709

SYMOFROS: A Flexible Dynamics Modeling Software

J.-C. Piedboeuf

M. Dovon

P. Langlois

R. L’Archeveque

Space Technologies. Canadian Space Agency,

6767 route de I’Aeroport, St-Hubert. Quebec, Canada
tel: (514) 926-4688, fax: (514) 926-4695 email: Jean-Claude.Piedboeuf@space.gc.ca

ABSTRACT

This paper describes the modeling of mechanisms
in tree topology with closed kinematic loops and
non-holonomic constraints. The dynamics equations
are built using Jourdain’s principle. The kinematics
and the dvnamics are developed recursively to op-
timize the model. The method is implemented in
the modeling software SYMOFROS using the sym-
bolic language Maple. The recursive procedures of
Maple are used to obtain an efficient model gen-
eration. The model generated is totally symbolic.
From that model, a C model compatible with Mat-
lab/Simulink is generated. A graphical user interface
has been developed to simplify the data input by the
user. The objects are chosen from a library and the
mechanism is build by linking the different objects
together. Many system parameters can be fixed in-
teractively.

1 INTRODUCTION

Canada is currently developing the Mobile Ser-
vicing System (MSS) that will be used to build and
maintain the International Space Station (ISS). The
VSS consists of a mobile base on which is mounted
a large manipulator with seven actuators called the
space station remote manipulator system (SSRMS).
At the tip of the SSRMS, two smaller arms are at-
tached on a rotating joint. This second assembly
is called the special purpose dextrous manipulator
(SPDM). Each arm has seven actuators. The SS-
RMS is 17 meters long and has flexible joints and
links. The SPDM is 3.4 meter long and has flexible
joints. A simplified model of the complete system
includes 22 rigid degrees of freedom (dof} and more
than 30 flexible ones.

In a typical maintenance task, one of the SPDM
arm will grasp a stabilization point creating a closed
kinematic loop. The other will be used to remove
and replace a part on the station. Therefore, the
contact dynamics of the system must be understood.

The MSS system is quite complex but this com-
plexity is typical of many existing mechanisms. In or-
der to improve a design, to develop control, or to sim-

Proc. I'ifth International Symposium on Artificial Intelligence,

Robotics and Automation in Space. 1-3 June 1999 (ESA SP-440)

ulate a system, dynamic models are required. These
models can be obtained through a variety of meth-
ods: Newton-Euler, Lagrange, d'Alembert, Kane.
These methods can be applied using purely numer-
ical approaches or using symbolic computation. In
the second case, the model is generated symbolically
and can be used for simulation or control.

In the past twenty years, the Canadian Space
Agency (CSA) has developed several modeling and
simulation tools for off-line and real-time simulation
of space manipulators. These modeling programs are
hased on a recursive Newton-Euler approach imple-
mented numerically [1]. The real-time version is cur-
reutly used for astronaut training for the future mis-
sions related to the ISS.

In the last few years, CSA has explored symbolic
computation to model flexible manipulators. Sym-
bolical programs such as Maple or Mathematica per-
mit manipulation of symbols. Therefore, the dy-
namic model can be generated prior to the simulation
and symbolic approaches should be more efficient for
siimtlation. By contrast, in a purely numerical ap-
proach, the dynamic model must be re-created at
each integration step!.

In this regard, we have developed a general pur-
pose program based on Maple: SYMOFROS [2].
The current version is able to model manipulators in
tree topology with flexible links and joints and with
closed kinematic loops. The model is developed us-
ing a recursive Jourdain approach and the foreshort-
ening of the flexible link is included [3]. SYMOFROS
has been used extensively to simulate and control ex-
perimental robots with flexible links and joints. It
has also been used to develop simulation models of
more industrial robotic applications. It is available
on a multitude of platforms and is suited to real-time
applications.

