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Project Goal

= Promote the use of rotorcrafts for commercial
transportation

= Apply state of the art Al techniques to design rotorcraft
approach trajectories that minimize ground noise.

= Why AI?
= Difficult for pilots to predict accurately the impact of their
decisions on noise

= Too many variables: helicopter model, BVI, ground
conformation, wind, comfort

= Use robust noise predictor to evaluate candidate
tI’aJeCtOI’IES
= Prediction used to define cost function.
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Noise is "unwanted sound”
= A subjective quantity
Sound is any pressure variation a human ear can
detect

= An objective quantity

The decibel scale matches the way our ear and brain
“auditory system” interprets sound pressures

= We "“hear” in decibels.

Sound Exposure Level (SEL) is a measure of the total
“noisiness” of an event, that takes duration into

account
= FAA considers a 1.5 dB the minimum significant change




Rotorcraft Noise

Rotorcraft tend to have strong impulsive
and directional characteristics compared
to fixed wing aircraft.

Noise levels can vary significantly
depending on vehicle design and flight
condition.

For low speed descent, where Blade
Vortex Interaction (BVI) noise may be
present, noise levels can be 10-20dB
higher than for flight conditions where
BVI noise is not present.

Propagation effects of source noise
dependent on atmospheric and terrain
conditions.

Therefore, characterizing ground noise
exposure is hard!
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Rotorcraft Noise Sources

« Main rotor

« Tail rotor

* Engine

* Drive system

i

« Blade Vortex Interaction (BVI): '
modulation of sound by the : e
relatively slow-turning main |
rotor. =

« Happens when one blade
interacts with the vortex of the
previous blade.



Rotorcraft Noise Model (RNM)

= RNM is a simulation program that
= models sound propagation through the atmosphere
= predicts noise levels on flat ground or varying terrain.

= Purpose

= Aid assessment of low noise terminal area operation
procedures for rotorcrafts;

= Improve rotorcraft modeling capabilities



RNM: Input

Input parameters:

s |dentity of the rotorcraft

= Dimension and resolution of
a grid (region of interest)

= Particular points of interest
(if desired)

» Aflight trajectory (3D
location, velocity and
orientation)

DIAGNOSTICS
COMPUTEPOI
COMPUTEPLT
QSAM1
SETUP PARA
200 200 500
-1000 -1000 §
3000 1000

60 30000 10000 0.0
CH146

1

0.00 0.00 0.00
0

0

ONE TRACK
rnmAnalysis

2
0.0 0.0 1249.3280028431807 0.00 0.00 90.0 0.00 0.00 0.00 90.0
2000.0 0.0 750.6719971568193 0.00 0.00 90.0 0.00 0.00 0.00 90.0

END

Example of RNM
input file




RNM: output

Sound is analytically propagated through
the atmosphere to the ground.

RNM currently accounts for

« Spherical spreading

« Atmospheric absorption

« Ground reflection and attenuation

- Doppler shifts

- Different ground terrains

« Effects of wind and temperature

« Multiple noise sources (main rotor, tail
rotor, engine, etc.)

RNM produces contour plots: graphical
representation of ground noise exposure
using a number of noise metrics over the
designated grid
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How does RNM work

RNMs prediction are based
on sound hemispheres
summarizing test results

Helicopter maintains steady

flight condition throughout
measurement

Observation angles of
microphones shift during
flyover

Single “compact” source of
emission assumed (typically
main rotor hub)
Measurements resolved to
surface of hemisphere

*courtesy E. Greenwood
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Flight Path Angle, deg

RNM uses Semi-spheres to Generate

Ground Contour Maps

90 60 70 z *courtesy E. Greenwood
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s If an exact match for a desired flight segment is not

Advancingsw found in the database of hemispheres, a new
hemisphere is generated by interpolating the noise levels

on the surface of the hemisphere between known values

of airspeed and flight path angle.

Front
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Data Resolution

= Dataresolution is the
distance between any two
grid points

= RNM predicts ground noise
at each point

= Higher resolution means

= more accurate predictions,
but

= |onger computation time
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= Problem is to find a sequence of control actions for that minimizes a
performance function.

= Example performance functions pertain to time, radar exposure,
fuel, and noise.

= System dynamics are described by

= Variables z =[y,u], where y are state variables and u are control
variables.

= State equations A = f(y(t),u(t),t) describing the dynamics of the
system.

= |nitial and terminal conditions.

= Bounding constraints on state and control variables.
= Standard approaches for solving trajectory optimization problems are
based either on methods of optimal control or on approximations to
optimal control based on non-linear programming
= Recently, sample methods have evolved as the optimizers of choice
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Overview of Approach

Discrete optimization approach to e
planning involving grids. e
Vehicle model of position and
attitude

State transition model that
incorporates constraints on safety
and comfort.

Noise cost function that
aggregates data from RNM
Discretization of search space for
allowing solutions at different
resolutions

Empirical comparison of A* with
Stochastic Local Search
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=State space is a grid of points
in 3D space.

=Action space is 2D grid of
changes in velocity or altitude
sLimits imposed by
constraints on deceleration
and rate of descent.

