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Using Space, Air, Marine, and Ground Assets
for Disaster Response and
Environmental Monitoring




Environmental Monitoring

« Flooding is the most costly ($$ and
humanitarian) natural disaster

— 2011 Thailand Flooding: 600 deaths and
$45.7 Billion USD damage [World Bank

2011]

* Over two hundred million people live near
volcanoes.

— The Iceland volcanic eruption caused damages
1.9-3.3 billion USD (EU Transport Commissioner
Siim Kallas 27 April 2010) in air travel, tourism,
and industrial disruption.




Adaptive Sensing and Sensorwebs

* Adaptive Sensing offers the potential to revolutionize
environmental sensing

— Sensing optimization based on model uncertainty
— Event-driven selective sensing

— Integrated hierarchical sensing

* These techniques utilize: Machine Learning,
Automated Planning, and Multi-agent Systems

My focus in this talk will be on sensorwebs that
utilize remote sensing but the approaches and
techniques apply to many platforms and modalities




Cryosphere Tracking

« Automatically determine areas of greatest
change
Automatically target with higher resolution
limited swath sensors (e.g. EO-1)

Hyperion Sensor on EO-1
SSMIS sensor on DMSP |lce breakup at Prudhoe Bay
1 days data 25km/pixel resolution 30m/pixel resolution

T. Doggett, R. Greeley et al, Arizona State University




Visible and burn scar enhanced
images from ALI instrument on

MODIE | tesv NASA Earth Ob t . . EO-1 of Station Fire near Los
magery cotriesy o servatony W I I d ﬁ re Angeles 03 September 2009
Z :l-

Images courtesy EO-1 Mission
NASA GSFC

MODIS Rapidfire [Justice et al.]
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Station fire, La Canada, August 2009 EO-1/ALI: 30m resolution




Flooding

AR AN

MODIS, 250m resolution

Worldview-2,
2m resolution

SVM Classified
Surface Water Extent

Raw Image




Volcano Monitoring

* Volcanoes can erupt with little warning,
sometimes after 100s of years or dormancy

Chaiten volcano,
Chile in a 2008
eruption

image courtesy
USGS
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MODIS - Eyafallajokull

15 April 2010, MODIS, NASA/GSFC/JPL




Eyjafjallajokull
Volcano

April 18, 2010

19 April 2010, MISR

NASA/GSFC/LaRC/JPL, MISR Team 15 April 2010, AIRS - NASA/JPL




Space Monitoring and Sensorwebs

EO-1 ALl false color el

imagery of Eyafallajokull vﬁ‘ '} ,

and Fimmvorduhals é’h % Vb

volcanoes acquired via i 4 of (g

Volcano Sensorweb. & ,4’ /;.7
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Image courtesy EO-1/

NASA GSFC Volcano

Sensorweb JPL/A.

DEWICE




Iceland
lmagery

Eyafallajokull

2 Giga Watt Thermal

emission

Left — thermal false color
Right — True color

17 April 2010

Image credit:
NASA/JPL/EO-1 Mission/
GSFC/Volcano
Sensorweb/Ashley
Davies



SensorWeb Imagery: EO-1




Overview

e Sensorweb

— Networked set of sensors

— Data from one sensor is used to reconfigure other parts of
network

— In space context — data from one or more instruments is
used to retask another asset

— Automated data processing (workflows) may also develop
products and deliver to end users




Process flow:
S —I

Produce Data,
Detection Response Deliver Data
Model




Technologies:

Workflows for

EVENts s — I data delivery

. Produce Data, :
Detection Response Deliver Data
Model

Workflows for Automated
automated planning to
data task
interpretation: spacecraft
spectral, (EO-1),
support marine
vector assets,
machine reconfigure
in-situ
sensors

Workflows for

product generation

— surface water

extent, burn

severity maps,

volcano thermal

output
Dashboards
and mashups
for user
display




Agent-based architecture

e System is comprised of a set of agents

* Agents are described by beliefs, desires,
intentions (BDI)

* Agents communicate by sending beliefs,
request for services, acknowledgements of
services, ...




