmission bi-

trates,
• a set of Payload Operation Requests including the amount

of data produced.
The goal is to produce a complete plan/schedule of all op-
erations performed by the spacecraft for a given period. In
particular there are:
• observation actions (experiments),
• maintenance actions,
• pointing transition actions,
• command uploading actions,
• data downloading actions.

The Core Solving Concepts
Most of the actions to be scheduled at MEX are sequential
and there are only specific cases where multiple actions can
be performed at the same time. Therefore we have decided
to model the domain using a concept that we call a Time-
Line. Timelines are very popular in space applications. They
were first proposed in HSTS (Heuristic Scheduling Testbed
System) (Muscettola 1994) as a way to integrate planning
and scheduling and then used in systems such as EUROPA
(Barreiro et al. 2012) or in the OMPS framework (Fratini,
Pecora, and Cesta 2008). We differ from existing timelines
by using a single TimeLine describing the sequence of time
windows containing particular actions.

A TimeLine is a linearly ordered sequence of windows
where each window has a non-zero duration. The TimeLine
itself has a start time and an end time. There are windows
covering the whole TimeLine without gaps. Note that the
number of windows can (and will) dynamically change dur-
ing the scheduling process. See Figure 1 for a graphical rep-
resentation of a part of TimeLine containing several different
windows and actions.

We assume that the following properties are always valid
for a TimeLine:

1. Each window has a non-zero duration.
2. There are no gaps between the adjacent windows.
3. A window is either empty, or contains only actions that

can be conducted under identical conditions.
4. The TimeLine covers the entire time period of the sched-

ule (for example one week); this time period is fixed and
does not change during the scheduling process.

5. If a window is not empty, it wraps tightly around the ac-
tions in it (the window starts when the first action starts
and ends when the last action ends).

6. No action takes more than one window.
7. Only science and communication windows can contain

more actions. Science windows may especially contain
more actions for the same payload (if the actions fit, of
course).

On top of that, we call a TimeLine consistent when:
C1 An empty window has no empty neighbors.
C2 All scheduled actions satisfy all domain constraints (that

is, the timeline represents a valid MEX plan).
We start with a single empty window spanning over the

whole scheduling period. We then add the requested MEX
orbiter actions to the windows using the following two oper-
ations on the windows: window splitting and adding actions.

Window splitting Any empty window can be split into
two empty windows at any time. Note that this makes the
timeline temporarily inconsistent as the condition (C1) is vi-
olated. For this reason, an empty window is only being split
when we are adding an action into it. Analogically, two adja-
cent empty windows can be merged into one. We never split
a window that already contains some actions.

Adding actions When adding an action to a window, the
only requirement is that the desired action time intersects the
window. If the action does not fit perfectly inside the win-
dow, the window is stretched (shortening the empty window
around the action). The windows are always stretched just
enough to fit the action perfectly without empty margins.
Note that a window can contain multiple actions with differ-
ent start and end times. The general formula for determining
the window start and end times is (for a non-empty window):

• start = min{start(a)|a ∈ actions(window)}
• end = max{end(a)|a ∈ actions(window)}

The main task of the MEX domain is to schedule pay-
load operation requests (or PORs) into a fixed TimeLine
satisfying a number of conditions. The MEX orbiter is also
required to regularly perform other preset actions: mainte-
nance and reserved communication windows. We will de-
note all of these actions as tasks in this paper.

Each task requires a specific state of the orbiter (point-
ing, data store load, orbit phase etc.). To maintain the con-
straints specifying these states, the orbiter needs to perform
additional actions on top of the tasks specified earlier. We
simply schedule these related actions that need to accom-
pany the task together with the task. For the POR tasks these
related actions are:

1. downlink of data generated by the POR

2. uplink of TCs for the downlink action

3. uplink of TCs for the POR action

For the maintenance tasks, only the action (3) is required.

