561

ORGANIZATIONAL LEARNING AGENTS FOR TASK
SCHEDULING IN SPACE CREW AND ROBOT OPERATIONS

Masakazu Watabe

Japan Advanced Institute ATR Human Information
of Science and Technology Processing Research Labs.
1-1, Asahidai 2—-2 Hikaridai, Seika—cho

O Keiki Takadama Hitomi Kasahara Linchun Huang

ATR Human Information
Processing Research Labs.
2-2 Hikaridai, Seika—cho

Nara Institute of Science
and Technology
8916-5 Takayama—cho

Tkoma City, Nara
630-0101 Japan

Soraku-gun, Kyoto
619-0288 Japan
keiki@hip.atr.co.jp
Tel: +81--774-95-1007
Fax: +81-774-95-1008

Hiromitsu Ii
Univ. of Tokyo
7-3-1 Bunkyo-ku
Tokyo 113-8656 Japan
hiromi@space.t.u-tokyo.ac.jp
Tel: +81-3-3481-4486
Fax: +81-3-3481-4585

Abstract

This paper explores rescheduling and reorganization
abilities of our organizational learning model in the
following two important applications in space: crew
task scheduling in a space shuttle/station and task
planning for truss construction with multiple space
robots. Through intensive simulations of the above
two tasks, the following experimental results have
been obtained: (1) Our model provides good fea-
sible schedules quickly in the case of rescheduling,
and it keeps the computational cost for reschedul-
ing low; (2) Plans generated by our model keep or
recover efficiency in tasks when robots are added, re-
moved, or exchanged among robot groups; and (3)
'The integration of (a) learning mechanisms, (b) rule
hased systems with evolutionary approaches, and (c)
multiagent approaches is effective in rescheduling/re-
planning problems.

Keywords: crew task scheduling, planning for mul-
tiple space robots, multiagent system, organizational
Jearning, learning classifier system

1 Introduction

In space tasks, unexpected situations often occur
that avord experiments or works from going accord-
g to schedules or plans. For example, the crew task
schiedule on a space shuttle/station, a type of job-
shop scheduling problem, is often modified due to in-
strument/crew anomalies, mission changes, or other

Proc. Fifth International Symposium on Artificial Intelligence,

Robotics and Automation in Space, 1-3 June 1999 (ESA SP-440)

hitomi-k@is.aist—nara.ac.jp
Tel: +81-743-72-5256
Fax: +81-743-72-5259

Katsunori Shimohara

ATR Human Information
Processing Research Labs.

2-2 Hikaridai, Seika-cho, Soraku—gun
Kyoto 6190288 Japan
katsu@hip.atr.co.jp
Tel: +81-774-95-1070
Fax: +81-774-95-1008

Tatsunokuchi, Ishikawa Soraku-gun, Kyoto
923-1292 Japan 619-0288 Japan
huangle@jaist.ac.jp xmwatabe@hip.atr.co.jp
Tel: +81-761-51-1699 Tel: +81-774-95-2665
Fax: +81-761-51-1116 Fax: +81-774-95-1008

Shinichi Nakasuka
Univ. of Tokyo
7-3-1 Bunkyo-ku
Tokyo 113-8656 Japan
nakasuka@space.t.u-tokyo.acjp
Tel: +8§1-3-3481-4452
Fax: +81-3-3481-4585

schedule change requirements. As another example,
pre-determined plans for multiple space robots fail to
make sense when one or more robots become failed
or inoperative. In the above two cases, new accept-
able schedules or plans, even if not optimum, must
be obtained as quickly as possible to minimize the
time loss. Thus, it 1s hard in this case to employ
conventional methods based on operations research,
expert systems, domain-specific heuristic algorithms,
or meta-heuristics methods [Osman 96] such as ge-
netic algorithms (GAs) [Goldberg 89] or simulated
annealing (SA) [Aarts 89] for practical and engineer-
mg use. This is because (1) the above methods re-
quire a lot of time or high computational costs even
for small modifications, (2) the methods are difficult
to cover all unexpected situations, and (3) even small
modifications affect whole systeins.