Inside an Agent

* Agents have internal mechanisms to support
goal-directed behavior, such as

* A space asset might have a mission planner to
determine if the spacecraft can satisfy requests for
imaging (or if higher priority activities prevent, or if
resources are not available, etc.)

* An asset might have an execution system to achieve

high level requests (such as imaging, or to reconfigure a
ground network)




Inside an “agent” — Autonomous Sciencecraft

Raw InstruTent Data

Observation
Planner

Band Extraction

Observation Image

\ 4

Onboard Science

— response in 10s of minutes
ke
» High level *. Plans of Activities

S/C State (high level)
Information i

SCL - response in seconds with rules, scripts | ICS
o«

R

S/C State Commands
(low level)

3
* -

v -
&
- *

EO 1 Conventional Flight Software
reflexive response

% Control Signals
~  (very low level)

*
*

b |

Spacecraft Hardware

For further information see [Chien et al. 2005 JACIC]




Hierarchical Multi-agent Systems
for Integrated, Intelligent,
Space—Ground Volcano

Monitoring

For further information see [Huang et al. 2010 JSTARS]

Integrated with multiple volcano observatories worldwide
including: Iceland, Ecuador, Mount Erebus, Etna,...




Spider Sensors Hardware (USGS)

MEMS accelerometer (seismographic)
Acoustic Sensor

GPS sensor

Lightning Sensor

Radio




Spider Node on Mt St Helens
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Mount Saint Helens “Agent”

Allocate resources
(bandwidth) to sub-
area of network based
9 on global view

Filter and summarize
data based on local
view




Onboard Node Smart Software

« Onboard node software can detect events to change operating modes to

capture critical events
» Quality of Service Node software ensures highest priority data is tranferred
« Example from OASIS Node 05 showing waveform, in-situ RSAM and in-situ

event triggered QOS prioritization

Seismic QOS

- | Pre-event RSAM 4
buffer “



End-to-End ground and space cross-trigger

Data autonomously delivered to Ground System and ingested into time-
series DB.

VAlarm detects new data and triggers autonomous ground response
through C&C: heighten priority (QoS) of crater node (node 4) seismic
data.

Thermal data detected / ground response

MW W b W WW ki

Data transmission loss at low QoS.

Increased QoS results in nearly continuous data,
at node of interest.




Automated Workflows for
Automatic Data Interpretaton

For further information see [Davies et al. 2006 RSE,
Davies et al. 2008 JVGR, Davies et al. 2013 JGRI]
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Parameters:

Mass Effusion rate: 6590.03 kg/s
Volumetric Effusion rate: 2.64 m3/s
Total Power loss: 1.98e+09 W
Radiative Power loss: 1.61e+09 W
Convective Power loss: 3.66e+08 W
Total effective area : 7.98e+04 m?2
Effective temperature: 7.73e+02 K
Look Angle: 12.63 deg.
Range to Ground: 705.85 km
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Fimmvorduhals and Eyjafjallajokull (day/night)
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3/20/2010 3/30/2010 4/9/2010 4/19/2010 4/29/2010 5/9/2010 5/19/2010 5/29/2010

Time, date

Thermal emission estimate is minimum value:

- estimates from short wavelength data
- thermal detections heavily impacted by cloud and/or plume...
... and we would like to know by how much!

6/8/2010




Volcano SensorWeb

EO-1 Hyperion SWIR image
of destructive lava flows at g 2 o A
Nyamuragira, DR Congo, PRy ol
4 Dec 20086. g . Vg

o 2 . Ciyiragongo
This vital data acquisition et e, Ul v
allowed pinpointing of the T it , I |
vent and enabled accurate
modeling of likely lava flow —

direction. ¥ 1500

¢ Nyamuragira

“This was a stunning demonstration of the capability of
Alert: Uses alerts from an autonomous system to obtain and provide vital
information during a volcanic emergency.”
- Gari Mayberry, Geoscience Advisor, USAid

multiple sources (in situ
sensors, MODIS, AFWA,
VAAC, et al.)

