

Experiments with a Parallel Multi-Objective Evolutionary Algorithm for Scheduling

Matthew Brown University of Southern California Mark Johnston Jet Propulsion Laboratory, California Institute of Technology

© Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

Outline

- NASA's Deep Space Network (DSN)
 - Overview

- Long Range Planning & Scheduling
- Loading Analysis and Planning Software (LAPS)
 - Evolutionary Multi-Objective Algorithm
 - Parallelizing for multiple core hardware
- Results and Conclusions

The Deep Space Network (DSN)

- Current DSN comprises
 - 3 sites roughly equally spaced in longitude
 - one 70m + multiple 34m antennas at each site
- DSN supports all planetary missions + some earth orbiters + radio science/astronomy
- DSN scheduling problem:

- ~500 tracks (communications contacts) per week for ~37 DSN users, with wide variation in types of scheduling requirements
- Goal is to have a negotiated schedule about 16 weeks ahead of realtime, and be conflict free about 8 weeks ahead
 - driven by need to sequence spacecraft well in advance

Complex	GDSCC	CDSCC	MDSCC
Location	Goldstone, California, USA	Canberra, Australia	Madrid, Spain
Longitude	117° W	149° E	4° W
Latitude	35° N	35° S	40° N
Antennas	1 - 70m 5 - 34m	1 - 70m 2 - 34m	1 - 70m 3 - 34m
Capabilities	S, X, Ka	S, X Ka downlink only	S, X Ka downlink only

DSN Scheduling Process Phases

Process Phase	Time frame relative to execution	Software tools (software/database)	Characteristic activities
Long- range	≈ 6 months	TIGRAS (RAP version) + MADB database	 identify and resolve periods of contention plan for extended downtime assess proposed missions assess long range asset options
Mid- range	few weeks out to 6 months	S ³ webapp/database	 schedule normal science operations schedule pre-planned s/c activities (maneuvers, unique science opportunities) generate negotiated schedules for s/c sequencing schedule network maintenance
Near Real- time	closer than a few weeks	TIGRAS (SPS version) + Service Preparation System (SPS) database	 predict generation for execution reschedule due to unplanned resource unavailability respond to spacecraft emergencies activate pre-planned launch contingencies

Service Scheduling Software (S³)

- DSN has undertaken a major implementation of scheduling automation called the Service Scheduling Software (S³) system
- Major goals are:
 - unify the scheduling software and databases into a single integrated suite covering realtime out through as much as several years into the future
 - adopt a request-driven approach to scheduling (as contrasted with the former activity-oriented scheduling)
 - develop a peer-to-peer collaboration environment for DSN users to view, edit, and negotiate schedule changes and conflict resolutions

Architectural Overview of S³ and the DSE

User Interface

Schedule Visualization and Editing

S³ Status

- S³ was deployed operationally in June 2011 and has been operational since that date
- About two years of DSN weekly schedules have been created and negotiated in S³, since 2011 week 29
 - includes baseline schedules for 3 launching missions in late 2011
 - includes Mars Science Laboratory Entry/Descent/ Landing in early August 2012

Extension of S³ to long-range planning and forecasting

- DSN is extending S³ functionality to long-range process
- Leverage S³ data model and infrastructure
- Additional development is required for
 - modeling uncertainty
 - different optimization criteria
 - simplified planning request interfaces for users
 - new reporting functionality
- Optimization will explicitly use *multiobjective* algorithms to provide insight into tradeoffs among competing objectives

Extending the S³ baseline...

edit scheduling requests Scheduling Request Specification Service Configuration Reg'ts DSN asset options (antennas and equipment) Scheduling S³ Users Engine Timing requirements Duration (min/max) **DSN Domain Model** splittable? overlap, contiguous, gaps min split duration, max # split segments **DSN** Assets edit invoke Antennas including time-phased availability activities strategies Priority Complexes Equipment (antenna-specific and shared) Downtime 149 150 151 152 **Viewperiod Requirements** Time 2012/05/28 (149) 2012/05/29 (150) 2012/05/30 (151) 2012/ **Mission Service Configurations** Visibility from various DSN antennas Legal configuration choices DSS-14 Default track attributes **Event Intervals** DSS-15 Non-visibility based timing constraints Viewperiods DSS-24 Computed visibility intervals **Timing Relationships** DSS-25 To other tracks/requests BOT/EOT: 2012-05-29 (150) 00:15 - 2012-05-29 (1) **Network Parameters** DSS-26 including min/max nominal gaps SOA/EOA:2012-05-28 (149) 22:45 - 2012-05-29 (15 CAS (RS_34MBWG_TLM_v0) User: MSPA mission groups and rules DSS-25 (N748) CCP KHMT NMC RNG RRPA Asset: DSS-27 Constellations Setup: 1h30m Teardown: 15m RS167-OCCORT1 MC WCT: 1A1 SOE: NIB ACT: Conflict parameters, RFI rules DSS-34 Filename: CAS-2012-04-08T00_00_00_2012-10-29 Marker: RISE/SET (DSS-25) Viewperiod:2012-05-28 (149) 23:38 - 2012-05-29 (

... to incorporate long-range planning functionality

Loading Analysis & Planning Software (LAPS)

- Algorithm: GDE3 (Generalized Differential Evolution 3, Kukkonen and Lampinen 2005)
 - maintains population of real-valued decision vectors
- Decision variables:
 - per time interval (nominally weekly)
 - mission relative priority
 - fallback potential (nominal, reduced, minimal)
- Objectives (minimization):
 - unscheduled requirement time (all missions)
 - total track duration scheduled on all antennas
- Sample problem: 16 weeks, all DSN missions, slightly (10%) oversubscribed

Algorithm

Java 7 ForkJoin functionality

- New with Java 7 is API for easily parallelizing algorithms to use multiple cores: ForkJoin
- Applied to GDE3 as follows:
 - (Fork) For each generation, create N Java Callable tasks that implement offspring generation, including time-consuming the objective calculation
 - (Join) When all N tasks have completed, perform the population reduction as needed, then prepare for the next generation
- By default ForkJoin uses maximum number of cores supported by hardware

Algorithm

Experimental Hardware

System	Description	Processor	RAM	cores	
Α	Laptop – MacBook Pro (2012 retina display)	2.7 GHz Core i7	16 GB	8	
В	Desktop – Mac Pro (2011)	2x 2.93 GHz Xeon X5670	64 GB	24	S - JII BE
С	Linux server Sunfire x4450 (2009)	4x 2.66 GHz Xeon X7460	128 GB	24	

Results -

Results

- Best speedup is substantial:
 - 3x on 8-core machine
 - 7x on 24-core machine
- Using more than 1/2 the reported # cores is not beneficial
- Why is the Linux server proportionately worse when > 12 cores are used? (using 24 cores is no better than 2, and much worse than 12)
 - Memory bandwidth limitations has been reported as limiting factor in other similar work
 - particularly problematic in older server with slower RAM

Conclusions

- Parallelizing for multi-core hardware via Java 7 library features
 - easy to implement
 - can provide a major performance boost
 - some suggestions included in paper
- We are planning to configure as the default computational mode for the DSN long-range planning engine
- Next stages of LAPS development are less on performance than solution quality and visualization

Thank you!