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Abstract 

'I%(: ;~bility for a rover to  localize itself witjh respect 
to it,s environnient is a crucial issue to tackle au- 
tononlous long range navigation. In this paper, we 
first present and classify the various kind of func- 
t i~nal i t~ ies  a rover should be endowed with to esti- 
mate its position during long traverses. We then 
present a technique that  relies on stereovision and 
pixel tracking to estimate the 6 parameters of the 
rover displacements, and discuss experimental re- 
s u l t , ~  obtained with the robot Lama. The paper ends 
1)y it brief presentation of a complementary localiza- 
ti011 function, with respect to an object-based envi- 
ronment model built by the rover as it navigates. 

Fut,ure planetary exploration robots will have to ex- 
plore. map  or traverse larger and larger areas. This 
is a tremendous challenge for roboticists, that  must 
c-onceivc. systems endowed with autonomous ~ o n y  
m n y t  nauiyation capacities. Indeed, the various con- 
strailits related to planetary exploration (con~murii- 
cation delays, poorly known unstructured terrain) 
void I he possibility to efficiently teleoperate the ma- 
c4ii11e. 

At LAAS, we have tackled various aspects related 
t o  nutonomolls long range navigat,ion in unstructurecl 
t ~ r r a i n s  for over ten years, and experimented some 
in rcwlist ic- conditions [I,  21. We are convinced that 

to efficiently achieve high level missions defined over 
a large scale of space and t ime, a certain degree of 
delzberatzon is necessary in order to anticipate events, 
take efficient decisions, and react adequately to un- 
expected events [3]. In particular, this robot ability 
to plan its activities calls for the building of various 
environment representations, at several levels of ab- 
straction (topological maps,  geometric maps, object 
representations. ..). For that  purpose, an estimate 
of the robot position is required, and when execut- 
ing long missions, sensors on board the lander are 
no longer helpful to compute ~ t .  A position esti- 
mate  is not only necessary to build coherent envi- 
ronment models, it is also required to ensure that  
the given mission is successfully being achieved, or 
to servo motions along a defined trajectory: robot 
self-localization is actually onc of the most impor- 
tant issue to tackle autonomous r~avigation. 

The internal sensors of a robot being always sub- 
ject to errors arid drift, a lot of attention has been 
paid to exteroceptive d a t a  based position correction 
or estimation algorithms since the very beginning of 
mobile robotics. Basically, this problem is threefold: 
(i) the robot has to  extract and associate relevant 
data  or rr~odels from the gathered data ,  (iz) he has 
to process these associations to refine or estimate its 
position, (izi) and finally, he must he able to actively 
control its perception capacities in order to acquire 
the relevant data .  

We focus in this paper on the  first part of the 
problem, i r ~  the context of autonon~ous  navigation 
in planetary-like cnvironments. The  problem is then 

-- -- - 
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\ ( , I  y d~ffcrcnt from mdoor env~ronments,  the context 
n1th111 W I I I C I ~  ~t has ebsent~ally been studied up to 
o 11ot on14 the ~nternal  sensors data  are more 
I I O I Y L  the ground 1s seldoni flat arid smooth,  but 
A I W  tlie rnv~ronnlent 1s not mt r~ns~ca l ly  structured, 
, I .  r o ~ i ~ p a r e d  to mdoor env~ronments where s m p l e  
yro~nr,t r~c p r m i ~ t ~ v e s  n la tc l~  f a~r ly  well the reahty, 
~nci c a n  I hrrefore be "eas~ly" assoc~ated from one 
1)o111t of i ~ e w  to the other 

7'11c ucxt section presents a tentat,ive chssifica- 
1,io11 of t8hc various position estimation techniques a 
planet,ar\; rover should be endowed with. Section 3 
presc.nt,s it1 details a technique that  enables to esti- 
11i;rt  I ,  t hc robot, motions with an excellent accuracy, 
11si11g 1)ixc.l tracking and stereovision. The following 
srv,t~on skc~tcli an approach we are currently develop- 
pills to loc.alizc, the robot over a long range, o ~ i  t , l~e  
Ims~s of an object,-based environment representation 
huilt Ily the rol~ot, .  A short discussion concerning 
t I)(' ' -url.e~~t t r m d  in research related to  robot envi- 
ro11111rt1t 1110del1i11g concludes the paper. 