Response: Alerts are used in a prioritized fashion to trigger follow up targeted
satellite observations.

Product Generation & Delivery: Rapid data processing, thermal maps,
modeling of eruption parameters, and posting to end users.
SensorWeb now includes in-situ sensor monitoring of Icelandic volcanoes:

A. G. Davies / JPL |I!||I!|||! |




Hyperion SWIR image of active vent and flows

Hyperion VIS  Classifier output Nyamuragira
4 Dec 2006
07:59 UT

Davies, A. G. et al., 2008, Proc. IEEE-AC
Scott, M. (2008) Earth Imag. J., 5, no 2, 26-29.




Predicting lava flow emplacement

Nyamuragira

1 revised vent Iocatlon
» re ised lava flow model —
;-;' )’
|

furst reporied vent location
v .
4 Nyiragongo
£é

-

— initial lava flow model

Elevation (m)

1500

Modelling by Paolo Papale (INGV) et al. Scott, M. (2098)

NSTCO7 19 June 2007




Machine Learning and
Workflows for Automatic Data

Interpretation

For further information see [Chien et al. 2011 IGARSS, Mclaren et al.
2012 SPIE, Chien et al 2012 i-SAIRAS, Chien et al 2013 JSTARS]




Flooding in Southeast Asia, Fall 2011

Dry: March 6, 2011 Flood: October 27, 2011
(MODIS) (MODIS)




2011 Thailand Flooding

* Flooding in Thailand in late 2011: over 800
deaths, S45 Billion USD damage (according to
World Bank), and over 13 million people
affected as of January 2012

— Threatened Bangkok and outlying areas
— Disrupted industrial production and global supply chains




Thailand Flood Sensorweb (TFS): Overview

Networked set of sensors (space), data from sensors used to
reconfigure/task other parts of network

In TFS, twice-daily Moderate Resolution Imaging
Spectroradiometer (MODIS) imagery is classified,
compared to a baseline, and used to request

observations from EO-1

— Automatically deliver data products for EO-1 Advanced Land Imager
(ALI) images to end users

e Thailand Hydro & Agro Informatics Institute (HAII)
Manually retrieved WV-2, Ikonos-4, Geo-Eye, Landsat,
Radarsat2 scenes can be automatically classified and
combined with Digital Elevation Model (DEM) to estimate
water volume




Automated TFS Operation

MODIS
Imagery
(Terra,
Aqua)

EO-1 ALl
Imagery

Classify Classify
Flooding Flooding

Submit EO-1
Scene
Request

Product
Delivery




Workflow for WV2 water volume
estimation

WV2 Imagery

Classify Flooding

Digital Elevation
Model (DEM)
for Bangkok

Calculate water
volume
estimation
products

Product Delivery
(SWE map, water
volume products)




WV2 Flood Classification

Used Support Vector Machine (SVM) Technique: Finds a separating
hyperplane between two labeled classes

Linear kernel

fast ( simply dot product )
inflexible

C (error penalty)

1) =sign(} v, k(xx,)+

More than two
classes can be
separated recursively

Gaussian (RBF) kernel

slow

flexible

C (error penalty)

Y (Gaussian width)




WV 2 Flood Classification

Hand-labeled subset of WV2 scenes
Training, validation, and kernel selection using PixelLearn tool
created by Machine Learning and Instrument Autonomy (MLIA)
Group at JPL
5t degree polynomial kernel, cost factor C=1.0

— Feature sets using 8 MS bands or 28 band ratios gave plausible results

— Experimented with classes for clouds and urban areas, but settled on
land/water/border
* Found more classes difficult to generalize to multiple scenes

— Runtime for classification w/in PixelLearn tool: ~5 minutes

Other SVM kernels in experiment
— Linear: Often performed well for training scene, but failed to
generalize to multiple scenes
— Radial Basis Function (RBF): Inconsistent results, sometimes better,
sometimes worse than Polynomial




