BASEPROD: The Bardenas Semi-Desert Planetary Rover Dataset

This data was collected in the Bardenas Reales Semi-Desert (Northern Spain) in July 2023 and was published in Nature’s Scientific Data in 2024. The publication is where you will find all details about the dataset contents and formats. If you use parts of this data, please cite (full BibTex can be found below at citation section):

Gerdes, L., Wiese, T., Castilla Arquillo, R. et al. BASEPROD: The Bardenas Semi-Desert Planetary Rover DatasetSci Data 11, 1054 (2024). https://doi.org/10.1038/s41597-024-03881-1

DOI for the dataset itself: https://doi.org/10.57780/esa-xxd1ysw

Data

BASEPROD contains rover sensor data for a total traverse length of around 1.7 km, 3D drone maps of the area, LIBS measurements from sampling sites along the rover traverse, and weather station data.

Overview over all traverses. LIBS measurements points are annotated as LXX with measurement location number XX.

MaRTA, the rover used for the data collection, features

  • Bumblebee XB3 stereo camera at the mast
  • Realsense D435i RGB-D camera
  • Optris Pi640 thermal camera
  • Xsens MTi-680 IMU with GNSS module and RTK corrections
  • six ATI mini45 force and torque sensors in the rover’s legs
  • KVH DSP-1760 fiber optic gyroscope
SHA256 Checksums
ChecksumFilename
b29132b2001072215c15a9b2a63f06c5759c7cc75497b9d944a7d0e52df570083d_mesh.7z
8b03e00d8b8776b3b61bba1400c66e6112e6f38b5cddb5d68d3a79b5871b8039dsm.7z
7b8b615e1ecc2d7be7295057c0ab314e92450307f09cc7b9061a1943cb5e3a4fmosaic.7z
4770dfbd64ec48ac5aafa9f5c8832139eeeb96db0202d65ef7f4b5bcc115151apoint_cloud.7z
94f1c93429fbb3724f9bc68b16cbae167895d4eb6a7dea7810b83c124a8badf1libs_measurements.7z
5ee68ee959e22f3905bc0f9e0470d28a93cbe0f8716200193196f297b580192eweather_station.7z
a4a382ee62d61cc844960ea1d69ea65b5b6b0e8d1ebb85caecec3850c0112d112023-07-20_18-12-05.7z
01ce9968ebfb1d807b25265cf94b4a5c9e686a4ae0146355b997b9dc87b3e5d92023-07-20_19-12-27.7z
6fcdebc0f5ee33d03d78f28927809d2130796af8ff41001f47d2355e02dbe6712023-07-20_20-01-38.7z
e40d0a19b5a9e02ceec16d91957ea49c4a12580a520da27f4446dd801f6840ba2023-07-21_12-38-15.7z
62eea47584cf69d236c0cf15e6f76bdb96d3038cd5b2cf2317be63ebe76b97a42023-07-21_12-58-11.7z
d88462ea6fd444799b64ca6816a3fd6cce93e2051e9f400b1c4787f91891ac5e2023-07-21_13-43-00.7z
5a114531d74bc8de855a7b4bed08f81eee4b399b3729bc07e5dbbfcbef5f14f92023-07-21_13-59-14.7z
0b563b065dada72244e417f9f11e78167fbacfeb630d26f0cca8b22c97694b202023-07-21_14-08-29.7z
1cc73220b8c5d6d23bc7e65733c9cf2cf90db013cb16339a01ce64aa33fc8ef32023-07-21_14-44-56.7z
5b2e934c61319bd59c9216fbe88997804c318e14598eaf6de540302d0c0bb05e2023-07-21_14-51-07.7z
eeeaf833b4689b6a594002c935fbc0e30325cd096388b4d7a3e5a56adb0daef22023-07-21_17-07-00.7z
89fcbbf1ebed8155b4bda39bb77443ad176210dc4f475284db2083831062f1aa2023-07-21_17-34-18.7z
1f90f267bbf77b8c901b2c02a2a62e881f6c7a58db59907cfa5c97d1237978ae2023-07-21_17-45-42.7z
aaa62989a02889ceda5a8fbfb49ca627dd38afaf25f831960c2f55d046be669a2023-07-22_13-00-57.7z
c95b47f1ae23c6593c06ea594ec8ed34ed3f90672e6a68ff5c836540f5fd9db82023-07-22_13-28-55.7z
36ac30fbce8aff8473360f6fea4211ec400edbb99b6e10abd9f8dcc6183f74b22023-07-22_14-18-23.7z
c4fdde25245d2dd9239273e5152891d7f31b4144eab0de3d35dbaa7107fa6bd02023-07-22_16-24-27.7z
f171a5ac5d97f85722fed85c824919bab14567e77a506d8fab08b11b7e9a52392023-07-22_17-18-36.7z
357f3be0bcb4eb0afd566392fbaae8f58b6ba2b91edc693f66b3b82b1e9ee2402023-07-22_17-31-58.7z
1a4e3458883ec558cd121c150a52c451b6a23d190762702a7fd0b31b758062f92023-07-22_17-38-50.7z
93fa427dc7d889a8125e40a86f04a22474019fbc2499f5d51fbc08a94969ff2e2023-07-23_11-23-18.7z
c6823f68fa37f124b14d53568b2f6fdbf1ebe1f589d629b9765f5f8a6dbef5822023-07-23_11-52-09.7z
fc595ae8cae0e7bb60c8f1b8781754154fc28c418ec3a5802ee808ee9aab13e22023-07-23_12-52-39.7z
e286defbabbc2badd6b47c673a84abf5b410f78b4cbcd42b5ea1d4b7c0769cde2023-07-23_13-05-11.7z
f7d9eafdd7b16217bcebd32d9906112bfc3c111a6b6dd9e265063974607c6951calibration.7z