2 A tentative classification of 
exteroceptive localization 
techniques 

I'l1(, various tecrhniques required to compute the 
~ .o l~o t  position as it navigates range from inertial or 
otfo~net,ry da ta  int,egration to absolut,e localization 
rcspwting an initial model. In order to have a bet- 
1r.r ~~nders tanding of the problem, we propose here 
to classify theses techniques into four functional cat- 
c,gorlf's: 

I. 11lotron c,slirrlutlon: it consists ill integrating 
data as ii very high pace as the robot moves, 
si~nilitrly to proprioceptive localization1, in or- 
t l c ~ r  112 c,stirnat,e the parameters of elementary 
~not ions .  

2 l'o5zf roil rrfirlerr~erit as w ~ t h  propriocept~ve 
lo(-ahzat~on, exteroceptive motion es t~mat ion 
tec-hnlques gcneratr cumulat~ve errors It is then 
liecexary t,o rely on the association of elements 
i n  the el~vironment (landmarks) perceived from 
quitc different posit,ions to refine tjhe position es- 
timate. The landmark matching problem is here 
easily solved thanks to the precise enough posi- 
-- 

' LVe denote by "proprioceptive localization" all the  algo- 
1itl1111s that  est imate the  robot position using proprioceptive 
h~11s01.s -   do meters. accrlerometers, gyroscopes, inclinorne- 
t P I ' h ,  Ct( . .  

tion estimate provided by the niotion rstinlation 
technique. 

3. Position d e t e r ~ n i n n t i o ~ ~  ever1 when perceiving 
and memorizing landmarks, S ~ I I I P  errors on t,he 
position e~ t~ i rna te  cumulate over a long range of 
time and space (or after traveling a landmark- 
free area for instance). Such vrrors can reach 
vrry high values, so t,hat when r13-pcwGving prr- 
viously modeled landmarks, on(, can not rely on 
the current position e s t i rna t io~~  to match them. 
It then calls for object recognzt~on to tackle the 
da ta  association process. 

4 .  Absolute localizatzon: in t,his I x t  category, we 
put all the techniques that  a i n ~  at  localizing the 
robot with respect to an initial global model of 
the environment (such as images or riur~ierical 
t,errain models derived from orl)ital imagery), a 
problern often referred to ns t, tic, "(I rop-off proh- 
lem" [4]). If descent imagery can be used to 
initially localize the lander [ 5 ] ,  the problern of 
absolute localization still has to he tackled when 
roving over several kilometers. 

There are actually five criteria t,hnt lrad us to es- 
tahlisli such a classificat,ion of t h ~ :  1oc.alization func- 
t8ioris: (1) frequency of process act ivation, (12) re- 
quirements on t,he precision of the i ~ ~ i t i a l  robot posi- 
tion, ( i i i )  volun~e of da ta  required, jzc) necessity to 
control the da ta  acquisition, and ( u )  level of abstrac- 
tion of the processed data .  For instanc-e, t,he mot,ion 
estimation functionality process a miall amount of 
raw da ta  a t  a very high frequency, without any con- 
trol of the da ta  acquisition, and may require a pre- 
cise initial estimate of the motions (given by the ~h-o- 
pr i~cept~ive  sensors) in order to  track and associate 
successfully the da ta .  On the contrary, the absolute 
localization function is seldom triggered, requires a 
high level environment model built upon nunlerous 
data  S C ~ S ,  for the cot~st~ruct~ion of wl~ich data  acqui- 
sition strategies have been d e t e r m i ~ ~ c d ,  arid by dcfi- 
nit,ion do not require any precise init,ial position es- 
tin1atje2. 

As one can see, the development of sweral differ- 
ent dat,a processing and environmwt modeling al- 
gorithms is required to tackle the locralization prob- 
lem. All these algorithms are conlple~nentary, and 
provide position estimat,es with different characteris- 
t,ics: a model of each of these algorith~ns is required 
ill order to filt8er the various position estimates int,o 

'Note tha t  among these criteria, t h e  abst raction level of the  
d a t a  is actually dubious: we will indeed see in t l ~ e  next sections 
tha t  we tackle the  rriotion estimation anil object recognition 
functiorlalities using very similar d a t a  (raw grry level images) 



;I consist-ent one, and to plan or trigger their activa- 
t 1011. 