The Scheduling Algorithm
We have decided to use an ad-hoc planning approach us-
ing the TimeLine concept described above. Our algorithm
can be divided into four stages: preprocessing of PORs,
scheduling the tasks (using depth-first search), scheduling
the related actions (using local search), and a postprocess-
ing phase, which cleans up the schedule and adds actions
that are trivial to schedule.

Preprocessing
The preprocessing phase deals with the following:

1. generate an appropriate number of maintenance tasks,

2. generate the related actions for each POR and for each
maintenance task.

Since the only constraint on scheduling maintenance tasks
is that the time distance between two neighboring mainte-
nance tasks is between 3 and 5 orbits, we simply generate m
maintenance tasks where m = d timelineLength

4∗orbitLength e.
The generated related actions are stored for use during the

later stages of the scheduling process.

Figure 1: An example part of a timeline

Main search
The goal of the main scheduling stage is to allocate the tasks
to time windows. The scheduling algorithm is divided into
two phases:

1. Pre-schedule all maintenance tasks.
2. Use depth-first search (DFS) to schedule all POR tasks

Maintenance scheduling Scheduling of the maintenance
actions is straightforward. Since we start with an empty
timeline, we don’t have to worry about the conflicts with
other actions so we just schedule all the maintenance actions
spaced four orbit-lengths apart. At the end of this step, we
have a timeline consisting only of empty and maintenance
windows, which we pass on to the next phase. Note that the
times of activities decided at this stage are not final because
the maintenance actions can be (and usually will be) shifted
when scheduling the remaining actions.

POR scheduling The main POR tasks are scheduled using
a classical depth-first search technique with the following
steps:

1. Select and remove the first unscheduled task
2. Check if the POR action can be scheduled into any win-

dow in the TimeLine (starting from the first window) –
this is done using the function SchedulePor(por, w) de-
scribed in Algorithm 4. The POR is successfully sched-
uled only if all the related actions can be scheduled as
well. This logic is integrated in the SchedulePor algo-
rithm. We will describe the procedure in detail when we
get to related actions further in the paper.

3. If the POR action was successfuly scheduled, continue
with scheduling the next POR (step 1).

4. If the POR action (together with its related actions) cannot
be scheduled into any window in the TimeLine, backtrack
to the previously scheduled POR and try to find another
window for it.

Note, that the TimeLine is always consistent after finishing
each iteration. This is achieved by adding/removing the POR
and its related actions always together which guarantees sat-
isfying the MEX constraints (property C2). The property C1
is easily achieved locally when adding/removing actions.

The specific algorithm for checking whether a POR can
be added to a given window will be described in the next
section.

Local search
This section contains the in-depth description of the algo-
rithm used to actually fit the POR actions and their related
actions into the TimeLine. As the reader might have noticed,
the main DFS algorithm is quite straightforward. This is
because most of the actual scheduling is done in the local
search phase by shifting the scheduled actions and adding
new ones.

Before we describe how the different action types are pre-
cisely scheduled, we shall introduce the two main proce-
dures of our algorithm’s local search:

• fitting an action into a window,
• shifting scheduled actions in the timeline.

Algorithm 1 CanFit(a,w,t)
Require: t ≥ StartTime(w)

if t + duration(a) > EndTime(w) then
if Next(w) is empty then

return t + duration(a) ≤ EndTime(Next(w))
else
shiftRight← GetWindowShift(Next(w),1)
return t + duration(a) ≤ EndTime(w) +
shiftRight

end if
else

return true
end if

Fitting For fitting an action into a window, we use the
function CanFit(a,w, t) described in Algorithm 1. This
function determines if action a can be added to window w
in time t. As we can see, the algorithm only deals with the
timing of the actions, it doesn’t check any other constraints.
When the action can’t fit and an empty window is detected
as the next window, we can extendw into the empty window.
Otherwise we have to try and shift the adjacent window to
make room for the new action. Checking for action-specific
constraints is usually done only after this check passes. We
will talk about these constraints as we encounter each action
type later in the paper.