In this paper, we will go over SYMOFROS, start-
ing with the graphical user interface, the model
generation, the C implementation and the mod-
eling done in the Matlab-Simulink environment.
SYMOFROS (Fig.1) is a modeling and simulation
tool based on Maple for the symbolic model genera-

'For real-time applications, parts of the model are assumed
constant for a few steps.

710

MATLAB &
SIMULINK

S

MAPLE

el

MATLAB
Interface
2y
SIMULINK
NRT Simulation

SIMULINK RT MATLAB &
SIMULINK

WORKSHOP

Parallel Processor
RT Simutation

Figure 1: From a System to a Real-Time Simulation

tion and on Matlab/Simulink for the graphical user
interface (GUI), the simulation and the real-time im-
plementation.

2 SYSTEM DESCRIPTION

One of the main difficulties in the development of
a general purpose program for modeling is the rep-
resentation of a system. This representation should
be flexible enough to allow modeling of different sys-
tems easily. It should allow the addition or removal
of an object without having to redefine all the struc-
ture. It should also allow the creation of a library of
manipulators or parts of manipulators that can be
re-used in creating new models. The development
of a good GUI is closely linked to an adequate de-
scription of the system topology. The main difficulty
is the processing of the different branches and the
closed kinematic loops.

In SYMOFROS, we choose an object-oriented ap-
proach to describe a mechanism. The two main ob-
jects are: generalized body and closure. In Figure 2
a general system is described using these two objects.
A generalized body is composed of a body (rigid or
flexible) and a joint as illustrated.

) ™~
Extremity Extremity
Flexible Riyid Body
Beam
Rigid Body
Kinematic
Closed-Loop

/
i
W Flexible Beam

Extremuty

Figure 2: A Tree Structure with Closed-Loop

2.1 Body: Rigid and Flexible

The geometric properties of a rigid body are de-
fined by giving the relationships between the extrem-
ity frames and the body frame (Fig. 2). Any number
of extremity frames can be defined. The required in-
formations are the rotation matrices R”/ (from frame
i to frame bf) and the position vectors r,,,; (origin
of frame 7 with respect to the origin of frame b f}.

For a rigid body, the center of mass frame is added
to define the inertia parameters. This frame is de-
fined with respect to the body frame by a rotation
matrix R?, and a position vector r.,,/»;. The in-
ertia parameters are the body mass and the inertia
matrix. This matrix can be defined either in the
body frame or in the center of mass frame.

For a rigid or a massless body, external forces and
torques acting either on the body frame or on the
center of mass frame (for a rigid body) can be speci-
fied. For the rigid body, it is also possible to specify
a reduction ratio to represent the gyroscopic effect of
the rotor of an electrical motor connected through a
reducer.

A flexible body is defined as a flexible beam. Only
one extremity frame can be defined because an ideal
beam is slender. The only geometric information re-
quired is the beam length. The rotation matrix and
the position vector between the body frame and the
extremity frame are computed by the program. The
beam foreshortening is taken into account so beam
stiffening is included in the model.

A flexible beam can have deformations in bend-

ing in two perpendicular directions, and in torsion
around the longitudinal axis. The beam deforma-
tions are represented using an extended assumed
mode method [4]. The user needs only to supply the
number of modes that are used for each direction.
Zero modes in a given direction is equivalent to as-
sume a rigid beam in that direction. The default
shape functions for the assumed modes are spline
functions but any other assumed modes can be cho-
sen from a library of functions. The beam’s internal
damping is represented using a Voigt-Kelvin model.

External forces and torques can also be specified
for a flexible beam. The external forces are applied
on the centroid of the beam sections. They are inte-
grated along the beam axis during the construction
of the equations of motion.

The rigid bodies do not have any internal degrees
of freedom (dof). Flexible beams have internal dofs
to represent the beam’s flexibility. The relative mo-
tion between bodies is represented through the joints.
They contain all the rigid body motion dof.

