Ground Assisted Onboard Planning Autonomy with VAMOS

Maria Th. Wörle, Christoph Lenzen

On-ground vs. onboard planning and scheduling

→ The idea of onboard planning

The FireBIRD mission

→ Environment for VAMOS

VAMOS

- → Components and extension stages
- → On-ground and onboard features and mechanisms

Conclusion and outlook

→ Future possibilities

On-ground vs. onboard planning and scheduling

→ The idea of onboard planning

The FireBIRD mission

→ Environment for VAMOS

VAMOS

- → Components and extension stages
- → On-ground and onboard features and mechanisms

Conclusion and outlook

→ Future possibilities

On-ground vs. onboard planning and scheduling

→ The idea of onboard planning

The FireBIRD mission

→ Environment for VAMOS

VAMOS

- → Components and extension stages
- → On-ground and onboard features and mechanisms

Conclusion and outlook

→ Future possibilities

On-ground vs. onboard planning and scheduling

→ The idea of onboard planning

The FireBIRD mission

→ Environment for VAMOS

VAMOS

- → Components and extension stages
- → On-ground and onboard features and mechanisms

Conclusion and outlook

→ Future possibilities

On-ground vs. onboard planning and scheduling I

Conventional **on-ground** Mission Planning at GSOC for LEO missions: According to mission, **fully- or semi-automated systems** based on **PLATO/PINTA** with project-specific extensions.

- → Well-proven, high-sophisticated, high-performance solutions, incl. e.g.
 - well-defined, automated interfaces to customers, ground stations, processing facilities, ...
 - generation of "best-possible" timeline and consistent command sequences with high calculation effort
 - detailed resource profile propagation

Drawbacks:

- Lack of predictabiliy of some onboard behaviour
- Delay for reactions to image analysis, detected events etc.

On-ground vs. onboard planning and scheduling I

Conventional **on-ground** Mission Planning at GSOC for LEO missions: According to mission, **fully- or semi-automated systems** based on **PLATO/PINTA** with project-specific extensions.

- → Well-proven, high-sophisticated, high-performance solutions, incl. e.g.
 - well-defined, automated interfaces to customers, ground stations, processing facilities, ...
 - generation of "best-possible" timeline and consistent command sequences with high calculation effort
 - detailed resource profile propagation

Drawbacks:

- Lack of predictabiliy of some onboard behaviour
- **Delay for reactions** to image analysis, detected events etc.

On-ground vs. onboard planning and scheduling I

Conventional **on-ground** Mission Planning at GSOC for LEO missions: According to mission, **fully- or semi-automated systems** based on **PLATO/PINTA** with project-specific extensions.

- → Well-proven, high-sophisticated, high-performance solutions, incl. e.g.
 - well-defined, automated interfaces to customers, ground stations, processing facilities, ...
 - generation of "best-possible" timeline and consistent command sequences with high calculation effort
 - detailed resource profile propagation

Drawbacks:

- Lack of predictabiliy of some onboard behaviour
- Delay for reactions to data analysis, detected events etc.

On-ground vs. onboard planning and scheduling II

Idea of Onboard Planning Autonomy:

Distribute planning and scheduling features partly to the spacecraft.

- → Maximize the **overall output** of a mission by using onboard-available information about **real-time telemetry**
- → Enable enhanced system-reactivity inbetween ground station contacts and intervals of on-ground scheduling runs by processing event notifications
- → Embedded software where feasible and helpful
- → Combine with on-ground created schedules

On-ground vs. onboard planning and scheduling II

Idea of Onboard Planning Autonomy:

Distribute planning and scheduling features partly to the spacecraft.

- → Maximize the **overall output** of a mission by using onboard-available information about **real-time telemetry**
- → Enable **enhanced system-reactivity** inbetween ground station contacts and intervals of on-ground scheduling runs by processing event notifications
- → Embedded software where feasible and helpful
- → Combine with on-ground created schedules

On-ground vs. onboard planning and scheduling II

Idea of Onboard Planning Autonomy:

Distribute planning and scheduling features partly to the spacecraft

- → Maximize the **overall output** of a mission by using onboard-available information about **real-time telemetry**
- → Enable **enhanced system-reactivity** inbetween ground station contacts and intervals of on-ground scheduling runs by processing event notifications
- → Embedded software where feasible and helpful
- → Combine with **on-ground created schedules**

The FireBIRD mission

Two spacecraft:

- **TET-1** ("Technologieerprobungsträger-1"), launched July 22nd 2012
- **BIROS** ("Berlin InfraRed Optical System"), to be launched in 2014

Mission goals:

- Detection and monitoring of **High-Temperature Events** and additional **Earth observation** tasks
 - → multi-functional camera consisting of a bi-spectral infrared hot spot recognition sensor system combined with a three-channel optical sensor
- Experimental payloads, new technologies to be proven in space

The FireBIRD mission

Two spacecraft:

- **TET-1** ("Technologieerprobungsträger-1"), launched July 22nd 2012
- **BIROS** ("Berlin InfraRed Optical System"), to be launched in 2014

Mission goals:

- Detection and monitoring of **High-Temperature Events** and additional **Earth observation** tasks
 - → multi-functional camera consisting of a bi-spectral infrared hot spot recognition sensor system combined with a three-channel optical sensor
- Experimental payloads, **new technologies** to be proven in space

The FireBIRD mission

Two spacecraft:

- **TET-1** ("Technologieerprobungsträger-1"), launched July 22nd 2012
- **BIROS** ("Berlin InfraRed Optical System"), to be launched in 2014

Mission goals:

- Detection and monitoring of **High-Temperature Events** and additional **Earth observation** tasks
 - → multi-functional camera consisting of a bi-spectral infrared hot spot recognition sensor system combined with a three-channel optical sensor
- Experimental payloads, new technologies to be proven in space

- Environment and mission-specific challenges

- → one of the experimental payloads on BIROS
- Embedded in PPU, operating system **RODOS**
- Real-time telemetry from SBC and PPU
- Limited memory for storage and computations
- Limited command range
- Limited update possibilities
- High demands on reliability
- **Support** of "nominal"/primary mission
- Commanding via command blocks, active and passive list

- Environment and mission-specific challenges

- → one of the experimental payloads on BIROS
- Embedded in PPU, operating system RODOS
- Real-time telemetry from SBC and PPU
- Limited memory for storage and computations
- Limited command range
- Limited update possibilities
- High demands on reliability
- **Support** of "nominal"/primary mission
- Commanding via **command blocks**, active and passive list

Environment and mission-specific challenges

- → one of the experimental payloads on BIROS
- Embedded in PPU, operating system **RODOS**
- Real-time telemetry from SBC and PPU
- Limited memory for storage and computations
- Limited command range
- Limited update possibilities
- High demands on reliability
- **Support** of "nominal"/primary mission
- Commanding via command blocks, active and passive list

- Environment and mission-specific challenges

- → one of the experimental payloads on BIROS
- Embedded in PPU, operating system RODOS
- Real-time telemetry from SBC and PPU
- Limited memory for storage and computations
- Limited command range
- Limited update possibilities
- High demands on reliability
- **Support** of "nominal"/primary mission
- Commanding via command blocks, active and passive list

Environment and mission-specific challenges

- → one of the experimental payloads on BIROS
- Embedded in PPU, operating system RODOS
- Real-time telemetry from SBC and PPU
- Limited memory for storage and computations
- Limited command range
- Limited update possibilities
- High demands on reliability
- **Support** of "nominal"/primary mission
- Commanding via command blocks, active and passive list

VAMOS – The chosen approach

- Distribute planning and scheduling features **partly** to the spacecraft
- Extensive calculation tasks **on-ground**:
 - Generation of **command blocks** (incl. templates)
 - Determination of extension possibilities and limitations
 - Thorough resource propagation, calculation of profiles
 - Embedded in the general automated Mission Planning System
- NRT decisions and modifications onboard:
 - Embedded in the onboard software with access to the real-time telemetry and triggers from event detecting components
 - Activation, deactivation and creation of command blocks
 - Checking and creation of constraints via thresholds

VAMOS – The chosen approach

- Distribute planning and scheduling features **partly** to the spacecraft
- Extensive calculation tasks **on-ground**:
 - Generation of **command blocks** (incl. templates)
 - Determination of extension possibilities and limitations
 - Thorough resource propagation, calculation of profiles
 - Embedded in the general automated Mission Planning System
- NRT decisions and modifications onboard:
 - Embedded in the onboard software with access to the real-time telemetry and triggers from event detecting components
 - Activation, deactivation and creation of command blocks
 - Checking and creation of **constraints via thresholds**

