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Agenda

• Introduction

• Spitzer Space Telescope

• Normal Operations and Interfaces

• Observatory Planning and Scheduling Team

• SIRPASS

• Plan-IT II Core

• Spike

• Adaptation

• Experiences, Lessons Learned and Conclusions
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Introduction



Spitzer Space 
Telescope
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• Shuttle Infrared Telescope 
Facility (SIRTF) @ Ames, 1977

• High Earth Orbit, 1988

• Earth-Trailing, Warm Launch @ 
JPL, 1993

• SIRTF Phase C/D, 1997

• Launch and Renaming, 2003

• Depletion of Cryogen, 2009
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Spitzer Solar Orbit
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• Spitzer is in an earth-trailing solar orbit, slowly drifting away from Earth at rate of 
approximately 0.64 AU every five years.

• Although this orbit was chosen primarily for thermal and launch mass 
considerations, it also vastly improves the simplicity and efficiency of 
operations.
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Operational Pointing Zone
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• As a cryogenically cooled 
spacecraft, Spitzer is 
constrained to keep its 
solar arrays and sun 
shield pointed toward the 
Sun by restricting its 
ability to pitch and roll.

• As a result of these 
pointing restrictions, 
Spitzer can only observe 
targets within a narrow 
annulus that rotates 
about the sun once per 
year, but ends up covers 
all inertial targets for at 
least 40 days each year.
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The Life Cycle of a Spitzer Observation
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SIRPASS
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Spike
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• General toolkit for constraint-based planning and scheduling developed for the Hubble Space 
Telescope by STScI which has evolved over the years with HST and other mission deployments into 
a robust software package that is easily adaptable for new missions, including:

 HST Chandra
 JWST Spitzer
 FUSE Subaru
 ESO-VLT OpTIIX

• Plan Window Concept: Rather than schedule observations to weekly bins, assign a least-
commitment subset of constraint windows, ensuring better plan stability.

• Short-term scheduler picks from observations(1,2,3,5) whose windows overlap the current week(4):

OB1 

OB2 

OB3 

OB4 

OB5 

OB6 

WK1   WK2      WK3     WK4      WK5       WK6       WK7       WK8         
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Spitzer Spike

• Constraint-Windows > Instrument Windows > Plan Windows
• Added “Instrument Window” concept to construct Baseline Instrument Campaign:

- Non-overlapping, adjoining time intervals
- Intervals are from one day to weeks long 
- Need to minimize instrument transitions to preserve cryogen and propellant
- Preferred instrument ordering to optimize cryogen and propellant
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IRS IRAC MIPS IRS 

OBS1 
OBS2 
OBS3 
OBS4 
OBS5 

Constraint Windows 

Instrument Windows 

OBS1 
OBS2 
OBS3 
OBS4 
OBS5 

Plan Windows 

<No assignment chosen in this interval> 
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Constraints
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• Chain, an ordered, non-
interruptible group

• Sequence, an ordered, 
interruptible group

• Group-within, an unordered 
group with start/stop 
duration limit

• Time-window, a series of 
execution time intervals

• Follow-on, an ordered pair 
with stop/start duration 
limit

• Shadow, a target point 
duplicating Follow-on
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…
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Time-Window 1 1
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Follow-On 1 2
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min < d < max

d

?

?

? zero or one allowed * zero or more allowed  

*

*

*
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Tree-Walking Algorithm
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• Hundreds of programs with hundreds of requests per program

• Each request may participate in either “zero or one,” or “zero or more” of 
each type of constraint.

• A request may participate in zero or one Chain and Time-Window 
constraints, and in zero or more Sequence, Group-Within, Follow-On, or 
Shadow constraints.

• A request cannot participate in both a Sequence and a Chain constraint; if 
this occurs, the Chain constraint is ignored.