2.2 Joint

A joint is characterized by the relationship be-
tween the proximal frame and the distal frame
(Fig. 2). The rotation matrix R} and the position
vector rqy, must be provided by the user. A joint
can have from zero (constant rotation matrix and
position vector) to six dof. This implies that all the
different joint types can be represented.

The internal forces and torques between the bod-
ies are specified in the joints. These forces can repre-
sent the motor torque, the elastic torque of an elas-
tic joint or the damping force. The internal forces
are represented by giving their work function. From
that work, the program can compute the generalized
forces associated with each generalized coordinates.

2.3 Closed Kinematic Loops

If a closed kinematic loop exists, the closure con-
ditions must be specified. The closures are applied
by connecting two extremity frames. One of the two
frames is chosen as the reference frame to specify
the closure conditions. The user indicates the direc-
tions in translation and in rotation along which the
motion is not permitted. Closure equations are gen-
erated by SYMOFROS, along with the constraints’
jacobian matrix and the non-linear terms of the con-
straints’ second time derivative. This allows easy
implementation of kinematic constraints through La-
grange multiplyers. Since this approach imposes the
constraints at the acceleration level, Baumgarte sta-
bilisation is possible for enhanced stability at the po-
sition and velocity level.

711

Library

Control Panel

Figure 3: SYMOFROS Interface

2.4 System Parameters

In addition to the body, joint and closure descrip-
tions, the system parameters, the generalized coordi-
nates and the input variables must be specified. The
generalized coordinates are specified only for rigid
body motions, i.e., the joint variables. The coordi-
nates associated to the beam flexibilities are defined
by the program using the number of modes fixed by
the user.

The user has also the possibility to give some gen-
eral flags to determine how the model will be eval-
uated. For example, it is possible to linearize the
model around a point or generate the equations re-
quired to compute the energy. It is also possible to
specify non-holonomic constraints.

The gravity can be specified for the complete sys-
tem by defining it on the base body. Only one base
body can be specified for a system. The body frame
of the base body is equivalent to the inertial reference
frame.

3 THE GRAPHICAL USER INTER-
FACE

SYMOFROS is based both on Maple for the code
generation and on Matlab-Simulink for the simula-
tion. The code generation requires four text files
that contain the complete information describing
the robotic system. This information includes the
model’s topology, the bodies’ symbolic description,
the joints’ symbolic description, the numerical values
and the different paths. These files, being read by a
program, must have a specific format and must be
flawless. Although some expert SYMOFROS users
are able to type in the information on their own,
most beginning users are not and rely on the graph-
ical user interface (GUI).

The GUI is based on Matlab-Simulink and uses
the Simulink block diagram approach to describe the
system's topology. Blocks from a library are dragged

712

and dropped, then linked together using the Simulink
arrows. These blocks represent either a rigid body.
a flexible beam, a kinematic loop, or model param-
eters. Fach block can be double-clicked to display a
window that contains it’s relevant information. The
information is mainly entered as variables which are
later assigned a value. This enables Maple to gener-
ate the model in a symbolic form. Different numer-
ical applications of the same model can then easily
be produced. The numerical values are assigned ei-
ther as constants to be hard coded in a C program
or as parameters that will be given as an input to
the model at run-time.

Figure 4: Description Window of a Rigid Block.

The two main building blocks for robots are rigid
bodies and flexible beams. The kinematic and dy-
namic properties of both blocks are entered through
a window-type interface, by typing in the names of
the variables representing the parameters that are to
be considered by the model. Beam flexibility is mod-
cled using assumed modes. The user can enter the
number of modes and rigidity to be used to describe
the vibrations in the XY-plane, the XZ-plane and
torsion around the local X axis.

While bodies are mostly static entities, joints de-
scribe rotations and/or translations between bodies.
To keep the graphical model concise, all joints are in-
cluded in the bodies and are always preceding them.
Torques, damping, elasticity can all be entered into
the model using a virtual power formulation. The
virtual power is an expression of the type :

Pla.)-o (52) 0

with which many are unfamilliar but the interface
provides a more convivial way to define it for simple
joints.