To overcome these problems, recent research on
(1) learning mechanisms, (2) rule based systems
with evolutionary approaches, and (3) multiagent
approaches has studied new possibilities in schedul-
g or planning domains. For instance, Zhang
showed that a reinforcement learning approach found
a good feasible schedule more guickly than Zweben’s
method which is bhased on simulated annealing
[Zweben 94] in the NASA space shuttle payload pro-
cessing task [Zhang 95]. Since this method can uti-
lize results acquired through the learning, times for
making a schedule or a computation costs are re-
duced. Tamaki showed the generality /applicability
of production systems with an evolutionary approach
i the case of environmental changes [Tamaki 99],
which indicates the potential to cover some unex-

pected situations. Furthermore, Fujita and Tima

562

showed multiagent approaches contribute to finding
egood schedule In a reasonable time in rescheduling
problems [Fujita 96, lima 99].

However, research in these three areas seems
to have concentrated on improvements in particu-
Jar methods or techniques independently, in spite
of the fact that these components complement
each other. Therefore, this paper employs our
model that integrates the above three components
from multi-strategic standpoints [Takadama 98a,
Takadamma 99al and explores this model’s possibility
in rescheduling and ve-planning problems.

This paper is organized as follows. Section 2 starts
by explaining our model, and Section 3 describes two
space tasks for scheduling and planning. Section 4
presents our simulations, and the possibilities of our
model 1s discussed in Section 5. Finally, our conclu-
sions are given i Section 6.

2 Organizational-learning
oriented Classifier System

Our Organizational-learning oriented Classifier Sys-
tenr (OCS) [Takadama 98a, Takadama 99a] is a
GBML (Genetics-Based Machine Learning) archi-
tecture. OCS is composed of many Learnming ('las-
sifier Svstems (LCSs) [Goldberg 89, Holland 78],
which are extended to introduce the concepts of or-
ganizational learning (OL) T studied in organiza-
tion and management science [Argyris 78, March 91,
('ohen 95]0 Since LCS is equipped with (1) an en-
vironmental adaptation function via reinforcement
learning mechanisins, (2-a) a problem solving func-
tion via rule-based production systems, and (2-h)
rule generation/exchange mechanisims via genetic al-
gorithms, and (3) OCS is an extension of LCSs to
nltiagent environments, it 1s easily found that OCS
includes (L) learning mechanistos, (2) rule based sys-
tems with evolutionary approaches, and (3) the mul-
tiagent approaches mentioned i the previous sec-
{1on.

2.1 Aim of agent and function

In OCS. agents (Jobs of crews or robots in this pa-
per) are implemented by their own LCSs, and they
divide given problems by acquiring their own appro-
priate functions through mteraction among agents
in order to solve problems that cannot bhe solved at
an individual level. Based on this way of problem
solving. the aun of the agents s defined as finding
appropriate functions. Furthermore, these functions
are acquired thirough the change of agents’ rule sets
(1.c.. rule base}. and thus a funclion s defined as a

Detailed introduction to the concepts of O, is discussed
in [Takadama 99a].

rule set. In particular, a rule set drives a certain se-
quence of actions such as ABC'BC' -+ -, in which the
A, B and (' actions are primitive actions.

Note that the learning needed to acquire appro-
priate functions in some agents is aflected by the
function acquisition of other agents. For example,
some agents are affected when one of the A, B, or !
actions of other agents changes through learning or
when the fired order of the A, B, and (' actions of
other agents changes.

2.2 Architecture

As shown 1 Fig. 1, OCS is composed of many
agents, and each agent has the same architecture,
which includes the following problem solver, mem-
ory, and mechanisms. In this model. each agent can
recognize its own environmental state but cannot rec-
ognize the state of the total environment. Note that
the component concerning organizational knowledge
is not used 1n this experiment because it is a different
component as compared with the three components
mentioned in section T and because the aim of this
paper is to cxplore the possibility of the integration
of these three components.

< Problem Solver >

¢ Detector and FEffector change a part of
an environmental state into an internal state
and change an internal state into an action
[Russell 95], respectively.
< Memory >

¢ Individual knowledge memory stores a rule
set (a sct of Cls (classifiers)) as individual
knowledge. In OCS, agents independently store
different C('Fs that are composed of if-then rules
that have a strength facior (s.¢.. the worth of
rules). In particular, one primitive action is in-
cluded in the then part.

e Working memory stores the recognition re-
sults of sub-environmental states and also stores
the internal state of an action of fired rules.

e Rule sequence memory stores a sequence of
fired rules in order to evaluate then. This mem-
ory is cleared after the evaluation.

