

DEUTSCHLAND

A Finmeccanica / Thales Company

Global Optimization with Hill Climbing in Earth Observation Mission Planning

Christian Wozar

Robin Steel

IWPSS, 26th March 2013

OVERVIEW

- ⇒ Introduction
- Planning Scope
- Planning Strategy
- Benchmark Results
- ✤ Conclusion

Introduction

THE PLANNING PROBLEM

- ⇒ Planning for the PRISMA mission.
- ⇒ VEGA is developing a mission planning system for Telespazio SpA.
- ⇒ Global optimisation with constraints:
 - ⇒ Temporally local and non-local constraints.
 - ✤ Memory resource.
- Request and priority driven planning (oversubscribed).
- Maximization of priority dependent target function.

Introduction

THE PRISMA MISSION

"Precursore IperSpettrale della Missione Operativa"

- ✤ Italian (ASI) Earth observation mission:
 - ✤ In-orbit qualification and verification.
 - State of the art hyperspectral technologies.
- ⇒ Image data for scientific and institutional end users.
- ⇒ Single satellite LEO (mean altitude 614 km).
- ⇒ Frozen sun-synchronous orbit.
- ⇒ Swath at nadir: 30 km
- - ⇒ Hyperspectral: 20 m
 - Panchromatic: 2.5 m

Planning Scope

OBJECTS IN THE PLANNING PROCESS

The User Request (UR)

- ⇒ Users can request images of the following target areas:
 - Spot image: 30x30 km
 - Stripmap: 30xL km, L = 30, 60, 90, ..., 1800.
- \Rightarrow Such a request can be valid for up to 4 weeks.
- ⇒ If one image is taken, the request is fulfilled!

Here, we only consider the spot images!

Planning Scope

OBJECTS IN THE PLANNING PROCESS

The Data Take Opportunity (DTO)

- ⇒ For every UR there are a number of opportunities to take the image.
- ✤ Constraints on data takes:
 - \Rightarrow Constant roll during acquisition (-18° to +18°).
 - ✤ No pitch flexibility.
- DTO duration is constructed from predicted orbit.

If one DTO is planned to a Data Take Activity (DTA), the UR is fulfilled.

Planning Scope

OBJECTS IN THE PLANNING PROCESS

The Downlink Opportunity (DLO)

- Opportunities for downlink are derived from:
 - ⇒ Ground station locations.
 - ⇒ Roll angle profile (for image takes).
 - Predicted orbit.
- ⇒ A Downlink Activity (DLA) must fulfill:
 - ⇒ Full data of one UR is downlinked without interruption.
 - ⇒ DLA to happen within DLO.
 - Downlink during data take is possible.

Planning Scope

CONSTRAINT SETUP

C-1: Maneuver Duration

- ⇒ Between any two planned DTAs:
 - ⇒ A maneuver is required to change the roll angle.
 - \Rightarrow Duration depends on the roll angle variation (between 0° and 36°).

Planning Scope

CONSTRAINT SETUP

C-2: Earth Pointing Duration per Orbit

- \Rightarrow For any orbit of ca. 97 min:
 - Only 15 min are allowed between start of first DTA/DLA and end of last DTA/DLA.
- \Rightarrow This covers about 55° of latitude.
- ⇒ Maximum of 13 images per orbit.
- ⇒ Enough to cover "Primary Area of Interest" (30°N to 70°N, 10°W to 50°E).
- Not enough to cover the full area of interest (60°S to 70°N, any longitude)!

Planning Scope

CONSTRAINT SETUP

C-3: Payload Duty Cycle

- Thermal constraint:
 - ⇒ Only up to four orbits in a row for DTAs.
 - ⇒ After any sequence of DTAs, at least four orbits without DTAs.

Planning Scope

CONSTRAINT SETUP

C-4: Memory Fill Level

- ⇒ On-board memory capacity of 256 Gbit.
- ✤ Enough to hold about 100 spot images.
- Memory can be re-used directly after downlink.

C-5: Downlink Budget

- ⇒ DLO duration depends on the attitude taken during acquisitions:
 - Shorter duration if rolling away from ground station.
- ⇒ If possible, satellite placed to nadir to allow for maximum DLO.

Planning Scope

TARGET FUNCTION

- ⇒ Every UR i has a priority level P_i.
- \Rightarrow P_i will be between 2 and 100.
- \Rightarrow Weight of the request is $1/P_i$.
- ⇒ P=1 is reserved for *urgent requests*, which must be planned.

Target function: $F_1 = Q$ (# planned urgent) + Σ_i (1/P_i)

- ⇒ Q is an arbitrary high number (e.g. 10,000).
- Sum runs over all successfully planned requests.