SYMOFROS, along with the interface, allows a
user to start a medium-sized model from scratch and
have a compiled executable within the hour. This
executable can then be interrogated to give the mass
matrix and non-linear vector, or any of the matrices
that are functions of the model’s states and inputs.

4 MODELING

SYMOFROS obtains the symbolic model of a sys-
tem using Jourdain’s principle[5], which is a variation
of the generalized d’Alembert’s principle. Since it is
a variational method, the constraint forces are elim-
inated. A more complete description of the method-
ology can be found in Piedbceuf[3].

The kinematics are obtained recursively using
Maple. A system of temporary variables is used
to avoid an exponential increase in memory require-
ment for an increasing system complexity[2].

The flexible beams are modeled using the
Euler-Bernoulli approximations. The foreshorten-
ing is included by considering second-order strain-
displacement relationships. Using a consistant elim-
ination of higher order terms, the resulting equations
of motion are exact to the first order in terms of the
flexible coordinates.

A symbolic linearization of the model is done and
a number of C functions required for the simula-
tion and control are generated. The C code is opti-
mized using the Maple optimization. The generated
code is ready to be compiled, then used with Mat-
lab/Simulink and the Simulink Real-Time Workshop
(RTW).

5 SIMULINK INTERFACE

Once Maple has processed the information related
to the model’s description, it is able to generate C
code. The generated C model is to be used at the
Matlab Prompt, in a Simulink simulation or with
RTW. In addition, SYMOFROS supports the use of
multiple models at the same time. The C model
is used in the Matlab/Simulink Environment (essen-
tially using mxArray 2 data structures for storage)
but can very easily be adapted to pure C. Finally,
SYMOFROS is a multi platform supported package
(NT, Win95, SunOS, QNX) giving more flexibility
and robustness for the user.

5.1 Accessing the model

The approach taken is similar to the idea exploited
by Matlab with the SimStruct where the SimStruct
contains all the information related to an S-Function.

In each MODEL, a C structure (ModelStruct)
contains all the relevant information related to it.
The ModelStruct contains a set of pointers to func-
tions (see table 1) that, once initialized, point to
all the available SYMOFROS functions; the Mod-
elStruct contains pointers to the data storage arrays
for the calculation results and a set of informative
structures representing the dimensions and configu-
ration parameters. The important issue here is that

2A Simulink data structure

each generated MODEL has its own static Model-
Struct variable and static functions (initialized in the
ModelStruct pointer-to-function section) that can be
accessed externally via an initialization function.

Type of Functions
Model Dynamics

Model Kinematics
Holonomic Constraints
Non Holonomic Constraints
Energy

Table 1: SYMOFROS Functions

5.2 Interface with Matlab

The generated model is interfaced with Matlab,
Stmulink and RTW. It is always very useful to be
able to examine the response of a MODEL in the
Simulink/RTW environment and at the Matlab com-
mand prompt as well. The mechanisms involved in
Matlab and Simulink/RTW are different (mexFunc-
tion vs SFunction). Since in the end, the same C code
is used for the model, a simple interface file has been
designed to support both, and properly allocate and
free the memory. In Simulink, each MODEL is called
once at initialization using mexCallMATLAB to get
the pointer to the model. Once the pointer to the de-
sired model is obtained, it is accessed directly instead
of using merCallMATLAB. The mexCallMATLAB is
only used in the Simulink environment and not in the
RTW. To overcome the problem, a compilation flag
is used to determine if Simulink or RTW is to be
used. In the later, a direct call to the initialization
function is made.

5.3 Generic and Reusable

As will be described in the next section, a set
of operators on the model has been developed.
These operators are generic enough that the same
Simulink diagram can be reused with multiple dif-
ferent SYMOFROS generated models. For example,
one could perform a first serie of tests with a rigid
model and then study another model with flexible or
elastic parameters always using the same Simulink
diagram (probably with a different initialisation file).