< Mechanisms >

e Roulette selection probabilistreally sclects
one rule from among plural rules that match a
particular environment. In detail. one rule is
selected according to the size of the strength at-
tached to cach rule. Since cach rule includes one
prunitive action, one action is performed n each
roulette selection.

s Reinforcement learning. rule generation.
rule exchange, and organizational knowl-
cedge reuse mechanisms are reinterpreted
from the four kinds of learning in OL (Details

are described later except for the organizational
knowledge reuse mechanism).

&Sub-enwronmenl\ I Subk-environment l]

State Action State Action State Action
(Agent 1 Y(Agent 2 h (Agent n A

(Detector) (Eﬂeclor' {Detector) (Effector) ‘Detectar' { Effector)

]
Organizational

Environment

(Sub-environmenn

Organizational Organizational

Knowledge Knowledge Knowledge
Individual Individual Individual
Knowledge Knowledge Knowledge
CF 1 CF 1 CF’ 1
CF2 CF2 CF"2
' ' +
' ' ‘
i CF i i CF'j - CF" k
e Working Memory |+ M Working Memory # Working Memory

Rule Sequence Rule Sequence Rule Sequence

Roulette Selection Roulette Selection Roulette Selection

Reinforcement Reinforcement Reinforcement
Learning Learning Learning

e | e fens
Rute Exchange

Organizational
Knowledge Reuse

Rule Generation
Rule Exchange

Organizational
Knowledge Reuse

Organizational
Knowledge Reuse

Figure 1: OCS Architecture

2.3 Learning in OCS

2.3.1 Reinforcement learning mechanism

In OCS, the reinforcement learning (RL) mechanism
enables agents to acquire their own appropriate ac-
tions that arc required to solve given problems. In
particular, RL supports agents to learn the appropri-
ate order of the fired rules by changing the strength
of the rules. In detail, OCS employs a profit shar-
ing method [Grefenstette 88], which reinforces a se-
guence of rules at once when agents obtain some re-
wards T

2.3.2 Rule generation mechanism

The rule generation mechanism in OCS creates new
rules when none of the stored rules match the current
environmental state. In particular, when the number
of rules is MAX_CF (maximum nwmnber of rules), the
rule with the lowest strength is removed and a new
rule 1s generated. In a process of rule generation,
the condition (if) part of a rule is created to reflect
the current situation, the action (then) part 1s de-
ternuned at random, and the strength value of the
rule 1s set to the imtial value. Furthermore, if the
situation does not change because the same rules are
repeatedly selected, the strength of the rules is tem-
porarily decreased and these rules become candidates
that may be replaced by new rules.

2.3.3 Rule exchange mechanism

In OCS, agents exchange rules with other agents at
a particular time interval (CROSSOVER_STEP!) in or-
der to solve given problems that cannot be solved at

'The detail credit assignment in OCS was proposed in
[Takadama 98b).

YThis step is defined in section 3.1.2 and 3.2.2.

563

an individual level. In this mechanism, a particular
number ((the number of rules)xGENERATION_GAPT)
of rules with low strength values are replaced by
rules with high strength values between two arbi-
trary agents. For example, when agents X and Y
are selected as shown in Fig. 2, the CFs in each
agent are sorted by order of theiwr strength (upper
CFs have high strength values), and CF;_, ~ CF;
and C'F/[_, ~ CF/ in this case are replaced by
CF| ~ CFy and C'Fy ~ CF3, respectively. How-
ever, rules that have strength higher than a particu-
lar value (BORDER_ST) are not replaced to avoid un-
necessary crossover operations. The strength of re-
placed rules are reset to their initial values. This is
because effective rules in some agents are not always
effective for other agents in multiagent environments.

Agent X AgentY
Individual Individual
Knowledge Knowledge
CF1 CF' 1
CF2 CF 2
CF3 CF 3
] 1
1]

] 1
CFj-2 CF k-2
CFj- CF k-1
CFj CF’ k

Figure 2: Rule exchange mechanism

2.4 Supplemental Setup

In addition to the above mechanisms, OCS is set
up as follows: In the beginning, a particular num-
ber (FIRST_CF) of rules in each agent is generated at
random, and the strength values of all rules are set
to the same initial value.

3 Task Domain

3.1 Crew Task Scheduling

3.1.1 Problem Description

In the crew task scheduling of a space shut-
tle/station, many crew jobs must be scheduled under
hard resource constraints. In particular, jobs in this
task are components of missions, and they should be
assigned while satisfying the following constraints.