For benchmarking:

- ⇒ F₁' = # planned urgent requests
- ⇒ F₁" = Σ_i (1/P_i)
- ⇒ R = # planned requests in total

Planning Strategy

GLOBAL PLANNING LOOP – HILL CLIMBING

- Solution Space: Assignment of URs to one DTO per UR.
- Hill climbing does *preselection of DTOs.* (No knowledge about constraints.)
- Constraint solving and optimization derive DTAs (and DLAs) from exactly one DTO per UR. => Value of F₁

Planning Strategy

GLOBAL PLANNING LOOP – HILL CLIMBING

Locality definition:

The assignment of URs to DTOs differs only on one UR.

Hill climbing iteration:

- \Rightarrow Compute F₁ for all configurations in the local neighborhood.
- Select the optimal configuration ("steepest ascent").
- ⇒ Our version uses "coordinate ascent":
 - Only configurations that vary the DTO selection for exactly one UR are compared.
 - ⇒ Additional loop over all URs.

Planning Strategy

PERTURBED HILL CLIMBING

- Accept a new configuration, even if F_1 is lower than the last value, using a *perturbation function*.
- Perturbation function iteration number dependent.
- \Rightarrow Store the configuration with the best F₁ over all iterations.

Planning Strategy

OPTIMIZATION AND CONSTRAINT SOLVING

For any preselection of DTOs, an optimal result is computed by *hierarchization* of constraints:

- 1. Temporal constraints C-1 and C-2 are solved: Dynamic programming.
- 2. Orbits are optimized under C-3: Dynamic programming.
- 3. Downlinks are planned using C-4 and C-5: Link budget / memory model and priority based assignment of DLAs.

Benchmark Results

BENCHMARK INPUT DATA

- ⇒ 500 URs for spot images (30x30 km).
- ⇒ 28 day time range.
- ⇒ 2103 DTOs in total.
- One downlink station in Matera (2 or 3 contacts every day and every night).

Benchmark Results

BENCHMARK INPUT DATA

Priority level distribution:

Priority	1	10	11	12	13	14	15	16
Count	4	141	126	51	41	46	53	38

DTOs per UR histogram:

Benchmark Results

ALGORITHM SHOOTOUT

Four different algorithms are compared:

- Perturbed Hill Climbing (PHC)
- Standard Hill Climbing (SHC)
- Simulated Annealing (SA)
- Simple Greedy search (SG)

Parameters are tuned for every algorithm (if possible).

Measurements are taken on Intel Xeon X5560 (2.8 GHz), single core.

Benchmark Results

ALGORITHM SHOOTOUT

Planning Quality and Speed

Method	PHC	SHC	SA	SG
F ₁ ′	4	4	4	4
F ₁ "	21.364	20.702	21.596	16.066
R	244	236	248	181
Wall time [sec]	49.8	51.6	59.6	1.1

- ⇒ PHC better than SHC.
- SA slightly better than PCH.
- SA found to be largely parameter dependent.
- SG falls back behind any other algorithm.

TELESPRZID VEGR DEUTSCHLAND A Finmeccanica / Thales Company

GLOBAL OPTIMIZATION WITH HILL CLIMBING

Benchmark Results

ALGORITHM SHOOTOUT

PHC vs. SA Convergence

- PHC shows faster convergence!
 - PHC to be used in time-constraint planning situations.
 - Scenario: Urgent replanning minutes before contact.

Benchmark Results

PLANNING HORIZON DEPENDENCY

Using PHC

- The full scenario (4 weeks) is planned in blocks of B days.
- ✤ Unplanned URs are reused on the next block.

В	28	14	7	4	2
F ₁ ′	4	4	4	4	4
F ₁ "	21.364	20.395	19.789	19.311	19.178
R	244	237	229	223	221

- Larger blocks give better results: Global optimisation is effective!
- Series For comparison: Nominal PRISMA planning horizon of 1 day!

Conclusion

POSSIBLE ALGORITHMIC EXTENSIONS

- ⇒ Boundary conditions can easily be taken into account:
 - ⇒ Every constraint type considers its own conditions.
- ⇒ Flexibility in replanning strategies:
 - ✤ Replanning from scratch.
 - Starting the hill climbing from the last solution and adding new URs:
 - Solution Keeping only the old planned DTAs as input DTOs.
 - Allowing for all DTOs of already planned URs.
- Solution Constraint solving for every DTO trial in one hill climbing step in parallel:
 - ⇒ Using OpenMP a speedup of 1.5 on 2 cores is gained.

Conclusion

RESULT

Perturbed hill climbing found to be powerful for PRISMA planning!

- ⇒ Main components of the planning:
 - ⇒ Some constraints can be solved exactly.
 - Configuration space: Assignment of URs to DTOs (and not DTAs).
 - ⇒ Valid solution is produced at every step.
- PHC should be considered when:
 - ⇒ Some constraints can be solved exactly.
 - Multiple DTOs per UR within the planning horizon.
 - ⇒ Time constrained planning operations.