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Abstract 

One of the most difficult problem in the designing of plan- 
ning systems concerns the integration of several reasoning 
components like sensing, perception and high level planning 
together with robotics modeling techniques. In this paper 
we present a simulation system for a robotic arm operating 
on a platform of the ISS (JERICO domain). We have de- 
fined a hierarchy of planners at the task, global and local 
level that suitably interact to account for different levels of 
control of the execution of the tasks. The task planner, re- 
alized in GOLOG, utilizes a KB in the Situation Calculus to 
find the sequence of abstract actions necessary to reach the 
goal. The global and local planners expand each abstract 
action into a more refined sequence computing a path in 
the workspace (global planner) and then in the configura- 
tion space (local planner). We illustrate the 3-dimensional 
graphical interface and the robot simulation module and 
how it interacts with the planning system. 

1 Introduction 

One of the most difficult prbblem in designing a plan- 
ning systems concerns the integration of several reason- 
ing components like perception, scheduling, execution 
monitoring and planning together with manipulation 
planning, motion planning and sensing. As McDer- 
mott and Hendler have remarked in their introductory 
paper of the AI-journal special issue on planning [I], 
scaling a planning domain usually yields a set of prob- 
lems that involve a lot of reasoning techniques from 
other fields. In this paper we present a proposal for 
decomposing a manipulation planning problem into a 
hierarchy of planners and integrate them with a 3D- 
visualizer. The idea of adopting a hierarchy of models 
has been also investigated by Cameron [5]. The nov- 
elty of our approach relies on the fact that  we use a 
symbolic model of the domain for the task/high level 
planner as opposed t o  the geometrical model of the 
workspace used for the low level planners. The ad- 
vantage of a hierarchy of planners is manifold. Here 
we quote only two aspects: computational complexity 
and modularity. For the first aspect consider that the 
domain independent planning problem is in general un- 
decidable; however under certain restrictions like when 
there are no function symbols and only finitely many 

constant symbols then planning is decidable and its 
computational complexity varies from constant time 
to EXPACE-complete [6].  On the other hand plan- 
ning a manipulation path t o  bring the movable objects 
to  their specified goal location is PSPACE-hard 121). 
Now, for planning, most of the complexity is to be 
found in the way preconditions for actions are formally 
represented while for manipulation - and in general 
motion - planning it is to  be found in the geometri- 
cal representation of the workspace and in its dimen- 
sion. Keeping the geometrical model of the workspace 
separated from the symbolic model of the domain is 
thus necessary to  avoid an increase in complexity on 
both the planners. Another advantage of the hierar- 
chy is modularity. Local planners depend on a partic- 
ular robot, on its linkages, joints, degree of freedom, 
while global and task planners can be both formulated 
independently from the specific structure of the ma- 
nipulator. Therefore, under a suitable decomposition, 
the same task and global planners can be adapted to 
several manipulators. 

The paper is organized as follows. In the next sec- 
tion we introduce some preliminaries just to  specify the 
notation. Then we present the hierarchical planner de- 
composed into task, global and local planners and we 
discuss some example in the literature that use an anal- 
ogous hierarchy. In Section 4 we introduce the sym- 
bolic model formalized in the Situation Calculus and 
the way primitive and complex actions are managed 
via the axiomatization and the programming language 
GOLOG. In Section 5 we discuss the geometrical model 
of the workspace in which all objects are assumed to 
be convex. We then introduce the global planner and 
its interaction with both the task and the local plan- 
ner. In Section 6 we introduce the local level problem, 
the module taking care of the robot kinematics in the 
configuration space together with the graphic module 
that simulates the robot executing the complex tasks 
required to  achieve a goal. Finally we address some 
further issues that we have not included in this presen- 
tation. 

- -  - 
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2 Preliminaries 

In most part of the paper we refer to  the Situation 
Calculus [16, 81, a first order language with sorts. The 
three disjoint sorts are: action for actions, situation for 
situations and object for everything else depending on 
the domain of application. We refer the reader to  the 
literature, e.g. [17], for a detailed presentation of the 
alphabet of L,,t,,l, and for the metalanguage adopted 
to denote terms and formulae of the language. The 
alphabet includes relations and functions called Flu- 
ents. because their truth value depends on the history 
of actions performed by an agent: a history, like 

is designated by a situation s .  A situa- 
tion s is the last argument of Fluents, e.g 
Handle(payload5, do(pickUp(payload5, So)), where 
s = do(pzckUp(payload5, So). The Situation Calculus 
is a powerful basic axiomatization for representing 
dynamic domains. We define a basic theory of actions 
to be a set of axioms describing the preconditions for 
each action that can be deal$ with by an agent,via 
the Action Precondition Axioms, the effect of each 
action via the Successor State Axioms and the initial 
situation that we call Ds,, in which no action, relative 
to the current task, has been executed. 