3 Motion estimation using 
stereovision and pixel track- 
ing 

We present here an exteroceptive position estimation 
technique that is able to estimate the 6 parameters 
of the robot displacements in any kind of environ- 
~nents ,  provided it is textured enough so that pixel- 
Insed stereovision works well (thanks to progresses 
on cameras and algorithms, it is even the case for 
very sn1oot.h and flat terrains - the presence of no 
particular landmark is required). Referring to the 
c~lassification presented in the former section, this 
t,echnique is a motion estimation function. It is pas- 
.slue, in the sense that it do not calls for any data 
;~cquisition strategy: images are just used as fast as 
possible. The algorithms therefore do not interfere 
wit,ll any other functionality that makes use of the 
st,ereo cameras (obstacle avoidance, map building). 

3.1 Principle of the approach 

rile approach we developed and experimented could 
be called "~.xteroceptive dead-reckoning" : it com- 
putes an estimate of the 6 displacement parameters 
between two stereo frames on the basis of a set of 3D 
[ m n t  to 3D point matches, established by tracking 
t l ~ e  corresponding pixels in the image sequence ac- 
quired while the robot moves (figure 1). Depending 
cm the time spent by stereovision and on the number 
of pixels to track, the tracking phase lasts a variable 
[lumber of frames, which can be reduced to one. 

Thc. principle of the approach is extremely sim- 
plr, but paid we a lot of attention to the selection 
of t l i r  plxel to track: in order to avoid wrong cor- 
respondences, one must make sure that they can be 
faithfully tracked, and in order to have a precise esti- 
mation of the motion, one must choose pixels whose 
c-orresponding 3D point is known with a good ac- 
c-uracy. Pixel selection is done in three steps: an 
(1 pr lo r i  selection is done on the basis of the stereo 
images (sect,ion 3.2); a model of the pixel tracking 
algorithm is used to discard the dubious pixels dur- 
ing tlw tracking phase (section 3 . 3 ) ;  and finally an 
outlier rejection is performed when computing an es- 
t,imation of displacement between two stereo frames 
( a  posterzori selection - section 3.4). 

StereoVision TO 
Pixels Selection - 

I T+2 
- 

Pixels Tracking 

t 
StereoVision T+k 
Pose Estimation - 
Pixels Selection 

1 T+k+l 
- 

Pixels Tracking 

Time 

Raw Disparity 
Image Image 

Figure 1: Principle  of t he  approach: at t i m e  To, a  correla- 
t i o n  algori thm compu te s  a  d ispari ty  irnage f r o m  a stereo pair, 
and a  set of pixels to  track i s  selected. Be tween  T I  and Tk, 
the  selected pixels are tracked i n  t h r  image  sequence. A f t e r  
the de t e rmina t ion  of t he  d ispari ty  irnage at T k ,  the  set of 3 0  
points correspondences {PG,P,!) established b y  the  tracking 
phase i s  used t o  compu te  the  d isplacement  and the  
process s t a r t s  again. 

3.2 Selection of the pixels to track 

To initiate the process as a stereo frame comes up, 
one must select a set of pixels to be tracked. On 
one hand, one would like to track pixels whose cor- 
responding 3D point is known with a good accuracy: 
this is done thanks to an error model of the pixel- 
based stereovision algorithm. On the other hand, one 
would like to select pixels that are likely to be suc- 
cessfully tracked in the forthcoming image sequence: 
this is done by studying the behavior of the auto- 
correlation function in the neighbor of the pixels of 
the image. 