I. Power of space shuttle/station: Each job
needs a particular size of power (from 0% to
100%) in experiments, but the summation of the
power of all jobs at each time must not be more
than 100%.

2. Link to the ground station: Some jobs need
to use a link in experimeuts, but only one job
can use 1t at each time. Due to the orbit of

t'The ratio of operated rules.

564

the spacecraft, none of the jobs can use the link
during a certain time.

3. Machine A: Some jobs need to use a machine
A in experiments, but only one job can use 1t at
cach time. FExamples of such machines involve
computers, voice recorders, and so on.

4. Machine B: The condition is the same as for
machine A.

5. Priority order in jobs: In a mission unit, jobs
have their priority orders (from 1 to the total
number of jobs where a smaller number means
a higher priority). Jobs in a mission must be
scheduled to satisfy their priority orders.

(5. Crew assignment types: The crew is divided
into the following two types: Mission Specialist
(MS) and Payload Specialist (PS). The former is
mainly in charge of experiments, and the latter
supports experiments. In a specific assignment,
“the required number of crew members,” “the
necessary persons,” and “the necessary crew as-
signment types” are decided for each job. For
the third element, one of the following crew as-
signment types must be satisfied: (a) Anybody,
{b) PS only (PS is not specified), (¢) One spec-
ified PS with somebody, (d) One specified MS
with somebody, and (e) Combination of PS and
MS (PS and MS are not specified). These types
are based on the space shuttle missions.

3.1.2 Problem Setting

In this task, each job is designed as an agent in OCS,
and each learns to acquire an appropriate sequence of
actions that minimizes the total scheduling time. In
detail, jobs have 15 primitive actions such as move-
ments for satisfying power constraints, or movements
toward an earlier time in a schedule if all constraints
arc satisfied. Furthermore, jobs can only recognize
the situations of their neighbors.

As the concrete problem setting without anoma-
lies. all jobs are initially placed at random with-
out considering overlaps and the six constraints de-
seribed in the previous section, and therefore a sched-
ule at this time is not feasible. After this initial
placement, the jobs start to perform some primitive
actions in order to reduce the overlap or to satisfy
the constraints while minimizing the total schedul-
ing time. When the value of the total time converges
with a feasible schedule, all jobs evaluate their own
sequences of actions according to the value of the
total titne. Then, the jobs restart from the initial
placement to acquire more appropriate sequences of
actions which find shorter times. In this cycle, one
step is counted when all jobs perform one primitive
action, and one ieration is counted when the value
of the total time converges with a feasible schedule.

In the case of anomalies, on the other hand, there
are two ways of scheduling in OCS: (1) the same way

as a case without anomalies (reschedule from the be-
ginning) and (2) all jobs start from the placement
of a current schedule that satisfies all constraints ex-
cept for the anomaly parts (reschedule from the cur-
rent schedule). Especially in the latter case, only

jobs that do not satisfy constramts due to anoma-

lies change their locations in the schedule, and thus
a modified schedule can be obtained quickly.

3.1.3 Index of Evaluation
In this task, the following two indexes are evaluated:

e Goodness = total scheduling time.

e Computational cost

_ Ziter(ztion_in _CONVErgEnce
- i=start

step (1)
The first index (goodness) evaluates a solu-
tion of a feasible schedule, and the second in-
dex (computational cost) calculates the accumulated
steps. In this equation, “step (¢}.” “start,” and
“iteration_in_convergence” respectively indicate the
steps counted in 7 iterations, the start iterations, and
the iterations when the value of the total scheduling
time converges through repetitions that attempt to
find times shorter than the initial placement. This
convergence is recognized when the total time shows
the same value in some particular iterations. Fur-
thermore, computational costs for repairing anoma-
Hes can be calculated by setting start to the itera-
tions when anomalies make the schedule change.

3.2 Task planing for truss construc-
tion

3.2.1 Problem Description

In the task planning for truss construction with mul-

tiple space robots, we employ a robot which has only

one arm in order to reduce its weight T. This means

that each robot can only hold either a beam or a

welding tool to combine/weld beams, which are the

basic components of a truss. In a concrete truss con-
struction with these robots, an example in the first
several steps is shown in Fig.3. In this figure, the
hlack circle with the solid line, the mesh circle, the
double circle, and the dashed line respectively in-
dicate a robot with its own bheam, a robot without

a beam, the space station, and the location for the

truss that will be constructed. Note that all robots

are supposed to have their own welding tools and
thus robots without beams can weld beams by hold-
ing welding tools.