Algorithm 2 GetActionShift(a,dir)
Require: dir ∈ {−1, 1}
w ← GetWindow(a)
t← Start(a)
pt ← t
continue← true
while continue do
pt ← t0 : (t0εw, t0 maximizes (dir ∗ (t0 − t)) and
ConstraintsSatisfied(a,[t,t0]))
if dir = −1 then
continue← (pt = StartTime(w))

else
continue← (pt = EndTime(w))

end if
continue← continue and not isEmpty(w)
w ← Adjacent(w,dir)

end while
return |pt − t|

Shifting Window shifting is based on two algorithms re-
alized by the function GetActionShift(a, dir) described
in Algorithm 2 and the functionGetWindowShift(w, dir)
described in Algorithm 3. The action shift serves as a sub-
routine of the window shift algorithm. Both functions return
the maximum possible offset a (or w resp.) can be shifted by
in the given direction dir. In both functions, we assume dir

Algorithm 3 GetWindowShift(w,dir)
Require: w is not empty
shift ← min{GetActionShift(a, dir)|a ∈Actions(w)
}
if Adjacent(w,dir) is empty then

return min(shift,Duration(Adjacent(w,dir)))
else

return min(shift,GetWindowShift(Adjacent(w,dir),dir)
end if

-1 to mean left and +1 to mean right (this convention is used
everywhere in the planner).

The basic idea is that if we assume an action-filled win-
dow in an otherwise empty timeline, we can shift the win-
dow in either direction as far as the most-constrained action
allows (precisely this is calculated in GetWindowShift).
If we consider other action-filled windows around our win-
dow w, we obviously need to shift the windows adjacent
to w in dir as well, which is calculated by the recursion in
GetWindowShift. To simplify the problem, we only con-
sider windows in dir up to the first empty window. So we
never shift empty windows, we just shrink the first empty
window encountered to make room for the shifted actions.
As we can see, the possible shift offset is then limited by
the size of the first empty window. This limitation however
doesn’t seem to affect the algorithm in any bad way and
reduces the complexity of the function GetWindowShift
significantly in practice.

The only thing from the algorithms that might need more
explanation is the assignment of pt in GetActionShift.
In simple words, pt is the farthest start time (in w) of a
where all constraints for a would still be satisfied. This
is represented by the ConstraintsSatisfied statement.
The statement returns true if constraints for a are satisfied
in the whole interval [t, t0]. We ignore all conflicting ac-
tions in the process of this check. We assume they will be
shifted out as well, hence checking the adjacent windows
in GetWindowShift. In practice, the action shifting algo-
rithm is tailored for each action type and its constraints to

speed the checking up. The basic skeleton is however iden-
tical as described for all action types.

See Figure 2 for an example illustrating the shifting pro-
cess. In the example, we are trying to add a new action into
the first empty window. As the top part of the figure shows,
the new action would collide with action 3 and hence we
need to shift the window with action 3 to make the room
for the new action. In the example, we assume that the func-
tion GetWindowShift returned a possible shifting offset
marked by the dashed line (Shift frame). As we can clearly
see, we only need to shift the window containing action 3
by the offset marked by the thick dashed line. Since that is
smaller than the maximum possible offset, we can perform
the shift. This results in shortening the rightmost empty win-
dow and lengthening the middle empty window so the new
action can now fit.

When we will refer to shifting later in this paper, we will
always have this process in mind. If we say that we shift
a window (an action resp.), we mean running the function
GetWindowShift (GetActionShift resp.) to determine
the maximum possible offset and then shifting the window
(the action resp.) by an offset not greater than the allowed
maximum.

Scheduling a task with related actions The POR and
Maintenance tasks (the main tasks) have other tasks related
to them - the communication tasks. There are three of them
needed for the main POR task to complete - upload of the
commands starting (and stopping) the main task, download
of the produced data, and upload of the command which
starts the download (we call it upload-for-download). This
abstraction leaves out the uplink for these TCs, but such re-
cursion would never stop and thus we address it in the post-
processing phase.