=A solution trajectory is a
sequence of state and action
pairs

=Single start and end state.
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Reduction of Search Space

eFor the experiments, we fixed the x-y
values to conform to standard approach.

Y - eResult is trajectory optimization problem
‘ “’. in 2 dimensions (deceleration and descent)
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Assigning Weights

100

—— USAF (Findgold et al. 1992) Data 400 Points

Based on two independent setsof | PeHA - 10011+ EXP (11.13-.141 LON)

. . . - — = Schultz Data 161 Points /7
experiments associating dB levels S6HA - 100/(1 + EXP(1043- 132 LON /
. Qo v
> 4
with annoyance. 3 | /
<
>
. . ‘g) 40 //
Weights were based on curve in £ K
raph. & J
g p 20 /

Day - Night Average
Sound Levelin dB

40 | 45 | 50 [ 55 | 60 | 65 | 70 [ 75 | 80 | 85 |100

Caculated | USAF | 0.41 0831|166 | 331 [6.48 |12.29 | 22.1 [36.47 |53.74|70.16 | 82.64

% HA Points

SCHULTZ [0.576 | 1.11 | 212 | 4.03 | 7.52 [ 13.59 |23.32 | 37.05 | 5325/ 68.78 | 81




Systems Approach

Separate search and
evaluation phase
Search phase uses
either A* or SLS to
generate solution
Evaluation phase
consists of run of RNM
and evaluation using
BIN cost function.

Cost

Function

Optimizer

Local Search A*

Score(P)



Overview of Noise Optimization

Approach

Local Stochastic Search

= Allows for large exploration
of search space with little
knowledge of what is being
optimized

Uses RNM as evaluator of

candidate solutions

Randomly generated

initial solutions

Cost functions based on

aggregation of predicted

noise levels

Tra RNM 3
= L
.

Optimizer

v

- Y — Cost

Function




Local search

Given an optimization problem and the
search space of its solutions, start from an
initial start position and improve iteratively
by means of minor modification

neighborhood

>

SO|Uti0n Space current solution

local optimum

solution quality




Applying local search to noise minimization

sSearch space: .
all possible “box” landing trajectories ¥
Suggested by pilot as typical approache

\\. ,"/ T .‘\. ',/ 4

/," 'x\ /! //" '\\
20
N

A trajectory is a sequence of
state-action pairs called nodes

=Neighborhood of a box trajectory T:
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Set of trajectories obtained from T by
picking any two nodes and transferring quantities of
deceleration or decent from one to the other
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Local search

Av or Az

-

Current trajectory

4

Scalar Cost
Function
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Significant Difference Function

Current solution Neighbor
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Score= number of points where neighbor is
significantly more quiet — number of points
where it is significantly more loud
Significantly > >1.5 dB




A*

eComplete best-first search algorithm based on

incremental expansion of solution guided by heuristic q
estima.ti(?n fun.ction. | vovwe @ waypoint
e Heuristic estimate of cost-to-go: fly high and slow to Yoy e
goal. d vevve ¢ ¢
vyvue ¢ -

*Flying slow to goal state without descending

eEmpirically shown to be admissible
eAggregating cost is problematic because noise of
path is not a simple aggregation of path segments.
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Constraints on Dynamics

= Conditions that make a trajectory suitable to fly
= Angle of descent between 0 and 12 degrees
= Deceleration between 0 and 0.1 gs

= Atrajectory is flyable if it satisfies all the
deceleration and angle-of-decent constraints
along its path.

= Enforced by neighborhood function



Experiments

= Primary goal is to demonstrate potential for
iImprovements to standard approaches followed

by pilots
= Provide inputs to acoustic field tests

= Comparison of solutions with ’standard operations’
= Comparisons of A* with SLS with respect to:

= Quality and run time performance
= Effects of varying grid resolution
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Parameter settings

= SLS algorithm has tunable parameters to adjust the
= randomness of search
= depth of search

= Additional parameters are used to adjust
= Grid resolution (number of data points)
= Search resolution (humber of control actions)
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SLS v A*:Varying Grid Resolution

Time vs. Grid Resolution Score vs. Grid Resolution
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SLS v A*: Varying Search Resolution

Time vs. Search Resolution Score vs. Search Resolution
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Al-suggested Path

Pilot-suggested Path
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Sampling
Shortest Path

Linking

= 4-d space (x,y,z,v,h) with heading
Weighting

= Flyability constraints
= Bin function score

Trees
= Probabilistic Road Maps

= Rapidly-exploring Random

1.
2.
3
4




= Running RNM is the heaviest part of
computation

= Bypass RNM with an ML-based surrogate
that will predict the value of the cost function



= Imported GIS data

= Weight contour plots
according to land usage
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Incorporate airspace
constraints, such as Class C
airspace and approach
corridors for active runways
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Fixed seed

= Starts from a fixed trajectory suggested by pilots

= Picks random neighbor if neighborhood is empty
Random seed

= Starts from a fixed trajectory suggested by pilots
= Picks random trajectory if neighborhood is empty
50-50

= Random start

= 50% of the time picks a random solution
Runtime behavior, average on 200 runs
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Future work: path planning

Path Planning techniques
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