(1) Two rohots hold their own beams and go to the
beam constructing location.

(2) Two robots with their own beams arrive at the
beam constructing location and set the desired
angle between the beams. The robot without a
heam goes to the welding location.

n space, it is important to reduce the weight of robots
becanse launching costs are quite expensive.

@-\\ @~ Robot with a beam

‘ @ Robot without a beam
@/(5') @ Space station

Figure 3: Truss Construction

(3) The robot without a beam arrives at the welding
location and welds the beams.

(4) After welding, the robot with a beam on the
left side returns to the station and the robot
that welds the beams goes to another welding
location.

(5) Another robot that has its own beam goes to
the beam constructing location.

In addition, robots get into deadlocked situa-
tions when either all or none of the robots hold
their own beams, or when some rohots cannot go to
the heam constructing or welding locations because
other robots wait in the course of the target location.

3.2.2 Problem Setting

In this task, each robot is designed as an agent in
OCS. and each learns to acquire an appropriate se-
quence of actions that minimizes the truss construc-
tion steps. In detail, robots have 11 primitive actions
such as holding a beam, or moving toward a beam
constructing location. Furthermore, robots can only
recognize the situations of their neighbors.

As a concrete problem setting, all robots start at
the space station and learn whether they hold their
own beams or not. After beams are welded, robots
that hold or weld beams learn again whether to go
to other welding locations to weld the next beams or
whether to return to the station to get other beams.
Wlhen robots complete a truss construction or get
mto a deadlocked situation, all robots evaluate their
own sequences of actions according to the current
situation (completion or failure). Then the robots
restart from the space station to acquire more ap-
propriate sequences of actions that take fewer steps.
In this cycle, one step is counted when all robots
perform one primitive action, and one iteration is
counted when robots complete to a truss construct
or get nto a deadlocked situation.

3.2.3 Index of Evaluation

[n this task. the following two indexes are evaluated:

565

e (Goodness = truss construction step

e Task completion rate

The first index (goodness) evaluates a solution
that is the saumne viewpoint in the crew task schedul-
ing, and the second index (task completion rate)
evaluates how robots reconfigure cooperation among
robots when there are anomalies. In particular, this
rate is calculated as the average of the task comple-
tion numbers in a certain range of iterations. Note
that the viewpoint of the second index is similar to
that of the ¢ mputational costs for repairing anoma-
lies in the craw task scheduling.

4 Simulation
4.1 Experimental Design

A simulatior investigates the rescheduling and reor-
ganization abilities of OCS when anomalies occur.
In the crew task scheduling, six types of anomalies
shown 1n table 1 are introduced into a schedule of
10 jobs, and the results of rescheduling from the cur-
rent schedule are compared with the results from the
beginning. Since all constraints cannot be satisfied
unless anomalies are removed, feasible schedules can-
not. be found. For example, a job that requires a link
cannot be completed as long as a link is down. From
this fact, this paper supposes a certain duration of
anomalies. That is, both the start and end times are
decided in each anomaly.

Table 1: Type of anomalies

Type [Anomaly] Content,
- . A crew cannot perform
1 Crew sick . p
experiments

The max size of power

2V

Power down
decreases

3 Link down A hink cannot be used
Machine . ‘ . b
4 Machine A down achine A cannot be
used
. Machine B ca t be
5 Machine B down achine B cannot be

used

. Integrati {5
6 Type |4+2+3+445 ntegration of 5

anomalies

In the task planning for truss construction, on the
other hand, the four operations shown in table 2 are
performed after the two robot groups A and B ac-
quire some division of works while keeping their di-
vision of work, and the results after operations are
compared with the results before operations. In par-
ticular, two groups construct their trusses from the
same space station, thus they affect each other. Fur-
thermore, each group is composed of five robots. Fi-
nally, the robot added in the “addition™ operation 1s
a new one which has not vet learned. and the failed
robot. in the “failure & removal™ operation Is an in-
operative robot that hehaves at random.

