Ontological Models to Support Planning Operations

Pete Bonasso Mark Boddy (Adventium) Dave Kortenkamp Scott Bell

Overview of the Project

- We have PRIDE & PRL for procedure authoring, display and execution
- We have augmented PRIDE & PRL to author & display planning information associated with procedures that can be used by automated planners
- The major stumbling block to realizing the widespread use of automation techniques for operations is capturing and maintaining the domain models needed to support such techniques
- This proposal seeks to develop a framework for consistent ontological modeling across domains, that can be exploited by planners and executives currently being developed for NASA

Procedure Authoring System (PRIDE)

Output is in an XML schema called Procedure Representation Language (PRL)

PRIDE Viewer and Executor

PRIDE Planning Wizard (PPW)

Interactive Plan Generation System

Overview of the Project

- We have PRIDE & PRL for procedure authoring, display and execution
- We have augmented PRIDE & PRL to author & display planning information associated with procedures that can be used by automated planners
- The major stumbling block to realizing the widespread use of automation techniques for operations is *capturing and maintaining the domain* models needed to support such techniques
- This project seeks to develop a framework for consistent ontological modeling across domains, that can be exploited by planners and executives currently being developed for NASA

Some PRONTOE Capabilities

- User doesn't need to know about ontologies
- Add/delete/modify data to support procedure authoring
- Navigate graphically through the ontological hierarchy
- Invoke ontological reasoners to speed relation entries
- Author and save what-if snapshots to use for planning future activities
- Integrate with PRIDE Planning Wizard
 - Classes, instances and relations
 - Axioms for bookkeeping and constraint management
- Output to OWL files
 - To be read and updated by planning systems
 - To be read and updated by procedure execution systems

Types of Ontological Information

- Classes, subclasses and relations among them
 - truss-segment, ORU*-bag, ceta-light
 - can-hold (medium-ORU-bag, ceta-light)
- Class instances
 - LAB-ceta-light1,S1
 - located (LAB-ceta-light1) = S1
- Directives
 - Preconditions and effects, e.g., crew must possess a PGT before unbolting a CETA light
 - Axioms for bookkeeping and physics, e.g., if a container is located at A, so are its contents
 - Constraints (includes flight rules), e.g., if a CETA-light heater is not on then its lamp must be on
- Data facts that represent a specific configuration of all the instances, e.g., switch settings, modes, locations

*orbital replacement unit

Divisions in the Ontology

- The base
 - "Floor" of the ontology = classes and relations based on modeling choices, e.g.,
 - Includes axioms
 - Not editable by users
 - We have an "all domains" base & an "ISS-base"
- The kernel extensions
 - Per flight discipline, e.g., PHALCON, EVA
 - A starting set of classes and instances of the ISS to be edited and expanded by users
- The ontological data
 - Collection of facts that represent a specific configuration of all the instances
 - Can be updated both manually and electronically

DDCUs for Big 12

DDCU – location modeling

EPS kernel

- DC/DC_Converter_Unit_External (class) hasPartNo.: R076522-121

- DDCU-E_3
 - role: S01A
- attached_to: DDCU-CP_2
- DDCU-E_4
 - role: S02B
 - attached_to: DDCU-CP_3

TCS kernel

 Coldplate_Assembly_DDCU (class) hasPartNo.: 1F29200-1

- DDCU-CP_2
 - attached_to: S0_DDCU_mnt1
- DDCU-CP_3
 - attached_to: S0_DDCU_mnt2

 Coldplate_Assy_DDCU (class) hasPartNo.: 1F77633-1 ISS-external Kernel - ORUlocation - DDCU_S01A

- trussLocation: S0B01F01MP
- DDCU_mount (class)
- S0_DDCU_mnt1
 - ORUlocation: DDCU_S01A
 - S0_DDCU_mnt2
 - ORUlocation: DDCU_S02B

Query: located(DDCU-E_3) = S0B01F01MP

PRIDE Ontology Editor (PRONTOE)

PRIDE Ontology Editor (PRONTOE)

OWL->PDDL*

Direct subclasses => types/subtypes
 Class assertions => instances
 Object properties => predicate definitions
 Object property assertions => predicate assertions

*PDDL-e = PDDL 2.1 + axioms + hierarchical actions

Axioms - OWL

<pre></pre>	DLSateRule>
Container(?x), PhysicalEntity(?y), ISSlocation(?z), contains(?x, ?y), hasISSlocation(?x, ?z) -> hasISSlocation(?y, ?z)	<body> <classatom> <class abbreviatediri="base:Container"></class> <variable iri="urn:swrl#x"></variable> </classatom> <classatom> <class abbreviatediri="base:PhysicalEntity"></class> </classatom></body>
	 <classatom> <class abbreviatediri="ISS-base:ISSlocation"></class> <variable iri="urn:swrl#z"></variable> </classatom> <objectpropertyatom></objectpropertyatom>
(:axiom :vars (?x - container ?y - physical-entity ?z - iss-location) :context (and (contains ?x ?y) (has-iss-location ?x ?z)) :implies (has-iss-location ?v ?z)	<pre><objectpropertyatom> </objectpropertyatom></pre> <pre><objectproperty abbreviatediri="base:contains"></objectproperty> </pre>
)	 <head> <objectpropertyatom> <objectproperty abbreviatediri="ISS-base:hasISSlocation"></objectproperty> <variable iri="urn:swrl#y"></variable> <variable iri="urn:swrl#z"></variable> </objectpropertyatom> </head>

PDDL Hierarchy

CETA Light 3

actions & a problem

(define (durative-action Translate-by-handrail) :parameters (?ev - crew ?end-loc - iss-location) :vars (?start-loc - iss-location) :condition (at start (has-iss-location ?ev ?start-loc)) :effect (at end (has-iss-location ?ev ?end-loc)) :duration time-from-path :comment "?ev travels by handrail from ?start-loc to ?end-loc") (define (durative-action Extract-item-to-bag) :parameters (?ev - crew ?item - (or luminaire ceta light control-panel-assembly) ?container - oru-bag) :vars (?pgt - pgt-with-turn-setting ?I - (has-iss-location ?item)) :duration 12.0 :condition (and (at start (has-iss-location ?ev ?l)) (at start (possesses ?ev ?container)) (at start (= (possessed by ?pgt) ?ev)) (at start (bag-size-for ?item ?container))) :effect (and (at end (extracted-item-to ?ev ?item ?container)) (at end (contains ?container ?item))

:comment "crew removes ?item at ?I and stows in bag."