Each action’s scheduling is limited by two sets of con-
straints:

• Temporal constraints related to the main task specify for
example that the downlink task has to be scheduled after
the main task and after the upload-for-download.

• Constraints related to MEX operations include having the

Figure 2: A diagram illustrating window shift

correct pointing, having a ground station available (for up-
link/downlink), being in the correct orbit stage, having the
required altitude or illumination and so forth.

Algorithm 4 SchedulePOR(por,w)
if w does not cover correct orbit stage for por then

return false
end if
t← time of desired orbit stage in w
added← false
pta← NULL
if CanFit(por,w,t) and Compatible(por,w,t) then

if Pointing(w) = Pointing(por) then
add(w, por, t)
added← true

else
pta← new PTA(Pointing(por))
if AddPointing(w,pta,t−PTAduration) then

add(w, por, t)
added← true

end if
end if

end if
if added then

if ScheduleRelatedActions(por) then
return true

else
remove(w,por)
if pta! = NULL then

remove(window(pta),pta)
end if

end if
end if
return false

Local search - POR action The algorithm for determin-
ing whether a POR action can be added to a specific Time-
Line window is described in Algorithm 4.

The function Compatible(por, w, t) is used when win-
dow w is not empty and contains only scientific actions.
These actions cannot be shifted (as they need a fixed time
offset from the pericenter), but actions can run in parallel
on multiple instruments. The function Compatible checks
if we can add the por into w without conflicting with
another experiment on the same instrument. The function
Compatible returns false for any other action types as PORs
cannot be run in parallel with anything else than other PORs.

The logic of the function AddPointing will be explained
several paragraphs later. PTAduration is the duration of any
PTA and is a constant to the problem (30 minutes).

The function ScheduleRelatedActions(por) used at the
end of the algorithm simply takes each related action in turn
(uplinks and downlinks) and attempts to schedule it into the
TimeLine either before or after the por as appropriate. The
ordering in which the actions are scheduled is imposed by
the temporal constraints of these actions. If any such related
action cannot be scheduled, the timeline is returned to the
previous state (all these related actions are removed) and

the function returns false. If all related actions are scheduled
successfully, the function returns true.

Local search - related actions The algorithm for schedul-
ing the related actions is based on searching the windows
around the main POR action in a direction specific for each
action type. The algorithm can be briefly described by:

1. searching all windows in the TimeLine in the given direc-
tion,

2. picking up the best fit according to heuristic,
3. if no such fit is found, fail, otherwise return the exact time

using heuristic
Note, that whether or not we try to shift the actions already
present in the tried window is determined by the heuristic.

The algorithm for determining the maximum possible
shift for a specific action is straightforward. It uses the ac-
tion constraints to calculate the possible timeframe in the
current window and the closest adjacent window. The off-
set between the start (or end if shifting to the right) of this
timeframe and the current action time is then returned.

Local search - completion As was said above, the heuris-
tic is always dependent on the action type. We will look at
the different heuristics in detail in this section.

Communication actions - heuristic
1. Find the first communication window in the specified di-

rection. If it is large enough (or can be extended), fit the
action to such time, that the action duration is minimal.
Since the action duration is dependent only on the ground-
station’s bitrate, choosing the optimal groundstation event
in the window (or adjacent to it) is very simple.

2. If no communication window is found, place the action
into the first empty window that can fit the action (there
is a groundstation with sufficient bitrate) and either has
the correct pointing already or a new pointing transition
action can be added before it.

Pointing action The pointing actions are a bit special be-
cause they are not directly generated in the preprocess phase
but rather generated on-demand whenever we need to add an
action to a window with incompatible pointing. Another is-
sue to consider is that adding a pointing action to a window
changes the MEX pointing for all succeeding windows until
another pointing action is performed. On top of that, the or-
biter can only maintain the NAD and FIX pointing for a lim-
ited amount of time. There are two cases, where this needs
to be considered (assume that we are scheduling a pointing
action pa into window w at time t and that pa sets pointing
to p):

• A window w1 exists (successive to w) that contains an ac-
tion requiring a pointing p1 different from p and there are
no other pointing windows between w and w1. Assume
w1 is the closest such window to w. In that case we will
call w1 a conflict window of w.