E x a m p l e  1 Consider the following fluents: 

inContainer(p,  n ,  s )  : 
payload p is in nest n in situation s 
locked(n, s )  : nest n is locked in s 
posititm(pos, s )  : 
end-effector is in position pos in s 
holding(ob3, s )  : 
end-effector is holding the obj in s 
posPlat(pos, s )  : position of the mobile platform 

And the following primitive actions: 

goto(pos) : move to the pos position - - 

lock the nest 

unlock the nest 
extract the object (if it exists) 
contained in nest 
insert the object (if the arms is 
holding something) in nest 
move the mobile platform 
to the specified orientation 0 

An initial situation So can be defined in this way: 

locked(nest1, So) 
73p(holding(p, So)) 

Actions precondition axioms for each primitive action 
have the form: 

Poss(lock(nest), s )  z 
position(handle(nest), s )  A -dx(holding(x, s))A 
~ locked(nes t ,  s) 

Successor State Axioms for each fluent have the form: 

locked(nest, do(a, s ) )  - a = lock(nest)V 
locked(nest, s )  A a # vnlock(nest) 

Complex actions can be dealt with via the program- 
ming language GOLOG [15] (alGOL in LOGic), whose 
declarative semantics is given in the Situation Calculus. 
GOLOG is a logic-programming language which, in ad- 
dition to  the primitive actions axiomatized as specified 
above, allows the definition of complex actions using 
programming constructs which are like those known 
from conventional programming languages like condi- 
tionals, iteration, procedures. 

What is special about GOLOG is that  the meaning 
of these constructs is completely defined by sentences 
in the Situation Calculus. For this purpose, a macro 
Do(p, s ,  s') is introduced whose intuitive meaning is 
that executing the program p in situation s leads to 
situation s'. Here we provide some sample definition 
needed for Do. See [15] for the complete list. 

Do(A, s ,  s') = Poss(A, s )  A s' = do(A, s ) ,  where A is 
a primitive action. 
Do(if q t h e n  pl else p2 endif,  s ,  s ' )  - - 

Do([(cp?; p1)l(-P?; PZ)], s ,  s') 
Here cp is a formula of the Situation Calculus with 

all situation arguments suppressed. 
For specific sections of the paper we assume the 

reader familiar with basic robotics terminology, we re- 
fer to [ lo] for a full introduction. We recall that a 
Configuration is a mathematical specification of the 
position and orientation of every body composing a 
robot, relative to  a coordinate system. The configura- 
tion space C is the set of all configurations of a robot. 
The configuration space has dimension m ,  where m is 
the number of the degree of freedom (dofs). The num- 
ber of dofs of a robot arm is equal to  its number of 
joints. We denote by' Cob] the configuration space of 
the object Obj. 

3 The Hierarchy 

Consider a manipulator, a 6 or 7 degree of freedom 
robot arm working on a platform where there are pay- 
loads installed in nests and locked. An action like 
pickUp(payload5) can be considered a primitive one, at  
the level of abstraction a t  which we are used to think 
about simple actions. On the other hand, pi'cking up 
the payload may require a huge amount of simpler ac- 
tions like verifyinn whether the payload is really reach- - - - - 
able, where it is, and thus moving t o  the payload posi- 
tion - avoiding all the obstacles - unlocking the handle 
of the nest where the payload is installed, rotating the 
end-effector once or twice so as to  rotate the payload 
for detaching it from the nest and finally pulling the 
payload out of the nest. 