WV2 SVM Classification

Reflectance of WV2 scene of Bangkok w/ flooded Don Muang
Airport, acquired 11.3.2011
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Surface water extent (blue) from SVM classifier using 5
degree polynomial kernel on 8 WV2 bands




WV2 SVM Classification

Class

Unlabeled

Border

Water

Land

Unlabeled

Border

Water

Land

Unlabeled

0

13156222

20395227

45959337

0.0%

16.5%

25.7%

YR

Border

223

0

0

0.0%

100.0%

0.0%

0.0%

Water

0

6847

338

0.0%

0.0%

95.3%

4.7%

Land

0
0
0

0

0

1044

0.0%

0.0%

0.0%

100.0%

Confusion matrix for 5" degree polynomial SVM for 8 features, run on hold-out

scene acquired November 3, 2011. Overall classification accuracy: 96.0%.

Class

Unlabeled

Border

Water

Land

Unlabeled

Border

Water

Land

Unlabeled

0

25639043

12807455

22806048

0.0%

41.9%

20.9%

3/.2%

Border

349

0

0

0.0%

100.0%

0.0%

0.0%

Water

0

2206

287

0.0%

0.0%

88.5%

11.5%

Land

0
0
0

0

3

3110

0.0%

0.0%

0.1%

99.9%

Confusion matrix for 5" degree polynomial SVM for 8 features, run for hold-out
scene acquired November 8, 2011. Overall classification accuracy = 95.1%.




WV2 Thresholding

* Used ratio of WorldView-2" s NIR1 (831 nm) /
Green (546 nm) bands

— Bands selected because of their similarity to the

bands used in prior work for ALl instrument [Ip et
al. 2006, Chien et al. 2011]

— Tested different nirl/g thresholds from 0.6 - 1.0

* Marking areas with g/nirl threshold < 0.8 as water
vielded results comparable to SVM




Waterolume Estimation

Surface water extent (black) from thresholding WV2 green,
NIR1 bands




Water Volume Estimation

Goal: Estimate depth of water in flooded areas and total volume of flood-
water remaining

Inputs

— Surface water extent map classified from MODIS, ALI, WV2, or RADARSAT2
GeoTIFFs

— DEM acquired from HAII (Resolution: 5 meters horizontal, 1 m vertical)

Algorithm Outline
— Identify land, water, and no-data pixels in classification results
* No-data includes clouds, borders
Identify all unique, 8-connected water bodies in the image
Find pixels that constitute boundary around each unique water body

For each water body, estimate mean height of boundary pixels using a DEM, and
set this as water body elevation

For each water pixel, set water depth to max(0, water_body_elevation —
pixel_elevation)

* Qutput: water depth map (GeoTIFF), water volume statistics




M fca i [ B T

ater Volume Estimation

Resulting water depth map calculated using SVM-classified surface
water extent map and DEM. Total water volume calculated:
~27,872,000 m3; average flooded pixel depth: 0.64 m.
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Thailand Flood SensorWeb

MODIS 28 Nov 2010 Imagery of
Thailand Flooding (band 7-2-1)

Est. damage over $1.67B USD
[Thailand MCOT, CNN], Oct-Nov 2010

“The Thailand Flood SensorWeb
provides a unique capability to
detection, monitoring, response, and
mitigation of flooding in Thailand”
Dr. Royol Chitadron, Director, HAII
Thailand

S. Chien / JPL

Detect: Pull 2x daily RAPIDFire subsetted MODIS data, support
Vector Machine Learning (SVM) & band ratio methods of

classifying gauging reaches against baseline dry scores

Respond: Earth Observing 1 autonomously responds to acquire
more detailed imagery

Product Generation & Delivery: Data and flood products
electronically delivered to Thailand Hydro Agro Informatics
Institute (http://www.haii.or.th)

Detect:

(L) MODIS imagery of Bang
Pla Ma from 20 Jan 2011
(R) Classified surface water
extent from MODIS image