6 SYMOFROS LIBRARY

By accessing the models’ functions with Simulink,
it’s possible to create a complete real-time simulation
within a short development time. SYMOFROS pro-
vides the “symoSFunction” block, a Simulink block
used to query the model in real-time. By using
multiple instances of “symoSFunction”, it’s possible

713

Parameters Name | Description

ModelName Name of the model used
to perform the query

ModelFunction Model function executed

Cable 2: Parameters of the block “symoSFunction”

to build a complete simulation that interacts with
one or many models. As shown in table 2, this
SYMOFROS query block has two parameters.

6.1 Library Description

SYMOFROS provides a set of Simulink blocks
that allow the execution of model queries, and some
standard operations used in robotics. These stan-
dard operations are divided in 8 categories.

Initialisation The two blocks defined in this cate-
gory are used to setup a simulation environment
and the model parameters. For multi-model
simulations, each model must have an associ-
ated “Model Initialisation block”.

Dynamics blocks provide the functionality to ap-
ply commands to the model. Through these
blocks. one can apply torques and trajectories
to the different model’s joints. It also allows
the application of perturbations (external forces
and torques) to the model. As results, we ob-
tain the updated states, the joints’ accelerations,
the joints’ dynamic friction forces and constraint
forces. Moreover, an inverse dynamics block
computes the joints torque from the joints’ tra-
jectory (position, velocity and acceleration).

Kinematics are implemented by numerical meth-
ods. The direct kinematics outputs the posi-
tions, velocities and accelerations of the model
extremities. An inverse kinematics block com-
putes the joints trajectory from a cartesian tra-
jectory of a model’s extremity. The translational
and rotational jacobians and their time deriva-
tives can also be accessed.

Inputs blocks specify predetermined joint and
cartesian trajectories. It also allows to prede-
fine a sequence of joint torque, trajectory and
perturbation to the model. Generaly, the inputs
are specified in an independent file.

Controller blocks provide friction compensation,
cartesian linear control and cartesian feedback
control.

Graphical blocks deal with plotting the simulation
results. Data such as the model states, model
joints acceleration and extremity behavior are
stored during the simulation. Some blocks are

714

then used to display the results in graph format.
Moreover some development is beeing made to
SYMOFROS to get a 3D visual feedback in real-

time.

Network & Communication Some blocks have
been developed for the support of communica-
tion links. Mainly, SYMOFROS has a transmit-
ter and a receiver that transfer data through an
internet protocol socket.

Finally,. SYMOFROS provides some blocks for
generic tasks such as frame transformations, orienta-
tion type conversion. orientation error computation,
etc.

6.2 Simulation Block Use

To use a particular SYMOFROS block, the user
only needs to drag and drop the desired block from
the SYMOFROS blockset to his simulink sheet. By
double-clicking on the block, a menu appears with
the block’s settings (figure 5). A short block de-
seription and a help button are accessible from that
menu.

n Oonversa:n (mask) '(tmk)
E Oumrtﬂme anentation form ons formi to another
Example fmm a 3:(3 mtahcn matnxtox\’z F‘bced

Figure 5: Block Settings

6.3 Simulation Block Implementation

The SYMOFROS blockset is implemented in 3

ways:

Simulink + Toolboxes (.mdl) Use of the stan-
dard Simulink blockset and of the Toolboxes
blockset (like Digital Signal Processing). Most
of the SYMOFROS Blockset has been developed
with pre-built Simulink blocks. This method
accelerates the development and maintenance
processes. Since the simulink diagrams are
portable, it is easy to generate real-time code
with this method.

SFunctions (.c) C Source code embeded in a
Simulink C' source file template (through the
use of specific macros). This method is used
for the functionalities that are not supported
by the Simulink blocksets. For example, the
SYMOFROS network blocks are implemented

Counterweight

Motor 1
+ Hub
T
Py
-
-
e Beam 1
E&/y\ Payload 1
Mutor 2
Beam 2

7 -
(a) Paoad2 1N
T
Motor 3 ‘%
<
T

=l

Figure 6: Planar Flexible Robot

with this method in order to support the socket
communication. To obtain efficient code, the
Target Language Compiler (TLC) is used to de-
fine the rules for the code generation.