566

Table 2: Operation

Operation l Content

Addition | One robot is added to group A
Removal | One robot is removed from group A
. One robot in group A is exchanged
kExchange i

with one robot in group B

Failure & | One robot in group A fails and is

Removal removed

4.2 Experimental Results

Table 3 shows both the total scheduling time and
the accumulated steps required in rescheduling for
anomalies. 'The values are calculated both from
the beginning and from the current schedule after
anomalies occur. All results are averaged from five
different examples of each anomaly type T. For in-
stance, the duration time and anomaly start time of
“link down™ are different in each example.

Table 3: Total scheduling time and accumu-
lated steps

T | Total scheduling time | Accumulated steps
v From From From From
P the current the current
e | beginning | schedule | beginning | schedule
1 29.4 30.2 241.2 14.0

2 32.2 33.6 557.4 11.8

3 33.6 33.8 T700.6 43.4

1 34.6 32.4 1581.8 16.4

5 32.2 29.4 1116.2 13.8

6 35.8 37.2 3204.2 38.0

Next, Table 4 and Fig. 4 respectively show the
truss construction steps and the task completion
rate, and compare the results before and after op-
erations. Since this paper shows the change in the
task completion rate, the values of Table 4 and Fig. 4
are obtained from one result. However, we have con-
firmmed that the tendency of results does not change
drastically with other examples or different random
seeds. Furthermore, all operations except for “failure
L oremoval” are performed in 117 steps, and “failure
& removal” s performed in [T and 417 steps. As
shown in Table 4. the truss construction steps be-
fore operations i group A 1s smaller than those in
group B because the location of truss A is nearer the
station than that of truss B.

5 Discussion

(1) Rescheduling ability of OCS

The following discussions based on Table 3 snggest
that OC'S has a rescheduling ability that provides
good feasible schedules quickly.

tlhis corresponds to the average of five situations with
different random seeds in one example.

Table 4: Truss construction steps

Overati Group A (sroup B

peration R e [After | Before | After
Addition 208 313
Removal 310 310
Exchange 232 235 313 315
Failure & 441 311
Removal

e Total scheduling time from a current sched-
ule for each anomaly type is alimost the same as
the scheduling time from the beginning. This
tendency does not change with the number of
anomalies, even 1If constraints in a schedule be-
come hard as the number of anomalies increases.
Based on the fact that OCS finds good feasible
schedules just from the current schedule, OCS
has a mechanism for providing the appropriate
rules for each job. Since these rules are acquired
in just 103 accumulated steps ' in the case of
without anomalies, OCS 1s effective for practi-
cal and engimeering use.

e Accumulated steps from the current sched-
ule in each anomaly type 1s much smaller than
those from the beginning (even if 103 accumu-
lated steps which are needed for making a sched-
ule in advance are added to the results from a
current schedule). This effectiveness increases
as the number of anomalies increases. Based
on this fact, OCS provides a feasible schedule
quickly in the case of rescheduling. Further-
more, this schedule is easy understandable for
schedulers because most parts in the original
schedule remain.

(2) Reorganization ability of OCS

The following discussions based on Table 4 and Fig.
4 suggest that OCS has a reorganization ability that
keeps or recovers efficiency in tasks.

e Addition makes the truss construction steps in
group A decrease from 232 to 208 steps because
OCS enables an added robot to acquirve the ap-
propriate actions that are used to cooperates
with the five original robots . This keeps the
same task completion rate.

e Removal mmakes the truss construction steps in
group A increase from 232 to 310 steps hecause
one robot is removed. This result can be under-
stood by considering the fact that the truss con-
struction steps increase as the number of robots
decreases. Since an effective division of work

103 accumulated steps can be caleulated in about 3 sec-
onds with a personal computer (Pentium 200M11z CPU).

‘Basically, the truss construction steps decrease as the
number of robots increases. However. this is based on the
asswmption that an added robot never fails to cooperate with
others appropriately.

S—I Group A —
s Group B]
Addition

S0
=050 100 150 200 250
Iteration counts

(a) Addition

ion Rate
>

ple

E0.7]
5]

Oy alGroupa —
= 0.6 Groug E—

—_

(T 0 -
0% 100 150 200 250
Iteration counts

(b) Removal

' Group A —
@ Groug B
Exchange |

+0.5q 100 150 200 250
Iteration counts

(¢) Exchange

T—
208/
sosf OF

Rate

Q
£0.4]
3
Sozf
0

— F= —— TN

o - "
= QSO 100 150 200 250 300 350 400 450 500 550
Iteration counts

(d) Failure & Removal

Figure 1: Four operations

in group A is broken by removing a robot, the
remainiung robots must re-acquire new actions
(which means to shift to a new division of work)
to cooperate with each other agaim. This not
only makes the task completion rate in group A
decrease but also affects hehaviors of group B.
Thus, the task completion rate of group B de-
creases and increases according to the change in
group A.