Respond = Generate - Deliver
(L) ALl imagery of Bang Pla Ma from 21 Jan 2011
(R) Classified surface water extent from AL| image




Thailand Flood Sensorweb
In Operations

MODIS (est.)
EO-1/ALI
Worldview-2
IKONOS
Geo-Eye-1

Landsat-7/ETM

Total per Year

2010: 6/2010- 2011:6/2011- 2012:6/2012- Total per

5/2011

5/2012 12/2012 Instrument

730 420 1450
34 10 55
55 32 87

5 ) 10
! 6

20 26
Pointable:
70 184




Inside the Technology:
Machine Learning for automated

Image Interpretation

For further information see [Mclaren et al. 2012 SPIE]




Volcano Plume Measurement
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MODIS, Acqu:red 156 April 2010
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Plume measurements,
including height, volume,
density, lateral extent, and
ejection velocity, are critical
to volcano monitoring
because of the direct impact
of volcanic ash on
transportation, agriculture,
and human health

Plume height measurement:

— Provides data on eruption
strength and mechanisms

— Allows estimation of
volumetric eruption rate and
volume of ash ejected into
the atmosphere




Automatic Height Estimation Concept

* Explored feasibility of automatically
classifying and mapping ash plumes
and shadows in WorldView-2
imagery
Calculated lower bound plume
height estimate using classification,
solar geometry, spacecraft TR
geometry, and digital elevation WorldView-2, acquired May 11
information 2010 ’ ’
Applied method to two sets of
WorldView-2 images of the
Eyjafjallajokull eruption of 2010 and
compared the automatically-
derived estimates to externally-
derived estimates of plume height

Classification: plume = black,
shadow = gray, background =
light




WorldView-2 Data

WO DW

WorldView-2 Image of Histogram-equalized image
Eyjafjallajokull eruption, acquired
April 17, 2010




Machine Learning Approach

VY ERIEIRE]JEIS
— Plume, shadow, background (land/ice/water/other)
classes

Input features: 28 ratios of WV-2 multispectral bands
Trained random decision forest on one labeled image,
classified five remaining images

Assigned a probabilistic surface classification to each
pixel incorporating cues learned from:

— Multispectral intensity
— Local texture

— Local pixel statistics

— Other image data




TextureCam

TextureCam: framework and library of image processing and classification
techniques intended for integration into a “smart” instrument
Uses training data to construct a random forest pixel classification system,
combining result of multiple independent decision tree classifiers
Each decision tree is a hierarchical sequence of tests applied to local image
values in the neighborhood of the classified pixel. Tests consider numerical
attributes such as:

* Absolute intensity of a nearby location, relative to the target pixel

» Difference in intensity between two nearby locations

« Absolute difference in intensity between two nearby locations

test, X) < t; ?

test,(x) < t, ? testy (x) < t3 ?
)

test, X) < t, ?




Classification Output

Probability Maps:
White = higher
probability Plume

Integrated classification map:
black = plume, grey = shadow, light =
land




Challenges

* ground as plume shadow as shadow

plume as plume ground, ice as ground
8 i ‘

.“
\

|
| v

Histogram-equalized WVZ2 image, Classification map:
acquired May 17, 2011 black = plume, grey = shadow, light =
land




Height Estimation

Estimate plume height from
shadows

Followed calculations derived in
A.J. Prata and I. F. Grant,
“Determination of mass loadings
and plume heights of volcanic
ash clouds from satellite data”
Rotated classification maps so sun
rays are coming from =Y axis
(bottom of the image)

Collected shadow line segments
which have a neighboring plume
region in sunward direction
Corrected shadow lengths for:

— Sun and spacecraft azimuth,
elevation

— Ground elevation at shadow edge
* ASTER GDEM2 DEM

* 30m horiz. spacing, 1m vert.

\‘ﬁé\

+ AR 4

4&

sea level

d : Initial shadow length

d’: Shadow length after projecting
up to DEM & down along sun vector
h : Plume point height




Height Estimation
» .

