
Experiments with a
Parallel Multi-Objective
Evolutionary Algorithm for Scheduling

Matthew Brown
 University of Southern California
Mark Johnston
 Jet Propulsion Laboratory, California Institute of Technology

© Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

Outline

• NASA’s Deep Space Network (DSN)
- Overview
- Long Range Planning & Scheduling

• Loading Analysis and Planning Software (LAPS)
- Evolutionary Multi-Objective Algorithm
- Parallelizing for multiple core hardware

• Results and Conclusions

The Deep Space Network (DSN)
• Current DSN comprises

- 3 sites roughly equally
spaced in longitude

- one 70m + multiple 34m
antennas at each site

• DSN supports all planetary
missions + some earth orbiters
+ radio science/astronomy

• DSN scheduling problem:
• ~500 tracks (communications contacts) per week for ~37

DSN users, with wide variation in types of scheduling
requirements

• Goal is to have a negotiated schedule about 16 weeks
ahead of realtime, and be conflict free about 8 weeks
ahead
- driven by need to sequence spacecraft well in advance

Complex GDSCC CDSCC MDSCC

Location

Longitude
Latitude

Antennas

Capabilities

Goldstone,
California,
USA

Canberra,
Australia

Madrid,
Spain

117° W 149° E 4° W
35° N 35° S 40° N
1 - 70m
5 - 34m

1 - 70m
2 - 34m

1 - 70m
3 - 34m

S, X, Ka
S, X
Ka downlink
only

S, X
Ka downlink
only

DSN Scheduling Process Phases
Process
Phase

Time frame
relative to
execution

Software tools
(software/database) Characteristic activities

Long-
range

Mid-
range

Near
Real-
time

≳ 6 months TIGRAS (RAP version)
+ MADB database

• identify and resolve periods of
contention

• plan for extended downtime
• assess proposed missions
• assess long range asset options

few weeks out to
6 months S3 webapp/database

• schedule normal science operations
• schedule pre-planned s/c activities

(maneuvers, unique science
opportunities)

• generate negotiated schedules for s/c
sequencing

• schedule network maintenance

closer than
a few weeks

TIGRAS (SPS version)
+ Service Preparation

System (SPS) database

• predict generation for execution
• reschedule due to unplanned resource

unavailability
• respond to spacecraft emergencies
• activate pre-planned launch

contingencies

Service Scheduling Software (S3)
• DSN has undertaken a major implementation of

scheduling automation called the
Service Scheduling Software (S3) system

• Major goals are:
- unify the scheduling software and databases into a

single integrated suite covering realtime out
through as much as several years into the future

- adopt a request-driven approach to scheduling (as
contrasted with the former activity-oriented
scheduling)

- develop a peer-to-peer collaboration environment
for DSN users to view, edit, and negotiate schedule
changes and conflict resolutions

Architectural Overview of S3 and the DSE

DSE
(AMA/
Aspen)
DSE

(AMA/
Aspen)

SSS web app

session

DSE
client

DSE
manager

(SMA)

JMS messagebus

HTTP

DSE
engine
(AMA/
Aspen)

Reports

notifications

Import:
- events
- requests

SSS (S3) Collaboration GUI/DB DSN Scheduling Engine (DSE)

Database

SSS Wiki
(Confluence)

User Interface
(Oracle)

Schedule Visualization
and Editing

S3 Status

• S3 was deployed operationally in June 2011 and has
been operational since that date

• About two years of DSN weekly schedules have been
created and negotiated in S3, since 2011 week 29
- includes baseline schedules for 3 launching

missions in late 2011
- includes Mars Science Laboratory Entry/Descent/

Landing in early August 2012

Extension of S3 to long-range
planning and forecasting

• DSN is extending S3 functionality to long-range process

• Leverage S3 data model and infrastructure

• Additional development is required for
- modeling uncertainty
- different optimization criteria
- simplified planning request interfaces for users
- new reporting functionality

• Optimization will explicitly use multiobjective algorithms
to provide insight into tradeoffs among competing
objectives

Extending the S3 baseline...

