CSA

AXAL

Automating Stowage Operations for the International Space Station

Russell Knight, Gregg Rabideau, Andrew Mishkin, Young Lee

Stowage

- Storing and retrieving items
- 25% of astronaut time is spent on stowage
 - Retrieving items for activities
 - Storing items after activities or when found
 - Prepacking items to be shipped out
 - Unpacking items that are being shipped in

Scenario 1: found item

- Astronaut calls down for a location for a found item.
 - Identify the item
 - Part Number, Serial Number, Barcode, Description,
 Cage code, Location (both general and specific)
 - Find a place for it
 - Where it was, e.g., whatever is indicated in the IMS database
 - Where it "should" go
 - Size, like parts together

🙆 ASIM0: 3D Stowage Utility V1.0.6 (Console)				
Update from DB	Search seg 3311 div			
New Item	Part Number	Serial Number	Acronym	
Select	SEG33111841-317	2750	CTB Half Divider	
Select	SEG33111841-317	2778	CTB Half Divider	
Select	SEG33111841-317	2781	CTB Half Divider	
Select	SEG33111841-317	2518	CTB Half Divider	
Select	SEG33111841-317	2589	CTB Half Divider	
Select	SEG33111841-317	NA_FLT10A_00030	CTB Half Divider	
Select	SEG33111841-317	2838	CTB Half Divider	
Select	SEG33111841-317	NA_FLT31P_00086	CTB Half Divider	

For each **container**, in "matching" order For each count *n* of items to place, in increasing order

Try to place *n* items, as well as the existing contents, in the container If we succeed, then add it to the solution list

Packing Algorithm

- Find the 5 largest items to be packed.
- For every possible orientation and packing of these items that fits, try to pack the rest of

the items

- Why 5?
 - Mostly empirical
 - Branching factor

Items	Packings
1	6
2	72
3	864
4	10368
5	124416
6	1492992

Pack the rest of the items

Squeaky Wheel Optimization

Assign an initial priority based on the sum of the squares of the length, width, and height

Loop 100 times

For each box, in descending priority order

Attempt to place

If we fail, increase the priority of the box

If all boxes are placed, return success

Attempt to place

 Given a box, container, set of placed boxes, and a set of open positions

For each position, in order of proximity to the left lower far corner of the container

For each orientation, in decreasing order of the **orientation**

score

If the box is contained and intersects no other box
Remove the position from the open positions
Add newly induced positions to the open positions
return **success**

Return failure

Orientation score

Assume we:

- want to pack the container with only boxes of a single type
- must use the same orientation for all
- what orientation allows us to pack the most?
- Computable in constant time

For each orientation o (total of 6)

Orient the box according to o (adjust the width, height, and length)

o.score = int(container.width/box.width) * int
 (container.height/box.height) * int(container.length/
 box.length)

What about bags?

- Large bags, e.g. CTBs, become rectangular solids when packed tightly
 - Not amorphous
- Small bags, e.g., Ziplocs, can be ignored and their contents can be "emptied" into the containing container
 - Infinitely amorphous

Beyond Location Suggestion

- Prepack List generation
 - ISS crew members pack containers of items to leave station
 - Use the packing technology to automatically pack the bags
- Unpack List generation
 - ISS crew members unpack containers and store the items
 - Use the packing technology to automatically stow all of the incoming items
 - Crew Preference special items with special locations

Acknowledgements

- This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA.
- Johnson Space Center Stowage Team
 - Ursula Stockdale, Casey Johnson, Robert Adams
 - Kary "Scott" Smith
 - Larry "Joey" Crawford, Margaret Gibb, and Roger Galpin.