 Method underestimates plume
height— highest part of the
plume is not necessarily casting
the shadow seen in the image
— Shadow not necessarily cast

from plume edge seen by
spacecraft

e Select and report largest
measurements | P
— Height estimates for long

shadow rays traced from large

regions of classified plume

sea level




Height Estimation Results

* For each image, compute mean, std deviation of top quartile of
height estimates, and keep estimates w/in 2 stds of the mean

* Observed e‘.f,timates from b. Arason, G.N. Petersen and H.
Bjornsson, ~Observations of the altitude of the volcanic plume
during the eruption of Eyjafjallajokull, April-May 2010

Image Date

Plume height estimate (in km above sea level)

WorldView-2 Shadow-based Estimates

Observed Estimates from Arason

et al. 2011

# samples

Best estimate
(mean, km)

20th - 80th %-ile
Range (km)

Visual
Estimate

Radar Estimate

17 Apr 2010

290

2.66

2.52-2.97

17 Apr 2010

199

3.57

3.51-3.64

17 Apr 2010

585

3.06

2.94-3.15

17 Apr 2010

8

4.35

4.35-4.36

2.3-5.5km

4.8-8.5km

11 May 2010

12

3.02

3.02-3.03

11 May 2010

154

4.58

4.47-4.67

3.8-4.4 km,
mean=4.3km

3.6-4.9 km,
mean = 4.3km




Other Sensorweb Applications




Thailand Fire Sensorweb

Color image (L) & Normalized Burn Ratio (R)
product of Huay Nam Dang acquired

Dang
4 March 2011 in response to active fire alert

-
|

Detect: Uses FIRMS MODIS-based fire detection system
to monitor National Heritage Areas and Wildlife
Sanctuaries

Respond: Alerts are used in a prioritized fashion to trigger
follow-up targeted satellite observations by EO-1. “We are currently using the system to monitor fire
Product Generation & Delivery: Imagery & burn severity activity in six critical areas of Thailand.”

products electronically delivered to National Park, Wildlife — Director General, National Park, Wildlife &
and Plant Conservation Department of Thailand Plant Conservation Department of Thailand
(NPWPCD; http://www.dnp.go.th)

S. Chien /. JPL




Ocean Sensorwebs

For further information see [Schofield et al. 2010 EOS,
Wang et al. 2012 CR, Thompson et al. 2010 ICRA,
Dahl et al. 2011 IROS]




Ocean Observatories Initiative

—




The Ocean Observatories Initiative




Temperature

ROMS ocean model

e 4DVar assimilation and forecast
 Up to 1km horizontal resolution

e Variable depth resolution

Salinity




ROMS ocean model

e 48-hour lookahead

* 6-hour re-assimilation and
“nowcast’

nowcast
forecast
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Simulation hours




Underwater gliders

* Long duration missions, Low cost platform
e Limited propulsion (~0.3mps)

* Dead reckoning between GPS acquisitions  Waypoint
Comm GPS fix GPS fix  GPS fix
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Rutgers




Glider goals must be
spatiotemporal

Asset coordination

Coincident
measurements

Moving or transient

targets

Objective: find best
grid waypoints
between high-level
spatiotemporal goals

Rugters gliders coordinating around
a Hyperion / EO-1 overpass




Path planning challenges

STRONG curre nt [Soulignac et al 2008, Zhang et al 2008]

DYNAMIC current [Soulignac et al 2009, Smith et al 2009]
SPATIOTEMPORAL goals

UNCERTAIN current predictions wolfetal 2010




Path planning challenges

¢ STRONG curre nt [Soulignac et al 2008, Zhang et al 2008]
 DYNAMIC current [Soulignac et al 2009, Smith et al 2009]
* SPATIOTEMPORAL goals

* UNCERTAIN current predictions wolfetal 2010
This work

SPATIOTEMPORAL planning in STRONG, DYNAMIC
currents

Test UNCERTAINTY in simulation




“Earliest arrival’ wavefront
planning

* Find path to arrive at goal
location as soon as Soal
N
Expand from start to goal .--.