Matlab Scripts (.m) This non real-time method
is generally used for the initialization processes
(simulation + models). Thus, the definition of
trajectories and inputs is developed with Matlab
scripts.

7 EXAMPLE OF A MODEL

A planar robot with three harmonic drive motors
and two flexible links as shown in Figure 6(a), is used
to illustrate the capability of the GUI. This robot was
built at Ecole Polytechnique and is used to study the
modeling and control of flexible robots. Figure 6(b)
shows a simplified model using 9 bodies (the counter-
weight is combined with joint 1) with their associated
reference frames. Figure 7 shows the GUI represen-
tation of the robot. As indicated on Figure 7, joint
elasticity is taken into account in the modeling of the
first motor (motor!l) while the two others are sup-
posed to be rigid. Beams 1 and 2 are flexible while
all other bodies are assumed rigid.

rModel Descrlpnon] l System Variables ; Semng]

Moton

Motor2 Beam2 Payload2 Motor3

Figure 7: Graphical representation of the model

8 EXAMPLE OF SIMULATION
8.1 Simulation Diagram

Once the model has been entered through the in-
terface, generated in C through Maple, and compiled
and linked with Matlab libraries. it can be addressed
by either Matlab or Simulink. Some examples of
Matlab command lines ave:

[SysDim, SysSet. FlexLink, Parameter, Frame,

Info] ~model(0):
for the initialization of the model's structures and
[Mnl. gnl/= model(1.X.U.Parameters);

to request the mass matrix and nonlinear vectors
as a function of the model's states (X) and inputs
(U). In the last expression. the first argument, 1, is a
tunction flag indicating what is to be computed, and
Parameters is an array containing the values of the
model’s parameters

A better way to deal with the SYMOFROS model
is to acces it through a Simulink S-Function, which
will compute either the direct or inverse of the
model’s kinematics or dynamics. In fact, two models
are generated, one for control and the other for the
simulation. Here, the control model is simply the
model of the equivalent rigid robot. It is easily ob-
tained by assuming zero modes for each flexible link.
An example of such a simulation diagram is shown
on figure 8. For clarity of the diagram, blocks used
for graphic purpose were removed.

Double Chek to Initiatize Daubis Click 10 Madeibs on
See Graphecs o Simulation Voser

postiont- -
Ang. Pos. T |
Vatocity [- Force: Y orque States
Accoleration Injvarcciy §
llesred Cadasian (P Monoant Acc ety 1 Commana wth Incton Paturbation Accaterations [#{
Y'BVEC“"Y Inverss D*(,omn‘ar\d betors hc(m Termmans
[irp paromion [.|M.,m, soi Fricton| S
pc
— - T T T e Forward Dynamics
f}ww-‘ - ‘ "

Figure 8 A simulation diagram of a closed-looped
system using inverse kinemnatics.

The four top blocks are, in order, workspace ini-
tialization, the graphic display button, model initial-
ization, and a comment block showing the simula-
tion’s title. The workspace initialization has to be

715

Motor 1 2 3

Min. vel. (rad/s) | 0.001 | 0.001 | 0.001
Stat. fric. (N/m) | 0.49 | 0.20 | 0.10
Dyn. fric. (N/m) [0.42 | 0.17 | 0.08

Table 3: Friction Parameters

double-clicked to be activated and calls a script that
sets variables used in the simulation. A model’s ini-
tialization block is required for each different model
used in a simulation to set the models’ parameters at
simulation start-up. All the parameter values corre-
spond to physical values measured on an experimen-
tal system that has been developed ad Ecole Poly-
technique de Montréal (Canada)??.