VAMOS – The chosen approach

- Distribute planning and scheduling features **partly** to the spacecraft
- Extensive calculation tasks **on-ground**:
 - Generation of **command blocks** (incl. templates)
 - Determination of extension possibilities and limitations
 - Thorough resource propagation, calculation of profiles
 - Embedded in the general automated Mission Planning System
- NRT decisions and modifications onboard:
 - Embedded in the onboard software with access to the real-time telemetry and triggers from event detecting components
 - Activation, deactivation and creation of command blocks
 - Checking and creation of **constraints via thresholds**

VAMOS – Two components and extension stages

- **OBoTiS** (OnBoard Timeline Selection)
 - Decision which **pre-commanded timeline blocks** to be activated
 - For each "Timeline Extension":
 one command block + Decision time + Decision criteria
- **OBETTE** (OnBoard Event Triggered Timeline Extension)
 - Add-on to OBoTiS
 - Generation of **additional Timeline Extensions** from commanded templates and auxiliary profiles
- → each consisting of onboard and on-ground functionalities

VAMOS – Two components and extension stages

- **OBoTiS** (OnBoard Timeline Selection)
 - Decision which **pre-commanded timeline blocks** to be activated
 - For each "Timeline Extension":

 one command block + Decision time + Decision criteria
- **OBETTE** (OnBoard Event Triggered Timeline Extension)
 - Add-on to OBoTiS
 - Generation of **additional Timeline Extensions** from commanded templates and auxiliary profiles
- → each consisting of onboard and on-ground functionalities

VAMOS – Two components and extension stages

- **OBoTiS** (OnBoard Timeline Selection)
 - Decision which **pre-commanded timeline blocks** to be activated
 - For each "Timeline Extension":
 one command block + Decision time + Decision criteria
- **OBETTE** (OnBoard Event Triggered Timeline Extension)
 - Add-on to OBoTiS
 - Generation of **additional Timeline Extensions** from commanded templates and auxiliary profiles
- → each consisting of onboard and on-ground functionalities

For each planning request, unambiguously sorted by priority:

- 1. **In case** of overlapping, not-discarded planning request of higher priority with later or equal starttime: **discard** the planning request.
- 2. Decision time = starttime 1sec
- 3. For each resource:
 - a) **propagate profile** with inserted request,
 - b) derive **extension condition** as: maximally allowed value = propagated value at decision time + "minimum remaining availability"
- 4. Add composed timeline extension to to-be-commanded set
- 5. In case no overlapping timeline extension of higher priority created before, keep current profile modifications (start was empty base timeline), otherwise reset them.

For each planning request, unambiguously sorted by priority:

- 1. **In case** of overlapping, not-discarded planning request of higher priority with later or equal starttime: **discard** the planning request.
- 2. Decision time = starttime 1sec
- For each resource:
 - a) **propagate profile** with inserted request,
 - b) derive **extension condition** as: maximally allowed value = propagated value at decision time + "minimum remaining availability"
- 4. Add **composed timeline extension** to to-be-commanded set
- 5. In case no overlapping timeline extension of higher priority created before, keep current profile modifications (start was empty base timeline), otherwise reset them.

- Deriving of conditions I

Determination of maximum telemetry value:

- Deriving of conditions II

in case of "negative availability":

- Deriving of conditions II

in case of "negative availability":

- Deriving of conditions II

in case of "negative availability":

For **each planning request**, unambiguously **sorted by priority**:

- 1. **In case** of overlapping, not-discarded planning request of higher priority with later or equal starttime: **discard** the planning request.
- 2. Decision time = starttime 1sec
- 3. For each resource:
 - a) **propagate profile** with inserted request,
 - b) derive **extension condition** as: maximally allowed value = propagated value at decision time + "minimum remaining availability"
- 4. Add **composed timeline extension** to to-be-commanded set
- 5. **In case** no overlapping timeline extension of higher priority created before, **keep current profile modifications** (start was empty base timeline), **otherwise reset** them.

OBoTiS – Onboard mechanism

→ Activate command blocks via ID, after checking set of telemetry conditions at decision time

Telemetry check shows that Timeline Extension 1 may be executed:

Timeline Extension 1 is activated:

OBETTE – On-ground preparation details I

To be **generated on-ground** and **commanded** to the spacecraft:

- "remaining availability profiles" for the onboard planner, calculated on basis of a timeline, which includes all ground-prepared timeline extensions of higher priority than the one the onboard-generated timeline extensions would get
- on-ground "propagated values profile"
- template command block(s)

OBETTE – On-ground preparation details I

To be **generated on-ground** and **commanded** to the spacecraft:

- "remaining availability profiles" for the onboard planner, calculated on basis of a timeline, which includes all ground-prepared timeline extensions of higher priority than the one the onboard-generated timeline extensions would get
- on-ground "propagated values profile"
- template command block(s)

OBETTE – On-ground preparation details I

To be **generated on-ground** and **commanded** to the spacecraft:

- "remaining availability profiles" for the onboard planner, calculated on basis of a timeline, which includes all ground-prepared timeline extensions of higher priority than the one the onboard-generated timeline extensions would get
- on-ground "propagated values profile"
- template command block(s)

OBETTE – Onboard mechanism I

- 1. Filling event parameters to extension template(s)
- Decision time = 1 sec before the decision time of the first overlapping timeline extension of lower priority or the new timeline extension's execution time
- 3. **In case** an overlapping timeline extension of higher priority with decision time later than this decision time exists, the whole timeline extension is **to be discarded**.
- 4. Remaining availability including this extension
 - = "remaining availability profile" at Decision time
 - resource consumption of this timeline extension
- 5. **Extension condition:** *maximally allowed value*
 - = "propagated value profile" at Decision time
 - + Remaining availability including this extension

OBETTE – Onboard mechanism I

- 1. Filling event parameters to extension template(s)
- 2. Decision time = 1 sec before the decision time of the first overlapping timeline extension of lower priority or the new timeline extension's execution time
- 3. **In case** an overlapping timeline extension of higher priority with decision time later than this decision time exists, the whole timeline extension is **to be discarded**.
- 4. Remaining availability including this extension
 - = "remaining availability profile" at Decision time
 - resource consumption of this timeline extension
- 5. **Extension condition:** *maximally allowed value*
 - = "propagated value profile" at Decision time
 - + Remaining availability including this extension

OBETTE – Onboard mechanism I

- Filling event parameters to extension template(s)
- 2. Decision time = 1 sec before the decision time of the first overlapping timeline extension of lower priority or the new timeline extension's execution time
- 3. **In case** an overlapping timeline extension of higher priority with decision time later than this decision time exists, the whole timeline extension is **to be discarded**.
- 4. Remaining availability including this extension
 - = "remaining availability profile" at Decision time
 - resource consumption of this timeline extension
- 5. **Extension condition:** *maximally allowed value*
 - = "propagated value profile" at Decision time
 - + Remaining availability including this extension

OBETTE – Onboard mechanism II

6. Add new timeline extension(s) to the assortment for OBoTiS

External event triggers generation of new Timeline Extension 3 from template:

Telemetry check shows that Timeline Extension 3 may be executed:

OBETTE – Onboard mechanism III

Behaviour after extension activation:

Timeline Extension 3 is activated:

Telemetry check shows that Timeline Extension 2 cannot be executed:

- Combining benefits of onboard and on-ground planning and scheduling
- Elaborate approach to **enable combination** of Earth observation and "Earth watching" with relatively simple **onboard component**
- Stepwise testing and activation with **operational use** in case of success
- Verification of such a technique as important step to application in future non-experimental projects
- Complexity enhancement options in case of environment adaptation

- Combining benefits of onboard and on-ground planning and scheduling
- Elaborate approach to **enable combination** of Earth observation and "Earth watching" with relatively simple **onboard component**
- Stepwise testing and activation with **operational use** in case of success
- Verification of such a technique as important step to application in future non-experimental projects
- Complexity enhancement options in case of environment adaptation

- Combining benefits of onboard and on-ground planning and scheduling
- Elaborate approach to **enable combination** of Earth observation and "Earth watching" with relatively simple **onboard component**
- Stepwise testing and activation with **operational use** in case of success
- Verification of such a technique as important step to application in future non-experimental projects
- Complexity enhancement options in case of environment adaptation

- Combining benefits of onboard and on-ground planning and scheduling
- Elaborate approach to **enable combination** of Earth observation and "Earth watching" with relatively simple **onboard component**
- Stepwise testing and activation with **operational use** in case of success
- Verification of such a technique as important step to application in future non-experimental projects
- Complexity enhancement options in case of environment adaptation

- Combining benefits of onboard and on-ground planning and scheduling
- Elaborate approach to **enable combination** of Earth observation and "Earth watching" with relatively simple **onboard component**
- Stepwise testing and activation with **operational use** in case of success
- Verification of such a technique as important step to application in future non-experimental projects
- Complexity enhancement options in case of environment adaptation

Any questions?

Thank you for your attention!