— Travel in up to 8 directions
e Time of arrival

Path then validated for
consistency with

state/resource planner
ASPEN/CASPER




“Earliest arrival” wavefront
planning

* Find path to arrive at goal

location as soon as *Goa.
possible

Expand from start to goal

— Travel in up to 8 directions
— Record:

e Time of arrival
e Ancestor in best path

Path then validated for
consistency with

state/resource planner
ASPEN/CASPER
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“Earliest arrival” wavefront
planning

* Find path to arrive at goal

location as soon as *Goa.
possible

Expand from start to goal

— Travel in up to 8 directions
— Record:

e Time of arrival
e Ancestor in best path

Path then validated for
consistency with

state/resource planner
ASPEN/CASPER




“Earliest arrival” wavefront
planning

* Find path to arrive at goal

location as soon as *Goa.
possible

Expand from start to goal

— Travel in up to 8 directions
— Record:

e Time of arrival
e Ancestor in best path

Path then validated for
consistency with

state/resource planner
ASPEN/CASPER




Calculation of motion time required

* Treat currents as constant over short timescales

* Glider velocity is sum of current and control velocities

* Travel time between grid squares:

Vactual = Vcontrol T CCL'y’T = \d

ey
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/

control

\

actual
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Calculation of motion time required

* Treat currents as constant over short timescales

* Glider velocity is sum of current and control velocities

* Travel time between grid squares:

current
prediction

e

Vactual = Vcontrol T CCL'y’T = \d

=y

Clye =
v zhf

Z f CI}yTh
" T

portion of dive
period at height h

\'

/

control

\

actual

4




Spatiotemporal goals

.A.A.'




“Earliest valid arrival’ criterion

* Find path with earliest arrival that can still hold
position until goal time

* Expand each grid square on the frontier
— Travel in up to 8 directions, or...
— Hold position to next time interval




“Earliest valid arrival’ criterion

* Find path with earliest arrival that can still hold
position until goal time

* Expand each grid square on the frontier
— Travel in up to 8 directions, or...
— Hold position to next time interval
Some nice properties

Globally optimal solution
up to discretization error

Fast (runs in seconds)
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Current Sensmve Path

ooooo
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Visualizing Reachable Volumes




Control strategies to track the path

Active
waypoint

", Propulision
Current-sensitive Intended
Control direction

Active plan
segment

Current-blind
control

Ignore current-sensitive path
altogether




Control strategies to track the path

current-sensitive
control

current-blind
control

no planning '
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Experimental results with ROMS data

e 48-hour lookahead

 Random initialization and goal locations,

l—i mes Omniscient Realistic No
planner uncertainty planning
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Experimental results with ROMS data

* Considered different spatial resolutions for planner

Current-blind Current- No
olelglife] sensitive control planning
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Caviat:
The OSSE NorEaster (Nov 10-13 2009
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OSSE Glider Fleet

Last Surtacing




MAB 2009 Deplme

3 L > 1 —— e B - o - -,

A

=
|

-

SRELID

1]

I
:

— gy

Ll =]

O e

Koy (A} Wayponts are adpsted in 2 viswal map interface. The white line shows ghder o 3 traveding toward the coast; f extra ome s avalabie it wil periorm a
“runoet”™ activity, raveling 1oward the Pt of oM row s satelile overp Rreem rectangie ). Yelow polygond show areds reachable By the gider by the end of
the forecast period. {B) The cant i planning termingl proviges utiities for rough masipelation of the plan. & draws on reddome glider position information from
Rutpers Unsveriity 3 e OpenDAF ¢ N AMUlahon models. NS Currenl-dardilive path plann omputies cobmal SClones through the e -viarying Curronts

these are visie in the vector samen (). Finaly, ASPEN command termnal and GUI appears inwindows (D) and [E]. Here ASPEN $hows 2 tweine view of the

el plan, tracking redo




Reachability envelopes!