Endpoint Trajectory in x—y Plane: Cartesian Motion
~0.4r

—— Simulated trajectory

0.8 Desired trajectory

12t . L . N " X L "
-0.4 -0.2 0 0.2 0.4 06 0.8 1 1.2

y {m)

Figure 9: Endpoint Trajectory in the x-y plane.

The diagram shows that the desired velocities and
accelerations of the tip. as given by the user, are
fed to an inverse kinematics block. The output of
that block is the desired positions and velocities of
the joints and is fed to a PD Controller, a friction
compensation block and an inverse dynamics block
that computes the necessary torques to input to the
forward dynamics block. The control model is the
equivalent rigid robot. easily obtained by assuming
zero modes for each flexible links. The forward dy-
namics block calculates the acceleration of the joints
as a function of the present state and the input forces
and torques. It also takes into account Coulomb fric-
tion in the motor reducers (see table 3). There is no
need to integrate the acceleration directly as this S-
Function tells the simulation it's states’ derivatives
and the simulation’s integrator takes care of the rest.
All these blocks are existing SYMOFROS functions
and the same simulation diagram could be called
with a different model or different trajectory after

716

minor changes brought to the initialization file.

The example used for the simulation is the follow-
ing. The robot starts with motor angles at -0.1, 0.1
and 0 radian for motors 1, 2 and 3 respectively. The
goal is to go to point (0.3, 0.3) and from that point.
trace a square with 0.6 m sides. the simulation dia-
gram is shown in Figure 9. This shows that we can
accurately simulate the behavior of a flexible robot,
and the fact that the actual trajectory is not exactly
the desired one only means that the controller used
is not optimal.

In this example, the desired trajectory corre-
sponded to a square. The figure below shows the
superimposed desired and actual trajectories of the
robot.

9 CONCLUSION

This paper described the development of a pro-
gram to model flexible mechanisms in tree-topology
with closed kinematic loops and non-holonomic con-
straints. The description of systems using an object
oriented approach have been described. Three main
objects are used: body, joint and closure. The dy-
namic equations are developed using Jourdain’s prin-
ciple with recursive kinematics. The flexible links are
modeled as Euler-Bernoulli beams with the inclusion
of the foreshortening effect. The method has been
implemented in the program SYMOFROS. This pro-
gram is based on the symbolic language Maple. The
graphical user interface developed for SYMOFROS
facilitates the input of a model, especially for user
with little dynamics experience. The result of the
symbolic modeling is a optimized C model. This
model is fully compatible with Matlab/Simulink and
can be run in non-real-time or in real-time on parallel
processors. The SYMOFROS program is an appro-
priate tool for modeling and simulation of medium
complexity mechanisms such as robots. It has been
used to develop real-time control and hardware-in-
the-loop simulation for robots. A copy of the pro-
gram can be obtained from the first author.

References

[1] O. Ma, K. Buhariwala, N. Roger, J. MacLean,
and R. Carr, “Mdsf- a generic development and
simulation facility for flexible, complex robotic
systems,” Robotica, vol. 15, pp. 49-67, 1997.

[2] J.-C. Piedbeeuf, “Modelling flexible robots with
Maple,” MapleTech: The Maple Technical
Newsletter, vol. 3, no. 1, pp. 38-47, 1996.

[3] J.-C. Piedbeeuf, “Recursive modelling of flexible
manipulators,” The Journal of Astronautical Sci-
ences, vol. 46, January-March 1998.

[4] M. Saad, I.-C. Piedbceuf. . Akhrif. and
L. Saydy, “A comparison of different shape func-
tion in assumed-mode model of a flexible slewing
beam,” tech. rep., Canadian Space Agency. St-
Hubert, QC, Canada, 1997.

[5] P. E. B. Jourdain, “Note on an analogue of
Gauss’ principle of least constraint,” The Quar-
terly Journal of Pure and Applied Mathematics,
vol. XL, pp. 153-157, 1909.