Exchange does not drastically change the truss
construction steps in group A, because OCS en-
ables the exchanged robots to modify their ac-
tions to cooperate with other groups. This keeps
the same task completion rate.

Failure & Removal make the truss construce-
tion steps m group A increase from 232 to 441
steps due to the same reason as in “removal”.

567

However, the task completion rate of group B re-
covers more quickly than that in the “removal”
case. This is because group A does not shift
the original division of work to a new division
of work due to the unfixed actions of the failed
robot. Thus, the division of work in group B is
not affected much by group A.

However, one may think that OCS is not so use-
ful in terms of fault tolerance because the rate
of group A becomes almost 0 after one robot
fails and does not recover until the failed robot
is removed. However, this rate depends on the
design of the actions of the robots. For example,
robots do not get into the deadlocked situations
mentioned in section 3.2.1 if we design actions
that go back to the station to release a beam or
other actions that move to another place while
a few time. However, we cannot guarantee to
design appropriate and indispensable actions in
advance, especially in space tasks. Therefore,
we must consider cases in which some robot
groups confront unexpected situations, and we
also must consider how other groups complete
the tasks with being affected by those robots
that confront unexpected situations. From this
sense, OCS has the potential to recover the task
completion rate when there are anomalies in
soime rohot groups.

e Truss construction steps in group B does
not change drastically because group B is not
directly operated by the four operations.

(3) Possibility of OCS

In the task of space shuttles, schedulers appropri-
ately assign jobs for each crew. However, there is a
limitation to schedulers for space stations in which
crews from different countries perform many exper-
iments. This is because (1) there are more crew
members on a space station than on a space shut-
tle and (2) experiments can be performed through
24 hours according to the time zone of each country.
This situation obviously causes unexpected anoma-
lies frequently. Even in such a case, OCS proposes
good feasible schedules quickly. Furthermore, crews
sometites want to change constraints like job order
because they know their jobs best, and these kinds
of requirements occur asynchronously. In this case,
OCS also provides this chance just by allowing crews
to set their preferences for job constraints . In par-
ticular, this property of OCS leads to effective coor-
dination between crews and schedulers. At least, the
hard work of schedulers is reduced to some extent.
I addition, cooperation among countries is indis-
pensable in space stations. However, this is often

tFven if crews set their own preferences, OCS does not
always satisfy these because the main aim of OCS is to improve
total {organizational) performance according to the concept of
organizational learning.

568

difficult because (1) jobs for each country are sched-
uled by each country’s scheduler and (2) a sudden
change in schedules affects other schedules, especially
when the same mnstruments are used. Even in such a
cases, OCS provides schedules that recover efficiency
in jobs.

(4) Integration of three components

Although the effectiveness of OCS is shown through
the above discussion, one may wonder if all three
components (“learning mechanisms,” “rule based
systems with evolutionary approaches,” and “mul-
tiagent approaches”) are really needed to prove the
effectiveness. In answer to this question, we have pre-
viously shown the effectiveness of integrating “learn-
ing mechanisms” and “rule based systems with evo-
lutionary approaches” in OCS [Takadama 99a). Fur-
thermore, we have also shown the effectiveness of
a “multiagent approach” integrated with the above
two components. This was done by comparing the
results of OCS with those of a model of the Michi-
gan approach [Holland 78], which is one of con-
ventional models in LCS and which employs the
above two components in a centralized approach

[Takadama 99b].

6 Conclusion

This paper has the explored possibilities of our
organizational learning model and has shown its
rescheduling and reorganization abilities through ex-
amples of the crew task scheduling in a space shut-
tle/station and the task planning for truss construc-
tion with multiple space robots. The main results are
summarized as follows: (1) Our model provides good
feasible schedules quickly in the case of rescheduling,
and it keeps the computational cost for reschedul-
ing low; (2) Plans generated by our model keep or
recover efficiency in tasks when robots are added, re-
moved, or exchanged among robot groups; and (3)
The integration of (a) learning mechanisms, (b) rule
hased systems with evolutionary approaches, and (c)
multiagent approaches is effective in rescheduling /re-
planning problems.