Now, we are still missing something: each of the 
more detailed actions in which pickup has been decom- 
posed actually refers only t o  the end effector. In fact, 



we have to consider the whole arm, which is a collec- 
tion of bodies, connected by joints, having constraints. 
These constraints have to  be satisfied in the space of 
all the configurations that the robot arm can assume, 
while passzuely following the end-effector. What we 
have just described is the  simplest and natural hier- 
archy that a manipulation planning problem requires. 
The hierarchy we are proposing decomposes the plan- 
ning problem into different abstraction levels allowing 
to manage challenging domains both from a concep- 
tual (logical) point of view and from the geometrical 
and dynamical ones. Examples of three layered archi- 
tectures can be found in [13], where successful mobots, 
developed with the P-SA approach, are described. In- 
teresting examples are RHINO [18] and S a p h i r a  [14]. 
The upper level of these systems requires a Task Plan- 

E x a m p l e  2 Consider the domain JERICO (Joint Eu- 
ropean In-Orbit Calibration and Operation) defined for 
the Russian segment of the International Space Sta- 
tion, see Figure 1. Given an initial configuration of 
the payloads, locked in their nests, and an initial con- 
figuration of the exchange terminal and the pointing 
platform, the agent - the robotic arm - has to  re- 
orient the pointing platform and move the payloads 
from their nests to other nests by turning the nest- 
handle to unlock the payload, transferring them to the 
required nest, eventually using the exchange terminal, 
turning the payload to insert it in the nest and finally 
locking the handle. Observe that to remove or install a 
payload into a nest the agent has to ungrasp the handle 
and regrasp it such that it can be rotated. 

lltbr bur t l ~ t .  Iuwer levels are usually reactively man- 
I I'tiis i~ possible br iauje  the robots cor~sidertd 
;ire. 111volvt~1 i l l  tasks in which low It.vel t ~ e h a v ~ o r  c;in 

tfri\.c,~i on-lrnz. 111 general, however, for rnanipul,i- 
11011 ~ ) l , lnn in~ ,  where rotlots arms are iiivolvcti. off-lint. 
~)l . innir~g ; i t  t.ach level is required. 

Task level \Vt. consider an nutononlous agent ~ ) o t t ' ~ ~ -  
r ~ ; i l l  ; i t ) lc ,  to :ic.hievc. any cornplex task like tl(*livt+~ig 
Iiot coffw in ;III office. cooking pasta ancl scrvlnt; i t .  

lnoving any number of blocks on a table so as to form 
any sophisticated shape [17]. All these con~plex tasks 
are potentially achievable as far as we are concerned 
with a symbolic model of the world, taking care of the 
causal laws governing preconditions and postconditions 
o f  each primitive action, together with a suitable solu- 
tion to the frame problem [16]. A solution to the frame 
problem specifies what in the domain has been changed 
and what remains unchanged after the execution of an 
x t i o n .  Tasks and goals a t  this level are formalized us- 
ing a domain theory and a basic theory of actions (see 
Section 2 above) that provides, for each primitive ac- 
tion that  can be executed, i.e. whose preconditions are 
satisfied, a full description and formal characterization. 
Complex actions can be obtained by composing prim- 
itive actions in the programming lznguage GOLOG. 

At the Task level the preconditions to any control 
action already en-globe a solution to  the problems of 
controlling the real forces applied to  the end effector, 
of finding a free space for the path needed to execute 
the action, and of a transfer path for correctly manipu- 
lating the objects. In other words any action executed 
a t  the task level can  be executed because all the space 
problems have already been solved. As the formaliza- 
tion relies on this assumption, a t  the task level each 
primitive action can be considered as an idealized rep- 
resentation of the physical world and the agent as a 
free-flying object. 

The role of the task planner is t o  give the agent the 
postulates to  reason about the domain and to coordi- 
nate her actions in an intelligent behaviour so as to 
achieve the required goals. 

Figure 1: Jerico domain 

The Task planner provides us with very interesting 
off-line plans that can also take into account sensing 
and perception. 

Globa l  level In Latombe [12] a manipulation path is 
defined as an alternating sequence of t ransi t  and trans- 
fer paths that connect an initial configuration q , , , , ~  to 
a goal configuration q,,,,. A transzt path is an arm's 
motion that does not move any object. A t rans fer  path 
defines an arm's motion tha t  does move an object. In 
our hierarchical model, actions are executed only at 
the task and global level, therefore transit and trans- 
fer paths are defined a t  the global level. The global 
level is formalized within a geometrical model of the 
agent workspace in which both the agent and objects 
are assumed to be convex. Objects in the workspace, 
including the robot end effector are represented within 
particular bounding volumes called cylspheres [9], that 
is, cylinders with semi-spheres of the same ray of the 
cylinder added on top, see Figure 2. 
The global level takes care of computing a manipula- 
tion path - free from collision - for the end effector from 
an initial situation Si to a final situation SiOa, that 
satisfies the postconditions of a given task action a .  In 
other words, given a task level action a ,  the global level 
expands such a single action into a sequence of manipu- 
lation actions [ m a l , .  . .ma,] that satisfy the geometri- 
cal constraints of the workspace, that is, avoids the ob- 
stacles and correctly manipulate the movable objects. 