A n  e r r o r  m o d e l  f o r  pixel  correla t ion-based 
s tereovis ion:  A dense disparity image is produced 
from a pair of images thanks to a correlation-based 
pixel makhing algorithm (we use the ZNCC corre- 
lation criteria or a Hamming distance computed on 



Census transformed images [6]). False matches are 
avoided thanks to a reverse correlation and t,o vari- 
ous thresholds defined on the correlation score curve 
(essentially on the value of the highest score, and on 
between this score and the second highest peak in 
the curve). To get quantitative informations on the 
precision of the computed disparity (and therefore on 
the coordinates of the 3D points), we studied a set 
of 100 images acquired from the same position. As 
in [ i ] ,  it a.ppeared that the distribution of the stan- 
dard deviation on the disparity estimate can be well 
approximated by a Gaussian. Not surprisingly, the 
standard deviation on the depth increases quadrati- 
cally with the depth3. A more interesting fact is that 
t,here is a strong correlation between the shape of the 
correlation curve around its peak and the standard 
deviation on the disparity: the sharper the peak, the 
more precise the disparity found. This correlation 
defines an error model, that is used during the corre- 
lat,ion phase to estimate the error on the computed 
disparity (figure 2) .  

Figure 2: A result  of  o u r  s tereovis ion  a lgor i thm:  f r o m  le f t  
t o  r ight ,  or ig inal  i m a g e  ( o n l y  correlated pixels are s h o w n ) ,  
d i spar i ty  i m a g e ,  a n d  s t a n d a r d  d e v i a t i o n  o n  t h e  d ispar i ty  e s t i -  
m a t e d  w i t h  o u r  e r r o r  model .  

However, there are matching errors that occur at  
t,he border between two regions of very different in- 
tensity values located at  different depths (figure 3): 
as a consequence, the object shape in the disparity 
image is artificially growed of half the size of the cor- 
relation window. These errors, often referred to as 
"occluding contours artifacts" [8] can not be filtered 
out thanks to the thresholds on the correlation curve 
or to a blob filtering algorithm. Moreover, their es- 
timated error tend to be very small: it is practically 
impossible to avoid the selection of such pixels con- 
sidering only the stereovision algorithm model. 

Selecting good candidates for the tracking 
algorithm: Planetary environments being highly 
textured, simple area-based matching techniques are 
extremely efficient to track pixels in an image se- 
quence (see section 3.3). However, due to noise in 

37'his would actually be true if the standard deviations on 
the disparities were not dependent of the depth. In practice, 
further areas being less textured than closer ones, the dispar- 
ity standard deviation increases with the depth. As a con- 
sequence, the depth standard deviation increases more than 
with the square of the depth 

Figure 3: False m a t c h e s  a t  t h e  border of  a rock: d ispar i ty  
i m a g e  ( le f t ) ,  a n d  correlated p ire ls  ( r i g h t ) .  

the image and the sampling performed by cameras, 
the tracking algorithm often eventually drifts: af- 
ter a few image frames, tracked pixels do not cor- 
respond to the same terrain points than the points 
corresponding to the original pixels. This off course 
occur especially on smooth, low textured areas, but 
can also occur on highly textured areas: checking a 
simple threshold on the standard deviation on the 
grey levels of the correlation window is not sufficient 
to ensure that a pixel will be successfully tracked. 

To avoid the selection of pixels in the image that 
are likely to drift during the tracking phase, we de- 
fined a measure other the image that represents how 
similar is a pixel to its neighbors. This measure is 
based on the computation of the correlation score 
of one pixel with each of its neighbors, using the 
same correlation score and window size as the track- 
ing algorithm (auto-correlation). These scores de- 
fine a correlation peak ( a  surface), and the shape of 
this peak indicates how different is one pixel from its 
neighbors: the sharper the peak, the more different 
are the neighbors from the pixel. We use the greatest 
value of the correlation scores found for the neighbors 
as an indicator of the sharpness of the peak, divided 
by the theoretical maximum correlation score. 

Figure 4: Local s i m i l a r i t y  m e a s u r e  c o m p u t e d  ouer a whole  
i m a g e .  Left:  or ig inal  i m n g e ,  r ight :  s i m i l a r i t y  m e a s u r e  e n -  
coded a s  grey levels.  T h e  d a r k e r  pixels are good c a n d i d a t e s  
f o r  t h e  t rack ing  a l g o r i t h m .  

Figure 4 presents a result of the computation of 
this measure over a whole image. One can note that 
the pixels corresponding to occluding contours are 
not good candidates for the tracking algorithm: in- 
deed, in the two directions defined by the contour, 
the correlation windows are very similar. Finally, 
note that this measure gives an indicator related to 



the expected precision of the tracking algorithm for 
a pixel, but not related to the ambiguity (certainty): 
t,o evaluate an ambiguity measure would require the 
romputation of correlation scores for a wide neigh- 
borhood, which is extremely time consuming. 