• p has a maximum duration shorter than the time to the
next pointing window.

Algorithm 5 PointingFix(w,w1,t,p,p1)
wf ← w
while endTime(next(wf)) ≤ t + maxDuration(p) and wf

!= w1 do
wf ←next(wf)

end while
if p1 != ∅ then
paf ← emptyPointingAction()

else
paf ← pointingAction(p1)

end if
if CanFit(paf ,wf) then

add(paf ,wf)
return true

else
return false

end if

In either case, we address the problem by scheduling an-
other pointing action paf using the algorithm described in
Algorithm 5.

The reader may have noticed that the algorithm may add
an empty pointing action. This happens when there are no
constraints on the pointing of windows between wf and w1.
The planner can later instantiate such empty pointing with
a concrete value. This is a similar strategy to lifting used
in classical backward planning (Nau, Ghallab, and Traverso
2004).

The full algorithm for adding a pointing action pa to win-
dow w before time t is described in Algorithm 6.

The result is that we are always adding the pointing tran-
sition just before the action that requires them (the t param-
eter). The algorithm also ensures, that any pointing conflicts
are always resolved and the maximum duration constraint is
maintained (by calling the function PointingF ix when re-
quired). If either of these cannot be solved, the pointing is
not added and the whole action needs to be scheduled else-
where.

Let us demonstrate the above in an example. See Figure 3
for reference. In the example, we are trying to schedule a
new POR for the SPICAM instrument, which requires the
FIX pointing. As we can see, the MEX is in the earth point-
ing in the timeframe, where we want to add the POR ac-
tion. The arrows in the diagram represent the duration of the
pointing state induced by the originating action.

To schedule the POR, we have to add a new PTA to
change MEX pointing to FIX before the POR. The FIX
pointing however has a limited maximum duration of 90
minutes. Moreover, adding the FIX pointing would break the
required pointing constraints for the downlink action that is
scheduled later. For this reason, we use the PointingFix algo-
rithm described above to place the second earth PTA. As we
can see in the resulting schedule, all pointing-related con-
straints are now satisfied. This process is very similar to how
a general temporal and resources planner Filuta handles new
events in timelines (Dvořák and Barták 2010).

Algorithm 6 AddPointing(pa,w,t)
w ← split(w,t) {left portion of w before t}
OK ← false
if CanFit(pa,w) then

add(pa,w)
p← TargetPointing(pa)
t← StartTime(pa)
if ∃w1 : w1 is conflict window of w then
p1 ← RequiredPointing(w1)
OK ← PointingFix(w, w1, t, p, p1)

else if maxDuration(p) ¡∞ then
OK ← PointingFix(w, EndWindow(timeLine), t,
p, ∅)

else
OK ← true

end if
else

merge(w)
return false

end if
if OK then

return true
else

remove(pa,w)
merge(w)
return false

end if

Postprocessing
Some simpler tasks were omitted in the previous steps be-
cause we address them in the post-processing phase. This
allows us to keep the main search algorithm working with
the least possible number of actions (in other words, with a
smaller search space).

The first simplification was ignoring PORs on the AS-
PERA payload. This one can work even during commu-
nication sessions and needs no specific pointing. The only
constraint is that it cannot run during maintenance, which is
simply achievable in this phase. So the algorithm just finds
a place without maintenance and schedules this POR with
its related actions. Scheduling the related actions will al-
ways work due to the assumptions on communication ses-
sions (see below).

We further facilitated the problem by not handling
telecommands which instruct MEX to move a TC from its
internal memory to the Mission Timeline. These commands
can also run in all states (except Maintenance) and impose
no other conditions. So their scheduling is also an easy task.