Figure 2: A cylsphere bounding the end effector 

The role of the global level is to ensure that all the 
preconditions required to execute action a - within the 
workspace - are satisfied. Our strategy uses Latombe 
idea [ll] consisting in representing the end effector as 
having a dynamic shape that changes together with the 
objects it is manipulating; see Figure 3. 

Figure 3: The end effector shape depends on the object 
is manipulating. 

We formalize the geometrical model also in the Sit- 
uation Calculus. 

Example 3 Suppose the task level has delivered a se- 
quence of actions [a l , .  . . , a,] and its present situa- 
tion is s. Suppose also that a t  situation s the ac- 
tion a = pickUp(payload5) has to be executed, the 
task level queries the global level to verify whether 
the geometrical preconditions for a to be executed are 
satisfied. The current situation s is transformed into 
the global initial situation Sz, which is the start sit- 
uation for the global planner. A sequence of actions 
[mal, . . . , mak] is then computed by the global plan- 
ner and are such that the situation sg reached by the 
execution of these actions satisfies the postconditions 
of pickUp(payload5). 

Local level The local planning step manages the 
whole structure of the arm, namely its end-effector, el- 
bow, joints etc. The local planner makes a constrained 
search in order to  achieve a safe path for each joint. 
The movements to  which the arm is committed are 
strictly dependent on local information. 

Planning a t  this level can be done in several ways. 
A variable that influences the local planner architec- 
ture is the grid step used in the global planning phase. 
In particular, if this step is small then a ONE-SHOT 
planner it is needed [ll] that reaches directly a final 
position for the robot avoiding collisions. Otherwise, if 
the step is large, a more powerful planner [3,5] is neces- 
sary that produces intermediate configurations for the 
arm. 

Our local planner belongs to the category of ONE- 
SHOT planners that are based on inverse kinematics 
algorithms. These algorithms iteratively calculate a 
final configuration starting from an initial one and a 
final position for the end-effector. The module that 
calculates the inverse kinematics is the same used by 
the simulator. 

Discussion Our architecture is close to the idea de- 
scribed in [5], although our Task level is far differ- 
ent from the one proposed by Cameron as we use a 
symbolic model formalized in the Situation Calculus. 
Cameron' s view is to split between tactical knowledge 
(Task and Global levels) and geometric (Global and 
Local levels). We agree that the Cameron's structure 
has several advantages: the decomposition came natu- 
ral in solving the manipulation and planning problem, 
the planner is easier to understand and to  modify and 
eventually to adapt to  a new domain or to upgrade it. 
Our system has developed the Task layer, that in the 
Cameron system is considered as a marginal aspect of 
the architecture, and its connection with the Global 
level (consistency between the two representation and 
communication between the two modules). In addi- 
tion our Global Planner is developed as an interface 
between the logical representation and the geometri- 
cal one. Our representation of the word is mixed: the 
metrical representation is connected to a Knowledge 
Base that allows, when necessary, to perform some 
spatial reasoning. At the local level the system pro- 
posed by Cameron uses an approach based upon virtual 
forces whilst we have used a kinematic approach. The 
Global-Local interaction therefore is similar to the one 
described in [3] where Local planning consists in spe- 
cial inverse kinematic algorithm and Global planning 
is developed using RPP. 

4 The Task planner 

At the task level, we define a basic theory of actions 
representing the virtual attitude of the agent to reason 
about the domain. A sequence [al , .  . . , a,] of actions 
that the agent executes a t  this level leads the agent into 
a situation s. Ln s the domain has been transformed by 
the actions executed by the agent. The transformation 
is witnessed by the truth values of the fluents. When 
the language is suitably restricted, the set of fluents 
(FI  (s),  . . . , F,,(s)) which are entailed by the basic ac- 



tion theory, at  situation s ,  is a state that will be used 
to interact with the global and local levels. 