P ixe l s  se lect ion:  The set of candidate pixels to 
track is defined by applying thresholds on the depth 
standard deviation estimate of the 3D points and on 
the corresponding pixel similarity measure. The pix- 
PIS that will actually be tracked are then randomly 
chosen among the remaining candidates. 

3.3 Tracking pixels in an image se- 
quence 

Although the pixels to  track have been carefully se- 
lect,ed, some errors (drifts or false matches) can occur 
during the tracking phase. In order to  avoid such 
errors, we tested various matching criteria (SSD, 
ZNCC. Census.. . )  and various template updating 
strategies on several image sequences to determine 
t,he best ones. 

'I'hanks to stereo image sequences, we can detect 
when a tracking algorithm is drifting by tracking 
"stereo-corresponding" pixels in the two images, and 
by checking that after the tracking phase, the re- 
turned pixels are still corresponding in the new stereo 
pair. However, t,racking in parallel pixels in a stereo 
pair takes twice the time to track pixels in one im- 
age. We therefore used this possibility to  check off- 
line the tracking algorithm with stereovision, to  es- 
tablish statistics on various tracking algorithms and 
with various correlation window sizes. This helped 
10  determine the best matching score, template up- 
date strategy and optimal window size: we retained 
the ZNCC correlation score computed over a 11x11 
window, and update the template by interpolating 
the target image around the sub-pixellic matching 
estimate and with the previous template. Moreover, 
i t  allowed us to  easily determine the threshold values 
on the maxinlun~ correlation score and on the differ- 
ence between the second highest peak in the surface, 
t,hresholds under which the algorithm is suspected to 
tlrift or. t,o return a false match. 

The tracking phase is done as follows: given a set 
of pixel to track and their corresponding 3D points 
defined on the stereo frame To, the search zone in 
the image acquired a t  time TI is centered around 
t,heir predicted position, using the transformation 
'l'iy,+ r ,  provided by the robot internal sensors. The 
size of the search zone is determined according to the 
~lncertainty on the estimated transformation. This 
prediction is important: it helps to focus the match 
search in a small area, and therefore reduces the 

probability to return a false match. Figure 5 shows 
the result of tracking a set of pixels in two images ac- 
quired from two positions distant of about 0.1 meter. 
One can see that most pixels have been successfully 
tracked. 

Figure 5: Resul t  of the  tracking algori thm o n  a se t  of se- 
lected pixels. T h e  pixels t o  track are displayed o n  the  first 
image  ( le f t ) ,  and  the  found pixels o n  t he  following image  are 
displayed o n  right.  

3.4 Estimation of the motions 

At the date Tk,  when a new stereo acquisition is per- 
formed, the pixels of the tracked set whose 3D co- 
ordinate estimate is now below a certain accuracy 
are discarded, and the remaining matches are used 
to compute a first estimate of the 3D transformation 
TO+k , using a constrained least-square method [9]. 
On the basis of this first estimation, outliers are re- 
jected from the set of matched 3D points, and a new 
estimate is computed. In our case, the outlier rejec- 
tion is easy to  achieve: indeed, thanks to the a przorz 
selection phase and to the thresholds applied during 
the pixel tracking phase, most of the matched 3D 
points pairs are consistent. 

Track ing  pixels  over  severa l  s t e r e o  f rames :  
The obvious drawback of computing elementary mo- 
tions only between two consecutive stereo frames is 
that the errors on the motion estimation cumulates 
over time, just as it happens when integrating the 
data  of the robot's internal sensor. One way to re- 
duce this errors is to use the possibility to track some 
pixels over several stereo frames: it allows to deter- 
mine various displacements parameters every time a 
stereo image comes up (figure 6 ) .  