' 7-"“ . "
-
Per-3Bs




Conclusions

* Adaptive sensing is revolutionizing
environmental monitoring — cryosphere,
flooding, volcanology:

— Adaptive sensing integrated with modeling
— Machine learning for data interpretation
— Automated Planning/Execution for asset autonomy

— Multi-agent systems for coordination




Integrating Aerial Assets
UAVSAR




Can Loiter

Aerial Assets

Complementary to Space Assets

Generally lesser spatial coverage

Must pay per deployment cost

Soil moisture

Surface water
extent

Repeat-pass
disturbance

Snow/ice vs
land SVM
classification

Amplitude
Correlation

Agriculture,
Water resource
management

Flood mitigation

General

Transportation,
Freeze-thaw
monitoring

Sea
transportation,
Glacial
movement
monitoring

Currently requires sparse
vegetation; generalization of
algorithms to variable/dense
vegetation future work.

Extensions to varied
topography, rough waters,
and smooth land are future
work.

Requires expert/interpreter
and prior imagery onboard.

Vegetation can complicate
classification.

Strong transportation
application.

Glacial studies would desire
higher fidelity (sub-pixel
motion, per pixel).
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Amplitude
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Water resource
management

Flood mitigation
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Freeze-thaw
monitoring

Sea
transportation,
Glacial
movement
monitoring

Currently requires sparse
vegetation; generalization of
algorithms to variable/dense
vegetation future work.

Extensions to varied

topography, rough waters, and

smooth land are future work.

Requires expert/interpreter
and prior imagery onboard.

Vegetation can complicate
classification.

Strong transportation
application.

Glacial studies would desire
higher fidelity (sub-pixel
motion, per pixel).




Oil / Amplitude
Segmentation

Flood fill on each pixel, with merging

Felzenszwalb / Graph based segmentation

— Results in areas of similarity that can be measured in

expanse and average intensity

Geolocated features/events
Minimum spanning forest of 4-neigborhood graph over .

pixel magnitude metric

— Runtime complexity: nearly linear with image size

Segmentation of original image at different multi-
looked resolutions yields different results

,C‘GOmj""..

Composite of several resolutions to capture various : ‘
 segments

scale features
—  Float32 multilook data: 2.5 MB
—  Multilook browse: 400kB

— Segmented Composite Browse: 32kB, ~ 80x reduction
in data volume

February 2012




Autonomy Demo
« OBP single HH channel

— Amplitude segmentation / “oil slick” algorithm processes
geolocated backscatter images.

— Detected features broadcast to local network

« OGC Sensor Alert Service (SAS) packets
« CASPER has baseline plan of flight loaded

— Monitors GPS data to update plan in real time

— Receives SAS packets as Points of Interest (POI)

« POl are checked against baseline to see if they are already
covered by the remainder of planned flight

« Non-covered POl result in a replan

— CASPER replans respecting

« Flight Plan constraints (using specialized UAVSAR flight
planner) with deadlines, minimizing flight time

 Onboard Resources




Flight Demonstration 1/2012

« Base line
flight plan:
— fp340v01

February 2012




End-to-End Demo

« Actual
aircraft
path in
blue

e First half

of planned
flight

February 2012
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 First data ..
acquisition
begins
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Images acquired
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Images processed and alerts
generated
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CASPER Replanning
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Replan result - flight plan
delta to ROW

CASPER continuously
monitors GPS stream for
progress through current
flightplan

POl are added to schedule as
optional goals

— Casper will insert new datatakes
iInto plan sequence
« at least cost (Fuel) to fullfill goals

« provided sufficient remaining fuel
and datastorage

b 20t Datatake is from a precompiled
YT library of datapaths




Flight
continues

February 2012




Subsequent
data is
collected,
processed,

and further
alternative
re-plans from
baseline are
generated

February 2012




... but only
one will be
selected
for

execution
(cost and
logistics).

February 2012




Single
replan
selected -
23519

(repeat of
first) at
third to
last
datatake.

February 2012




Pilots confirm
airspace
and flight
plan change

with FAA

February 2012




.Diversion from original
ﬂight plan...
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...resume original flight...

February 2012