Following Green [7], given a set of conditions on the 
domain that has to  be satisfied and which we call a 
Goal, a plan is any sequence of actions [a l , .  . . ,a,], 
whose preconditions are satisfied and are such that in 
the situation s = [al , .  . . ,a,] the Goal is verified. For- 
mally, if D is a basic theory of actions, as we defined in 
the preliminaries, and Goal is a set of conditions, we 
require that: 

In the Situation Calculus, since the preconditions for 
each action are suitably axiomatized the above defini- 
tion implies that s is a plan whenever 3sGoal(s) is a 
theorem of the basic theory of actions. In particular, 
given an initial domain specification Ds,, if VSo is a 
complete theory about the initial situation, it is always 
possible to  determine whether there exists a situation 
s = [al ,  . . . , a,] in which the Goal is satisfied and such 
a situation, if it exists, can be constructively given via 
any sound and complete deductive method. 

The axiomatization of the situation calculus ensures 
that the search space is a tree rooted in So. Starting 
from the initial situation, the Task Planner searches for 
a sequence of actions that leads to a situation where the 
goal is satisfied. The search is driven by an heuristic 
that can be well defined using the expressiveness of the 
language: the heuristic is described in the Situation 
Calculus as well, using the fluents introduced for the 
basic theory of action, that express both the knowledge 
and the meta-knowledge. 

Following the approach of [2] we use a domain spe- 
cific knowledge t o  control the search of a forward chain- 
ing planner. To this end we have introduced two special 
fluents: badSituation(s) [17] and sugg(a, s') that indi- 
cates respectively: a situation s in which it is not useful 
to search the goal and the action a that is suggested in 
the situation s'. For example: 

An interesting property of this planner is that it 
represents a compromise between deductive planning 
and planning as a search process. The Task Planner 
is implemented as a GOLOG procedure that searches 
for a plan in the space of situations. If a sequence 
[a l , .  . . ,a,] satisfies the Goal then it is accepted as 
the plan. 

The Knowledge Base can be easily implemented 
as a PROLOG program. In the case of a complete 
representation of the domain, it is possible to exploit 
PROLOG as a theorem prover (in this case negation 
as failure is valid), otherwise (see Open Word Golog 
in [17]) it is necessary to  use a theorem prover ad 
hoc developed for domains written in the Situation 
Calculus. The GOLOG interpreter is written in Prolog 
as well [17]. 

Developing a Task Planner in GOLOG has sev- 
eral advantages. With this language it is possible to 
exploit properties like: quick prototyping, expressive- 
ness of the KB, integration between knowledge and 
meta-knowledge, integration between procedural and 
denotational way of programming using automated 
reasoning just when it is strictly necessary. These 
features are very important: GOLOG is a procedural 
language that can directly use the Knowledge Base to 
deliberate when it is needed. In this way, during the 
execution of the program, it is possible to access the 
Knowledge Base testing the validity of some property, 
but also to control the execution by explicit meta-level 
knowledge (in our case the heuristics defined by the 
fluents badSituation(s) and sugg(a, s )  ). Therefore 
with our GOLOG planner the trade-off between ex- 
pressiveness of the Knowledge Base and computational 
complexity of the planning task is addressed finding 
a way between writing a high level control program 
(that is the classical GOLOG approach (151) and 
developing a backward search planner. 

badSituation(do(goto(x), do(goto(y), S) 5 The global planner and the ge- 

The above statement cuts out all situations in which ometric domain 
the end-effector moves toward a position and then 

Objects and the end-effectors are represented by par- moves away without accomplishing any task in the sit- 
ticular bounding-volumes called cylsphere [9]. A cyl- uation where she arrives. On the other hand a sugges- 

tion can be defined as follows: sphere is just the 3D projection of a segment and its ge- 
ometrical structure is defined by the centers of the two 

s~gg( inser t (payload(~) ,  nest(x)), s )  semi-spheres and by the ray common to  the cylinder. 
t goodZnCmt(payload(y), nest(x)) A basic volume of this kind is well specified using two 

points and a ray. As we observed above we represent 
here, goodInCont is a predicate that is true iff the the end effector as a cylsphere of varying dimension, 
payload y must be in the nest z in the final configu- depending on the payload carried in the transfer part 
ration. This formula suggests to  insert a payload in of the manipulation. 
a nest ( when it is possible ) that must contain that The distance between two cylsphere can be reduced 
payload in a final configuration. to  the distance between two segments. The distance 

point-segment is defined along the perpendicular to the 
line, to  which the segment belongs, passing through the 



point. P. 