One could imagine to combine these various dis- 
placements estimations using a stochastic filtering 
technique: this would require the, precise knowledge 
of the uncertainties on every displacement estima- 
tion, which is riot obvious to  obtain. We solved this 
problem by computing a least square estimation for 
the whole set of possible 3D points matches in a re- 
cursive way: once a position corresponding to time 
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1:igure 6: Several d isplacements  between stereo frames  can 
hf es t imated 

T i l k  is estimated, all the former 3D points coordi- 
nates are expressed in this position. At the frame 
T(rL+l )kr  the matched 3D points are duplicated in 
ordcr to generate all the possible association sets 
U : I i { P 2 k  H P(n+l)k)r and the constrained least 
q u a r e  rnethod is applied on the whole associations. 

1 lle u pi-mrz pxel selection, performed every time 
htereo frame is produced, is then only done to re- 

1)lac e the pixels that have been lost (rejected during 
1 lir, trackii~g phase or as outliers) during the previous 
sterc,o-to-stereo c-ycle. 

3.6 First experimental results 

We have tested the approach with the robot 
~ a m a ~ ( f i ~ u r e  8 ) ,  and established comparisons with 
position records obtained with a differential phase 
GPS localization system. 

Figure 8: T h e  robot L a m a ,  a  Marsokhod robot built by lWlI 
Transmach  and  equipped at L A A S  

3.5 Functional architecture 
The first results are very promising: on some 

\Ve arc, currently integrating all the functionalities 
required by our approach on board the robot Lama. 
l igure 7 presents the necessary functional modules 
(int>egrated under the real-time operating system Vx- 
1Vorks thanks to GenoM, a software tool developed 
i l l  our research group to  specify and integrate li- 
I~ri~ries [ lo ] ) ,  and the connections between them. 

\ '  
Video ' ,- 

I I Image 

9 Odornelly 

I 
I 

Figure 7 :  Funct ional  architecture of the  m o t i o n  e s t ima t ion  
techrtique. Funct ional  modules  are displayed i n  bold r t c tan -  
y u l a i  bores,  and  rxported data  are displayed i n  ovals. T h e  
numbers  indicatrs  the  order of data  production. 

translations of several tens of centimeters, the dis- 
placement estimated by the algorithms was close up 
to 1% to the GPS positions, ie. as precise as the 
(up to  now, we only characterized the translations). 
We are currently establishing thorough statistics, in 
order to  precisely qualify the precision of the tech- 
nique. On longer motions, that corresponds to sev- 
eral tens of stereo frames, it appeared clearly that 
there is a great advantage in tracking pixels over sev- 
eral stereo frames. However, we are not satisfied by 
the least square estimation algorithm: a Kalman fil- 
tering would surely do a better job, all the more since 
the uncert,ainty on the 3D points coordinates are well 
none. 

4 Toward unstructured object 
recognition 

We briefly present here a new technlquc we are cur- 
rently working on, that allows to identify and reg- 
ister previously perceived objects. I t  can therefore 
satisfy both the position refinement and determina- 
tion processes (section 2).  Historically, the first at- 
tempts to  solve these problems relied on analytical 

4 L a m a  t h a t  is currently lent to  us by Alcatel Space Indus- 
tries 



ob,ject,s models (such as superquadrics for instance). 
The inadequacy of such models to unstructured ob- 
jects lead us to study deformable meshes. However 
if these techniques are well suited for very precise 
geornr:t,ric data (such as in medical imaging), they 
remain useless for robot navigation, where the data 
range several meters and are much more noisy. We 
t.hi11k t,he recent advances in image registration may 
Ix successfully adapted to our problem: instead of 
aiming at building concise and precise models, these 
techriiques trend to solve the data association prob- 
lems using either global invariant features [ll] or a 
set of local invariant features [12] determined in the 
Inlages. 

'l'hrx principle of the method we propose is the fol- 
lowing: it consists in building a database of object 
images (referred to as "aspects") as the robot navi- 
gates. Instead of computing local invariants for these 
pixels, as it is usually the case when indexing images, 
we make use of the 3D informations produced by 
stereovision for all the pixels to predict the object 
aspect for a constant camera distance and orienta- 
tjion5. This relaxes the need to compute invariants 
with respect to image scale and orientation. On this 
"projected" aspect, a set of discriminant pixels is 
marked using t>he autocorrelation function presented 
in section 3.2 (or using an Harris detector for in- 
st,ancc). During the visual aspect database construc- 
t,ion, ;t deformable mesh is determined on the basis 
of the various 3D points sets. No mesh registration is 
clone: we assume the precision of the robot position 
given by the motion estimation technique is precise 
mough to build a mesh that is roughly consistant. 