There is an issue with this approach however. Since every
action executed by MEX has to have a command starting it
(and most actions need one more for ending), the schedul-
ing in postprocessing also has to schedule uplinks of these
commands. The easiest way to overcome this was to tell the
planner to leave about 25% of an uplink session empty (TCs
are really small). These empty gaps can then be used in the
postprocessing phase to schedule the needed TC uplinks.
Since uplinks are short and there is a constraint to have a 2-

hours-lasting uplink window every 12 hours, it seems having
a quarter of the window empty isn’t a problem. Allowing to
schedule ASPERA data downlink in postprocessing is done
by an analogous principle on downlink sessions.

Pointing postprocess Post processing will also instanti-
ate any empty pointing transition actions with the EARTH
pointing. This does not break any constraints as the empty
pointing action is only created if no window after it requires
any specific pointing. The EARTH pointing then has no limit
on its duration, so there are no constraints on scheduling of
the next pointing action. The algorithm only checks if the
next pointing action has EARTH pointing and if it does, we
can safely remove it to prevent doubling the transition ac-
tions.

User interface
We created a simple graphical user interface (GUI) in Java
which allows to select the input files, run the planner and
inspect the generated timeline. The interface doesn’t allow
interacting with the timeline (other than zooming and pan-
ning). The timeline can be copied to a clipboard or saved to
an image file (the textual form of the timeline is printed to
stdout).

A preview of a timeline is provided in Figure 4. There
is a row for each payload, for maintenance, for uplink and
downlink and for pointing transitions. These rows contain
boxes representing the scheduled actions (the width of the
box corresponds with the duration of the action). Very short
actions (which would be displayed as a few pixels) have a
‘glow’ around them to make them better recognizable. There
are also two rows displaying the state of the orbiter. One for
Mission Timeline (MTL), which shows the used capacity of
this memory in time. The last row displays the used capaci-
ties for all other data stores (all scaled to be at most as high
as the row).

We are planning to add two more major features to the

GUI:

• interaction with the boxes to show more details about the
corresponding actions (like showing the TCs uploaded by
an uplink action),

• connecting main tasks with their related actions by ar-
rows. This should be similar to the Olligram as described
in (Rabenau et al. 2008).

Results
We have evaluated the planner with various sets of randomly
generated data inspired by real data provided to us by ESA.
The reason why we did not use the real data is some diffi-
culty with translating them to a common format. The data
sets range from 30 to roughly 80 PORs. The computation in
each case takes less than a second on a regular laptop.

The generated plan has some interesting features. Firstly,
uplinks tend to get clustered into 3 or 4 windows spaced
roughly regularly, which seems to be optimal from the num-
ber of communication sessions required. Downlinks have
this tendency as well, but the number of these windows
is greater (depends on how data-intensive the PORs are).
The algorithm also optimally schedules the uplinks to run
in parallel with downlinks, which again reduces the number
of required communication windows. Also, more tasks are
scheduled to the start of the week (which is a consequence
of the DFS scheduling algorithm, which schedules left to
right). The effect of this is, that there is usually a lot of free
space at the end of the plan.

If we look at Figure 4, we can clearly see the clusters
of downlink and uplink actions as well as a number of the
pointing fix actions we mentioned earlier in the document.

Testing on a larger data set, we provided data covering
about a month of operation and 164 PORs. The computation
finished within 280 ms using about 5 MB of RAM. An even
larger data set with 192 PORs was scheduled within 600-800
ms using about 10 MB of RAM.

Figure 3: A diagram illustrating POR scheduling with pointing transitions

What is interesting – even in the large data sets there was
no need to perform backtracking – because the local search
was efficient.

There are some problems in validating these random data
sets however as it is virtually impossible to create a sched-
ule manually. Therefore we have little way of knowing if the
tested data set has a solution or how does the optimal solu-
tion look. We can only run the planner on it and check for
any errors in the resulting plan.

We are currently in the process of obtaining more infor-
mation about the real data sets from ESA to properly test our
planner with real data.