M = Pl + A t  

with A = (P2 - Pl)/IIP2 - PIII the verse of the line 
and P I ,  P2 the extreme points of the segment. Once 
the parameter t is known, the distance d is: 

The distance between two segments is always defined 
on the perpendicular t o  the line to  which the segment 
belongs but one has t o  take care of problems like com- 
planarity and parallelism. The  distance between two 
cylspheres is defined accordingly. In fact it results from 
the distance between the segments defined by the ex- 
tremes of the solids t o  which the value of the rays has to  
be subtracted. A function Bbox applied t o  any object 
in the geometrical model will give back the bounding 
volume of the object as a cylsphere. The  geometrical 
model is also axiomatized in the Situation Calculus, 
but the domain objects denotes only the reals. To cap- 
ture the relations between objects we define a hierarchy 
similar to  the one adopted for graphical applications. 
Each object is represented using two parameters: the 
distance between vertices and the ray and a transfor- 
mation function involving the ancestor nodes in the lii- 
erarchy. A functional fluent Edge(x, y, sg) represents 
the geometric transformation of x w.r.t. y in the geo- 
metrical situation s9. 

IlnkedlB.C.UIO.e.f.90.90.0ll 
Figure 4: The  object hierarchy 

Movable objects are simply linked to  the nests 
frames, according t o  the current task state. A subset 
of the objects that  could be considered as obstacles for 
the manipulator is defined as a state,  that  is, a t  a given 
situation s each object is described in terms of the coor- 
dinates of its cylsphere; see Figure 4). The  exploration 
starts from the node specified and goes back towards 
the root applying all the  transformation encountered 
t o  the cylinder-sphere contained in the starting node. 

Global planning means searching for a manipulation 
path of the end effector as if it will be free from the 
rest of the body. T h e  global planner generates a 
sequence of wrist positions and orientations so that  
the end-effector shall avoid obstacles and reach the 
final task. 

The search algorithm proposed is a special trans- 
lation of A* driven by a heuristic that  minimize 
the straight-line distance between the current state 
and the goal one. The expansion step takes care 
of the current arrangement of the end-effector and 
of the payload carried. represented with their own 
cylinder-sphere, and avoids all states that  generate a 
collision in the environment. 

Each orientation of the end-effector comes from an 
interpolation between the initial and the final orienta- 
tion desired, re-calculated a t  each iteration of the A* 
algorithm. See Figure 5). 

Figure 5: 

To improve efficiency, we introduce a grid in the 3D 
space whose step-size is determined by the complexity 
of the world where the manipulator acts. A large step 
decreases the number of moves needed t o  reach a goal 
state,  but could generate a non collision-free path be- 
cause it doesn't tBke care of obstacles that  lie between 
two adjacent positions. On the other hand a small step 
increases the resolution, but also the number of steps 
required to  reach the goal. For this reason we define 
a variable step that can be defined a t  the beginning of 
the computation according t o  the complexity of the en- 
vironment. The global planner has been implemented 
in Prolog. 

6 Local Planner 

The  role of the local planner is to verify and refine the 
manipulation plan delivered by the global planner. At 
this point some paths may by found t o  be impossible; 
in such a case the global planner has to  find alternative 
solutions otherwise the task planner has t o  re-plan. 

T h e  local planning problem, in our hierarchical 
structure, is defined as follows. A configuration C,Jbj is 
generated by the state of the global planner defined a t  
situation s. A state is the vector < pl ( s )  . . . p , ( s )  > 
of all positions and orientations of the objects in the 
work space a t  the situation sg, that  is the current ge- 
ometrical situation of the global planner. The con- 
figuration CI-, is the subset of the work space occu- 
pied by the end-effector and generated by the state 



.: y ~ ( s ) .  . . P , ~ ( s )  >, where q l ( s ) .  . . qn(s )  are the posi- 
tlons and orientations of the cylindersphere bounding 
the end-effector and eventually the  object. it is manip- 
ulating. 