When perceiving an object after a while or a 
long distance travelled, the problem is to determine 
wl~et~her it has already been perceived or not, and if 
yes, to determine the robot location with respect to 
the memorized positions corresponding to aspects. 
'This is done according to the following procedure: 

1 .  'I'he first phase consists in using global at- 
tributes to select among all the candidates as- 
pects the ones that are most likely to be matched 
with the newly perceived object. These at- 
tributes are coarse geometric informations (such 
as the estimate of the object's volume and iner- 
tia rnornents derived from the mesh), and global 
photometric informations (texture for instance). 

2 .  The second phase consists in selecting the as- 
pect anlong the remaining candidates that re- 
sombles the most the current aspect. This is 

5 T h e  orientation of the  camera with respect to  the  gravity 
\.ector is faithfully provided by inclinometers or  the  motion 
vstirnat ion technique. 

done on the basis of the current aspect predic- 
tion for the constant camera distance and orien- 
tation chosen during the database building, and 
by evaluating simple correlation scores (as in the 
motion estimation technique) for discriminant 
pixels provided by the auto-correlation function. 
The originality of the method rely here on the 
use of the 3D da ta  to project the current aspect 
to a viewpoint as close as possible to the ones 
stored in the database, which relaxes the need 
to compute invariants. Up to now, the best can- 
didate is only chosen using a measure defined on 
the correlation score for all the marked pixels. 
Geometric constraints between the marked pix- 
els would probably be helpful when dealing with 
a large database: the problem is similar to prim- 
itive based object recognition techniques. 

3. The last phase consists in determining the robot 
pose with respect to the matching aspect, using 
a 3D points set of correspondences, as in the 
motion estimation technique. 

One of the critical point of the method is the abil- 
ity to segment the objects in the data.  We have only 
considered the easy case of rocks lying on a rather 
flat ground, and developed a simple object detec- 
tion procedure on the disparity image. It relies on 
the possibility to quickly compute a virtual disparity 
image that corresponds to a theoretical flat ground, 
using the estimate of the robot attitude. A differ- 
ence between this predicted image and the perceived 
disparity image exhibits the parts that are above the 
ground: a simple threshold on this difference lead to 
a "blob image", each blob corresponding to a poten- 
tial object (similar simple segmentation techniques 
can be applied on the 3D points image). However, 
one of the advantage of our matching method is that 
is do not require a faithful segmentation. 

5 Conclusions 

Rover self-localization is an extremely important is- 
sue to tackle in order to endow a robot with au- 
tonomous long range navigation capacities. In this 
paper, we have discussed the various kind of func- 
tionalities to develop in order to solve this problem. 
These functionalities require various data processing 
and environment modeling algorithms, and may re- 
quire the determination of data  acquisition strate- 
gies. 

We have presented an approach that is able to esti- 
rnate elementary robot motions on the basis of stere- 
ovision, without building any environment model, 



and we have sketched an  object modeling approach 
that  can satisfy both the position refinement and de- 
termination processes over a long range. 

Most investigations concerning localization in out- 
door environments relied mainly on geometric char- 
acteristics: on rough terrains, a digital m a p  ele- 
t,atzon is directly used to feed an iconic matching 
procedure [13, 141, or geometric features extracted 
from the model are matched [15]. On rather flat 
terrains where obstacles are easily segmented, some 
techniques relying on geometric obstacle models have 
been proposed [16, 171. However, if geometry is an 
essential feature to build environment models and in- 
dispensable to compute positions, the errors in the 
data  and the models makes the association algo- 
rithms very fragile. 

T h e  approaches we presented rely essentially on 
image data ,  rather than on geometric data .  Indeed, 
the increasing ability to  store and rapidly process a 
large amount of da ta ,  due to  performances progresses 
of the computers, lead us to  develop techniques that  
make a strong use of raw image data .  As it seems to 
be the current trend in the perception community, 
we tend to give up "reconstructionist" approaches 
that aim a t  building a concise representation. One 
can see that  if geometry remains an  indispensable 
feature, its role is strongly diminishing in the da ta  
association processes. 
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