• Too complex to depict request network; depict constraint network instead.
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Greedy Scheduling

• Adapted from HST (Samson 1998)
• Coefficients can be per-Request, set by OPST
• Scaling values control the value of each term independent of Coefficients
• Scales have changed over the mission
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Term C F S Description

0

1
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3

4
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-6,000 1 0.06 Constant Term

1 ƒ 1 Target Slew (Prolog) Cost (secs)

1 ƒ 0 Request Schedule-Window Duration Remaining in Seconds

1 ƒ 0 Request Schedule-Window End Offset in Seconds

1 ƒ 0 Program Type

1 ƒ 0 Highly Constrained Request

1 ƒ 1 Chain

1 ƒ 1 Request Schedule Window Ends Within
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Greedy Scheduling, cont.
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• Scheduling Activities on the timeline is done manually, with rules, or 
automatically

• Greedy scheduling is an automatic approach
• Scheduling adheres to constraints, interface indicates violations
• Can Greedy schedule an entire week, a single PAO or any arbitrary time interval
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Request Estimates
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Prolog Body

Observation Duration
Command Data Volume
Telemetry Data Volume

CDL Storage
Number of Instructions

String Storage

Setup
Slew
Settle

• AIRE calculates body resource estimates that are used later in the scheduling domain

• Targeting is the responsibility of the slew model, used by both SIRPASS and AIRE.

• Request expansion to library calls is the responsibility of AIRE; this keeps SIRPASS 
highly interactive without bogging it down expanding activities to individual 
commands.

• Request expansion to spacecraft commands and the modeling of those commands 
is the responsibility of SEQGEN, a computationally demanding process
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Request Packaging
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Pseudo 
SER True SER Power 

Transition Other Moving 
Target

Fixed 
Target

Pseudo 
SER ✓* ✓* ✓* ✓* ✓* ✓*

True SER ✓* ✓ ✗ ✗ ✗ ✗

Power 
Transition ✓* ✗ ✓† ✗ ✗ ✗

Other ✓* ✗ ✗ ✓ ✗ ✓

Moving 
Target ✓* ✗ ✗ ✓ ✗ ✓

Fixed 
Target ✓* ✗ ✗ ✓ ✗ ✓

Next Request is…

SER IER AOR

SER

*Only if one or both of the Pseudo-SERs are always enslaved.
†Only if both Power Transition IERs are for the same instrument.

IER

AOR
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APIDs and DPTs
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• Queues for spacecraft-
generated data

• Priorities for downlinking 
data

• Simple specification

• Moderately complex 
system-level effects

• Highly-complex activity-
level effects

• “When does” vs “How do I” 
questions

• Contrast MPF, STF, MSL

APIDAPID Description

11 ENG_NOMINAL_MODE_RT S/C health and status while in nominal mode (real-time)

12 ENG_NOMINAL_MODE S/C health and status while in nominal mode

13 PCS Data required for pointing reconstruction (selected data 
from PCS, Thermal, etc.)

20 IRAC_DATA_EXP IRAC instrument data (from AORs and IERs) specified 
by the ground to be sent first (e.g. calibration data)

21 IRAC_DATA Unexpedited IRAC data (from AORs and IERs)

22 IRAC_MEM IRAC normal engineering telemetry

Level APIDs

rt_nom_fast rt_nom_med rt_nom_slow

retransmit0

1

2 evr … … irac … … … irs … … … … ce … …

3 sc_spare_3 sc_spare_4

4 pt_recon irac_data_exp irs_data_exp mips_data_exp

5 irac_data irs_data mips_data
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Lessons Learned and Conclusions
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SIRPASS
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• Question Assumptions; Perform Design Trades

- Limits help put a bounding box around a design, until they don’t

- Spend extra now (within reason) to save later

• Plan for Longevity, Reduced Staff and Budget

- I&T/V&V are your friends, until they move away

- Plan for better, faster, cheaper ways of doing business

• Manage Complexity

- You will over-engineer your systems

- Capability will remain unused

- Abstract your interfaces away from over-engineered systems

• Create partnerships; modularize algorithms; create portable APIs and build system 
support
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Spitzer Spike
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• Original Plan

- Nail down the estimated ~10% absolute time observations

- Fit instrument window campaigns to result

- Generate plan windows for remaining observations by intersecting constraint and instrument 
windows

• Reality

- 1% absolute time observations = poor instrument campaigns using original model

- Needed input campaigns, more flexible initial campaign layout in Spike

• So…Campaign scheduling concept was useful…BUT

• Design for Change!

- Observatory mission software designs are typically laid out years in advance, then retro-fitted to 
match in-orbit reality

- Incorporate modular design, manual overrides, extension capabilities in initial software design
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