Given C and C:-, and a sequence of actions 
[ma1 . . .ma,,  executable a t  the  global level and a se- 
quence of states associated with situations s l  . . . s,,, the 
problem is to find configuration spaces C1 . . . C,,, where 
!', is the set of all configurations of the robot arm and 
ol)ject,s a t  the state < p, ( s )  . . . p,,(s) , ql (s) . . . q,,, ( s )  >, 
such that  there exists a collision free path for the whole 
,rrnl for tsecuting [ m a l  . . . m a n ] .  Observe that  since 
' r i l c l i  . . r r m , , ]  is a coarse expansion of n task action 
( I .  in or-tlcr to find a manipulation sequence, collision 
f r w ,  for the end effector, any subset of [ m a l  . . . ma,,] 
%at isfy ing the preconditions and postconditions or any 
sequence of configurations for a ,  a t  the  geometrical 
r~iodel, would be accepted. To solve the local planning 
~)roI)ler~i  wc have used an inverse kinematics algorithm 
h s ~ d  on the' coniputation of the transpose of the .la- 
( ol)i;u, 111atri.u [19]. 

The rnethod relies on the linear relationship between 
c<ntl-effector and joint velocities; it was early introduced 
i lv  LVolovicli and Elliot [20]. Sciavicco Siciliano in [19] 
;~pplied the method to redundant manipulators and 
:>howed that  the redundant degrees of freetlonl could 
Iw r~sed to satisfy both obstacle avoidance constraints, 
, m r i  constraints on joint ranges of motion. 

T h f .  niethod works as follows Cons~r le r~ng  n com- 
i ) c ~ ? ~ t t ,  for( t, E' app l~ed  to the end-effector thlz tutc>rr~al 
forcr. wlll rtsult In Internal torques and forces at  the 
~oil i ts  7 he relatlon between F and the ~nterl ial  forces 
- h~ written as 

T l ~ i s  suggests an iterative method for forcing the 
c~nrl-c,ffcc.tor to track a time-varying traject,ory s , i ( t ) .  
I f  the. clirrt.nt, end-effector position is x , - ( t ) ,  then the 
('rr or I I I V L S U ~ V .  

r a n  l ~ c  thought of as a force f pulling the end-effector 
toivnrtl the desired trajectory point x d ( t ) .  From this 
forrr wc, car1 calculate the joints velocities q ' .  

A srngle integration step yields a new vector y which 
rnoves the end-effector towards x d ( t ) .  This procedure 
repeats until the end-effector reaches the  desired posi- 
t.ion, or some other stopping condition is met.  

The rnet,hod ensures that  only forward kinematic cal- 
c-lrlation is required and in general problems with ma- 
trix singularities are avoided. Their occurrence can be 
overcome using an  integration method with an adap- 
t ntivv step-size. 

'The local planner has been implemented in JAVA. 

7 The graphic Interface 

Figure 6: Graphical interface 

The three-dimensional user interface allows to rrl;rli- 

age in a visual and friendly way the operations rtq~liretl 
by the robot arm during the execution of the tasks. 111 
particular the user can perform the following optxr;L- 
tions. 

1. O1)serve the evolution of the scene in n r v i r i r l ~ ) i v  

visualizing the 3-D animation of 110th tlif. robot 
and t,hc object it is manipulating. 

2 .  Observe the state of the robot on sorrle pnncls 111 

which there are information about end-cffcctor po- 
sition anti orientation, joints angles, ~ t c .  

2. Manually interact with the robot arm spt>cifyirlg 
a final configuration for thc arm:  joints ar~glcs. 
entl-effector position, hand opening etc. 

4. Writing a program to accomplish a specific t x k  

5. Graphically define a final scene configuration in 
terms of payload dispositions in nests, or nests m t l  

platform orientations. 

The actual scene is represented in a window and t l ~ c  t i -  
nal one is obtained modifying this scene by the rnorrsc,. 
The final configuration activates the planner that  ~ ) r o -  
duces a program directly executed by the robot simw 
lator 

8 Conclusions 

We have presented a modular decomposition of a plan- 
ning system for a manipulator. We have integrated 
our system together with a simulator and a graphical 
interface. We have developed the system with condi- 
tional plans and perception. The modularity allows to 
take care of both perception and spatial reasoning. We 
are now concerned with the run-time behaviour of the 
planner and with execution monitoring. 
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