Scheduling Request Specification

Service Configuration Req'ts

Timing requirements
Duration (min/max)
splittable? overlap, contiguous, gaps
min split duration, max # split segments

DSN asset options (antennas and equipment)

Priority

Visibility from various DSN antennas

Viewperiod Requirements

Non-visibility based timing constraints

Event Intervals

To other tracks/requests
including min/max nominal gaps

Timing Relationships

DSN Domain Model
DSN Assets

Antennas including time-phased availability
Complexes
Equipment (antenna-specific and shared)
Downtime

Mission Service Configurations
Legal configuration choices
Default track attributes

Viewperiods
Computed visibility intervals

Network Parameters
MSPA mission groups and rules
Constellations
Conflict parameters, RFI rules

edit
activities

invoke
strategies

edit scheduling requests

Scheduling
Engine S3 Users

Planning Request Specification
Planning Request Phases/Timing

Mission phases and subphases
Repetition pattern, coverage
Fallback/alternative request parameters
Override and supplemental requests per phase

Planning/Forecasting Objectives
Objectives

Max utilization, min contention levels
Max request satisfaction w/o fallback

Planning
Engine +

Multiobjective
Optimizer

DSN Planning
Users

generated
scheduling

requests

edit /submit
planning
requests

run planning scenarios

Planning
reports

Scheduling Request Specification

Service Configuration Req'ts

Timing requirements
Duration (min/max)
splittable? overlap, contiguous, gaps
min split duration, max # split segments

DSN asset options (antennas and equipment)

Priority

Visibility from various DSN antennas

Viewperiod Requirements

Non-visibility based timing constraints

Event Intervals

To other tracks/requests
including min/max nominal gaps

Timing Relationships

DSN Domain Model
DSN Assets

Antennas including time-phased availability
Complexes
Equipment (antenna-specific and shared)
Downtime

Mission Service Configurations
Legal configuration choices
Default track attributes

Viewperiods
Computed visibility intervals

Network Parameters
MSPA mission groups and rules
Constellations
Conflict parameters, RFI rules

edit
activities

invoke
strategies

edit scheduling requests

Scheduling
Engine S3 Users

... to incorporate long-range planning functionality

Loading Analysis & Planning Software (LAPS)

• Algorithm: GDE3 (Generalized Differential Evolution 3,
Kukkonen and Lampinen 2005)
- maintains population of real-valued decision vectors

• Decision variables:
- per time interval (nominally weekly)

‣ mission relative priority
‣ fallback potential (nominal, reduced, minimal)

• Objectives (minimization):
- unscheduled requirement time (all missions)
- total track duration scheduled on all antennas

• Sample problem: 16 weeks, all DSN missions,
slightly (10%) oversubscribed

Algorithm
start

Start - Generation g

Create trial
population member i

Compute objective
values for trial

member

Decide to keep:
original, trial, or both

i=1…N

g=1…Gmax

Reduce population
size to N

end

Java 7 ForkJoin functionality
• New with Java 7 is API for easily parallelizing

algorithms to use multiple cores: ForkJoin

• Applied to GDE3 as follows:
- (Fork) For each generation, create N Java Callable

tasks that implement offspring generation,
including time-consuming the objective calculation

- (Join) When all N tasks have completed, perform
the population reduction as needed, then prepare
for the next generation

• By default ForkJoin uses maximum number of cores
supported by hardware

Algorithm

PA
R
A
LLELIZED

start

Start - Generation g

Create trial
population member i

Compute objective
values for trial

member

Decide to keep:
original, trial, or both

i=1…N

g=1…Gmax

Reduce population
size to N

end

Experimental Hardware

System Description Processor RAM cores

A

Laptop –
MacBook Pro
(2012 retina
display)

2.7 GHz
Core i7 16 GB 8

B Desktop – Mac
Pro (2011)

2x 2.93
GHz Xeon
X5670

64 GB 24

C
Linux server
Sunfire x4450
(2009)

4x 2.66
GHz Xeon
X7460

128 GB 24

Results —

0.0#

20.0#

40.0#

60.0#

80.0#

100.0#

120.0#

0# 4# 8# 12# 16# 20# 24#

ru
n#
,m

e#
(s
ec
on

ds
)#

##Cores#

(A)#8#Laptop#

(B)#8#Desktop#

(C)#8#Server#

•up to 7x speedup on 24 core machines
•up to 3x speedup on 8 core machine

Results
• Best speedup is substantial:
- 3x on 8-core machine
- 7x on 24-core machine

• Using more than 1/2 the reported # cores is not
beneficial

• Why is the Linux server proportionately worse when
> 12 cores are used? (using 24 cores is no better
than 2, and much worse than 12)
- Memory bandwidth limitations has been reported

as limiting factor in other similar work
- particularly problematic in older server with slower

RAM

Conclusions

• Parallelizing for multi-core hardware via Java 7 library
features
- easy to implement
- can provide a major performance boost
- some suggestions included in paper

• We are planning to configure as the default
computational mode for the DSN long-range
planning engine

• Next stages of LAPS development are less on
performance than solution quality and visualization

Thank you!