Map

TypeDescriptionDownload, Size
3D MeshTextured, simplified mesh, .plyDownload 164M
DSM3D elevation map, .tifDownload 2.7G
MosaicGeo-referenced orthomosaic map, .tifDownload 4.4G
Point CloudDensified point cloud, .ply and .xyzDownload 14G

Rover sensors

Traverse and imageDownload URL, SizeCameras
2023-07-20_18-12-05
Download 9.6GAll
2023-07-20_19-12-27 Download 5.5GAll
2023-07-20_20-01-38 Download 71MNone
2023-07-21_12-38-15 Download 9.4GAll
2023-07-21_12-58-11 Download 29GAll
2023-07-21_13-43-00 Download 8.0GAll
2023-07-21_13-59-14 Download 5.2GAll
2023-07-21_14-08-29 Download 21GAll
2023-07-21_14-44-56 Download 2.2GAll
2023-07-21_14-51-07 Download 6.0GOnly XB3
2023-07-21_17-07-00 Download 15GAll
2023-07-21_17-34-18 Download 5.0GAll
2023-07-21_17-45-42 Download 15GAll
2023-07-22_13-00-57 Download 5.8GAll
2023-07-22_13-28-55 Download 4.7GNo XB3
2023-07-22_14-18-23 Download 7.9GNo XB3
2023-07-22_16-24-27 Download 33GAll
2023-07-22_17-18-36 Download 1.1GAll
2023-07-22_17-31-58 Download 1.9GAll
2023-07-22_17-38-50 Download 11GAll
2023-07-23_11-23-18 Download 14GAll
2023-07-23_11-52-09 Download 15GAll
2023-07-23_12-52-39 Download 5.9GAll
2023-07-23_13-05-11 Download 8.2GAll
CalibrationDownload 8.1M

LIBS measurements

Download 8.4G

Weather station data

Download 40K

Scripts

The Python scripts used to prepare this dataset and visualize data can be found at https://github.com/spaceuma/baseprod .

Citation

Gerdes, L., Wiese, T., Castilla Arquillo, R. et al. BASEPROD: The Bardenas Semi-Desert Planetary Rover DatasetSci Data 11, 1054 (2024). https://doi.org/10.1038/s41597-024-03881-1

@article{Baseprod,
        author = {Levin Gerdes and Tim Wiese and Raúl Castilla Arquillo and Laura Bielenberg and Martin Azkarate and Hugo Leblond and Felix Wilting and Joaquín Ortega Cortés and Alberto Bernal and Santiago Palanco and Carlos Pérez del Pulgar},
        doi = {10.1038/s41597-024-03881-1},
        issn = {2052-4463},
        issue = {1},
        journal = {Scientific Data},
        month = {9},
        pages = {1054},
        title = {BASEPROD: The Bardenas Semi-Desert Planetary Rover Dataset},
        volume = {11},
        url = {https://www.nature.com/articles/s41597-024-03881-1},
        year = {2024},
  }

Acknowledgments

This work was partially funded by the European Space Agency under activity no. 4000140043/22/NL/GLC/ces and by the Junta de Andalucía under the Excellence Research Project PROYEXCEL-00637.