Future research will include an exploration of ef-
fective components, such as the above three proper-
ties, and will investigate their integrated effectiveness
in scheduling and planning domains.

References

[Aarts 89] E. Aarts and J. Korst: Simulated Annealing and
Boltzmann Machines, Jon Wiley & Sons, 1989,

[Argyris 78] C. Argyris and D.A. Schon: Organizational
Learning, Addison-Wesley, 1978.

[Ciohen 95] M.D. Cohen and L.S. Sproull: Organizational
Learning, SAGE Publications, 1995.

[Fujita 96] S. Fujita and V.R. Lesser: “Centralized Task Dis-
tribution in the Presence of Uncertainty and Time Dead-
lines,” The Second International Conference on Multia-
gent Systems (ICMAS’96), pp. 95-102, 1996.

[Goldberg 89] D.E. Goldberg: Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley,
1989.

[Grefenstette 88] J.J. Grefenstette: “Credit Assignment in
Rule Discovery Systems Based on Genetic Algorithms,”
Machine Learning, Vol. 3. pp. 225-245, 1988.

[Holland 78] J.H. Holland and J. Reitman: “Cognitive Sys-
tems Based on Adaptive Algorithms,” in Pattern Directed
Inference Systems, D.A. Waterman and F. Hayes-Roth
(Eds.), Academic Press, 1978.

[lima 99] H. lima, T. Hara, N. Ichimi, and N. Sonnomiya:
“Autonomous Decentralized Scheduling Algorithm for a
Job-Shop Scheduling Problem with Complicated Con-
straints,” The 4th International Symposium on Au-
tonomous Decentralized Systems (ISADS’93), pp. 366~
369, 1999.

[March 91] J.G. March: “Exploration and Fxploitation in Or-
ganizational Learning,” Organizational Science, Vol. 2,
No. 1, pp. 71-87, 1991.

[Osman 96] I.H. Osman and J.P. Kerry: Meta-Heuristics:
Theory and Applications, Kluwer Academic Publishers,
1996.

[Russell 95] S.J. Russell and P. Norving: Artificial Intelli-
gence: A Modern Approach, Prentice-Hall International,
1995.

[Takadama 98a] K. Takadama, S. Nakasuka, and T. Ter-
ano: “Printed Circuit Board Design via Organizational-
Learning Agents,” Applied Intelligence. Vol. 9, No. 1, pp.
25-37, 1998.

[Takadama 98b] K. Takadama, S. Nakasuka, and T. Terano:
“Multiagent Reinforcement Learning with Organizational-
Learning Oriented Classifier System,” The IEEE 1998
International Conference On Evolutionary Computation
(ICEC’38), pp. 63-68, 1998.

[Takadama 99a] K. Takadama, T. Terano. K. Shimohara, K.
Hori, and S. Nakasuka: “Making Organizational Learning
Operational: Implication from Learning Classifier System,
? Computational and Mathematical Organization Theory
(CMOT), 1999, to appear.

[Takadama 99b] K. Takadama, T. Terano, K. Shimohara, K.
Hori, and S. Nakasuka. “Can Multiagents Learn in Orga-
nization? ~ Analyzing Organizational-l.earning Oriented
Classifier System ~,” The 16th International Joint Con-
ference on Avrtificial Intelligence (IJCAL'89) workshop on
Agents Learning about, from and with other Agents, 1999,
to appear.

[Tamaki 99] H. Tamaki, M. Ochi, and M. Araki: “Introduc-
tion of a State Feedback Structure for Adjusting Prior-
ity Rules in Production Scheduling,” Transaction of SICE
(the Society of Instrument and Control Engincers), Vol.
35, No. 3, pp. 428-434, 1999, (in Japanese).

[Zhang 95] W.Zhang and T.G. Dietterich: “A Reinforcement
Learning Approach to Job-shop Scheduling,” The 14th
International Joint Conference on Artificial Intelligence
(1JCAT'95), pp. 1114-1120, 1995.

[Zweben 94] M. Zweben, B. Daun, and M. Deale: “Schedul-
ing and Rescheduling with Iterative Reaper,” In Intelh-
gent Scheduling, M. Zweben and M.S. Fox (Eds.), Morgan
Kaufmann Publishers, Chapter 8, pp. 241-255, 1994.