(define (durative-action Retrieve-item) :parameters (?ev - crew ?item - (or luminaire__ceta_light control-panel-assembly power-cable space-positioning-device)) :vars (?container - (or oru-bag fish-stringer) ?loc - (has-iss-location ?item)) :expansion (sequential (possesses ?ev ?container) (has-iss-location ?ev ?loc) (extracted-item-to ?ev ?item ?container)

:effect (at end (retrieve-item_a ?ev ?item)) :comment "?ev picks up ?container, travels to ?item's loc, unmounts and stores ?item in ?container and returns.")

(define (problem bob-get-light)
 (:domain nasa-domain)
 (:situation phalcon-eva)
 (:deadline 100.0)
 (:init (has-iss-location bob airlock)
 (possesses bob oru-bag_1)
 (possesses bob pgt_1))
 (:goal (retrieve-item_a bob LUMINAIRE_3))

plan achieved

purpose-established RETRIEVE-ITEM0: RETRIEVE-ITEM_A(BOB,LUMINAIRE_3)

Thus ends the plan-generation phase of BOB-GET-LIGHT ...

```
------ plan: RETRIEVE-ITEM0 ------
RETRIEVE-ITEM0: RETRIEVE-ITEM_A(BOB,LUMINAIRE_3)
sequential
BOB-GET-LIGHT_IS: POSSESSES(BOB,ORU-BAG_1)
TRANSLATE-BY-HANDRAIL13: HAS-ISS-LOCATION(BOB,S1B07F03MP)
EXTRACT-ITEM-TO-BAG56: EXTRACTED-ITEM-TO(BOB,LUMINAIRE_3,ORU-BAG_1)
```

```
probability-of-success = 0.902
duration = 27.00
```

```
+nodes-examined+ = 4
+constraints-tested+ = 0
+axioms-applied+ = 3
```

0.05 CPU seconds [0.012 CPU sec/node]

RETRIEVE-ITEM0

CETA Light 2

more actions & a 2nd problem

(at end (tethered_to ?st2 ?ev)) (at end (has-iss-location ?st2 ?l)) (at end (tether-swapped ?ev ?st1)))

:duration 5

:comment "?ev installs a second tether and then swaps his current tether for the new one.")

expansion (sequential (has-iss-location ?ev ?mloc) (tether-swapped ?ev ?st) (has-iss-location ?ev ?end-loc)

:effect (at end (has-iss-location ?ev ?end-loc)) :duration time-from-path :comment "?ev travels by handrail to ?end-loc via ?mloc")

(define (problem bob-get-light2)

(:domain nasa-domain) (:situation phalcon-eva) (:deadline 100.0) (:init (has-iss-location bob airlock)

(possesses bob oru-bag_1) (possesses bob pgt_1) (tethered_to 85-ft_tether_3 bob) (possesses bob stp_1)) (:goal (retrieve-item_a bob LUMINAIRE_2))

2nd plan achieved

purpose-established RETRIEVE-ITEM0: RETRIEVE-ITEM_A(BOB,LUMINAIRE_2)

Thus ends the plan-generation phase of BOB-GET-LIGHT2 ...

```
------ plan: RETRIEVE-ITEM0 ------
RETRIEVE-ITEM0: RETRIEVE-ITEM_A(BOB,LUMINAIRE_2)
sequential
BOB-GET-LIGHT2_IS: POSSESSES(BOB,ORU-BAG_1)
TRANSLATE-BY-HR&SWAP3: HAS-ISS-LOCATION(BOB,P3B02F01NP)
sequential
TRANSLATE-BY-HANDRAIL78: HAS-ISS-LOCATION(BOB,P1B10F01MM)
INSTALL-TETHER&SWAP135: TETHER-SWAPPED(BOB,85-FT_TETHER_3)
TRANSLATE-BY-HANDRAIL182: HAS-ISS-LOCATION(BOB,P3B02F01NP)
EXTRACT-ITEM-TO-BAG213: EXTRACTED-ITEM-TO(BOB,LUMINAIRE_2,ORU-BAG_1)
```

```
probability-of-success = 0.815
duration = 32.00
```

+nodes-examined+ = 8 +constraints-tested+ = 0 +axioms-applied+ = 20

0.19 CPU seconds [0.024 CPU sec/node]

RETRIEVE-ITEM0

Tracking ORU Locations Changes (ORLOC Tool)

Future Work

- Finalize PRONTOE version 1.0 based on flight controller feedback
- Begin work on ORLOC capabilities
 - Task lists imply location and setting changes
 - HTTP interface to DOUG for 3D visualization
- Develop axiom translator for PPW
 - Direct parse for axiomatic languages (e.g., PDDL-e)
 - Pre-processing* of axioms for non-axiomatic languages (e.g., ANML, AML)
- Recreate all plans for DDCU R&R scenario
- Develop streaming data updates
- *e.g., Davidson & Garagnani (Plan-SIG02)

Discussion

28