Conclusions
The paper presented an ad-hoc approach to solve a complete
planning and scheduling problem for the Mars Express Mis-
sion. The approach uses a ”human-like” style of schedul-
ing where the operations are added to a partial plan that is
modified to accept the new operation. We group the related
operations and schedule the group together. For example the
observation operation is scheduled together with its support-
ing operations for uplinking the commands to the orbiter and
downloading the obtained data back to the Earth. The data
storage capacity constraints are checked when the operation
is added and necessary operations to change pointing of the
orbiter are also added when necessary. The preliminary re-
sults show that this approach works well even for large sets
of observation operations to be scheduled. However the re-
sults still need to be verified by ESA and experiments with
real data need to be performed.

Though the presented approach is an ad-hoc technique de-
veloped for the MEX scheduling problem, we believe that
the core ideas can be applied in other scheduling problems.
In fact, the idea of incremental addition of task to a partial
schedule has already been explored when scheduling opera-

tions for the Mars Exploration Rovers by the MAPGEN sys-
tem (Bresina et al. 2005). The idea of locally shifting activi-
ties to make space for a new activity is similar to a technique
called bulldozing (Smith and Pyle 2004).

Acknowledgements
We would like to thank Simone Fratini and Nicola Poli-
cella from ESA for opening this challenge, for useful discus-
sions to clarify the problem specification, and for providing
data for initial experiments. The research is supported by the
Czech Science Foundation under the contract P202/10/1188.

References
Barreiro, J.; Boyce, M.; Do, M.; Frank, J.; Iatauro, M.;
Kichkayloz, T.; Morris, P.; Ong, J.; Remolina, E.; Smith,
T.; and Smith, D. 2012. Europa: A platform for ai plan-
ning, scheduling, constraint programming, and optimiza-
tion. In Proceedings of the Fourth International Competition
on Knowledge Engineering for AI Planning and Scheduling
(ICKEPS): Design Process Track.
Barták, R. 2003. Visopt shopfloor: Going beyond traditional
scheduling. In Recent Advances in Constraints. LNAI 2627,
185–199. Springer Verlag.
Bresina, J.; Jonsson, A.; Morris, P.; and Rajan, K. 2005.
Activity planning for the mars exploration rovers. In Pro-
ceedings of ICAPS 2005, 40–49. AAAI Press.
Cesta, A.; Cortellessa, G.; Denis, M.; Donati, A.; Fratini,
S.; Oddi, A.; Policella, N.; Rabenau, E.; and Schulster, J.
2007. Ai solves mission planner problems. IEEE Intelligent
Systems 22.
Dvořák, F., and Barták, R. 2010. Integrating time and re-
sources into planning. In Proceedings of the 22nd IEEE In-
ternational Conference on Tools with Artificial Intelligence,
71–78. IEEE Computer Society.

Figure 4: Timeline scheduled from a generated input data set; time goes horizontally

Fratini, S., and Policella, N. 2012. Ickeps 2012 challenge
domain: Planning operations on the mars express mission.
Available at http://icaps12.poli.usp.br/icaps12/sites/default/
files/ickeps/mexdomain/MEX KEPS domain v12.pdf.
Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying plan-
ning and scheduling as timelines in a component-based per-
spective. Archives of Control Sciences 18(2):231–271.
Muscettola, N. 1994. Hsts: Integrating planning and
scheduling. In Intelligent Scheduling. Morgan Kauffmann.
Nau, D.; Ghallab, M.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc.
Rabenau, E.; Donati, A.; Denis, M.; Policella, N.; Schul-
ster, J.; Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A.
2008. The raxem tool on mars express - uplink planning op-
timisation and scheduling using ai constraint resolution. In
SpaceOps-08. Proceedings of the 10th International Confer-
ence on Space Operations.
Smith, T., and Pyle, J. 2004. An effective algorithm for
project scheduling with arbitrary temporal constraints. In
Proceedings of AAAI 2004, 544–549. AAAI Press.

