
NEXT GENERATION REMOTE AGENT PLANNER

Ari K. Jdnsson
RIACS

NASA Ames Research Center
Mail Stop 269-2

Motfett Field, CA 94035. USA
phone: + I 650 604 2799

Sax: + 1 650 604 3594
:onsson@ptolemy.arc.nasa.gov

Nicola Muscettola
Recom Technologies

NASA Ames Research Center
Mail Stop 269-2

Moff'ett Field, CA 94035, USA
phone: +I 6506044744

fax: +1 650 604 3594
mus@ptolemy.arc.nasa.gov

ABSTRACT

In May 1999, as part of a unique technology vali-
dation experiment onboard the Deep Space One space-
craft, the Remote Agent became the first complete au-
tonomous spacecraft control architecture to run as flight
software onboard an active spacecraft. As one of the
three components of the architecture, the Remote Agent
Planner had the task of laying out the course of action
to be taken, which included activities such as turning,
thrusting, data gathering, and communicating.

Building on the successful approach developed for
the Remote Agent Planner, the Next Generation Re-
mute Agent Planner is a completely redesigned and
reimplemented version of the planner. The new sys-
tem provides all the key capabilities of the original plan-
ner. while adding functionality, improving performance
and providing a modular and extendible implementa-
tion. The goal of this ongoing project is to develop a
system that provides both a basis for future applications
and a framework for further research in the area of au-
tonomous planning for spacecraft.

In this article, we present an introductory overview of
the Next Generation Remote Agent Planner. We present
a new and simplified definition of the planning problem,
describe the basics of the planning process, lay out the
new system design and examine the functionality of the
core reasoning module.

Paul H. Morris
Caelum Research Corporation
NASA Ames Research Ccnter

Mail Stop 269-2
Moffctt Field, CA 94035, USA

phone: + 1 650 604 47 13
h x : +I 650 604 3594

pmorris@ptolemy.arc.nasa.gov

Kanna Rajan
Caelum Research Corporat~on
NASA Ames Research Center

Mail Stop 269-2
Moffctt Field, CA 94035, USA

phone: + 1 650 604 0573
fax: + I 650 604 3594

kanna@ptolemy.arc.nasa.gov

1 . INTRODUCTION

The Remote Agent (Muscettola et al. 1998) is the
first complete autonomous spacecraft control architec-
ture to run as flight software onboard an active space-
craft. In a unique experiment in May of 1999, the
Remote Agent was flight-validated onboard the Deep
Space One spacecraft. During this experiment, the
Remote Agent successfully generated complex plans
which included thrusting of the Ion Propulsion System,
slewing and taking pictures. The Remote Agent exe-
cuted the generated plans safely, and correctly handled
a number of injected faults during execution.

As discovered during the development of the Remote
Agent Planner, the spacecraft domain provides a num-
ber of challenges that are typically not addressed in au-
tonomous planning technology decelopment:

Activities are executed concurrently onboard the
spacecraft, so a plan consists of' concurrent activity
sequences that can safely be executed in parallel.

Resources, such as power, fuel, data storage, are
strictly limited. A planner must guarantee that
possibly concurrent activities in a plan will not ex-
ceed resource availability.

Activities have complex interactions and con-
straints between them, and any plan generated by
the planner must satisfy all constraints and take all
interactions into account.

Activity duration is often flexible. A planner must
therefore be capable of reasoning about activities
that only have bounds on their duration.

To meet these challenges, the Remote Agent Plan-
ner was based on an approach to planning that departs
from the more classical planning approaches (Bylan-
der 1994) in a number of ways. (1) The planner rea-
sons about parallel activity sequences, each of which
represents the changing state of some system attribute.
(2) It can reason about activities that have flexible du-
ration, while taking into account quantitative temporal
constraints between them. (3) The goal of the planner is
not to generate a fixed sequence, but rather to generate
a plan description that is suitable for execution. (4) The
planner handles a rich action representation language
that can describe the complex activities of real-world
systems. This language is also unique in that it elim-
inates the syntactic and semantic distinction between
actions and steady-states. (5) The planner allows for
a structured domain description language that is suffi-
ciently expressive to describe the rules and interactions
in complex real-world domains such as spacecraft.

The applicability of this approach to real-world plan-
ning problems was clearly demonstrated in the Remote
Agent Experiment. Nonetheless, work continues on the
debelopment of the approach, both in terms of the un-
derlying planning framework and in terms of the imple-
mented planning system. The Next Generation Remote
Agent Planner is the next step in this development, pro-
viding a simpler and clearer definition for the planning
framework, and an enhanced, modular implementation
of the planning system.

The simplified planning framework is derived di-
rectly from the framework underlying the original Re-
mote Agent Planner. It is just as expressive as the origi-
nal framework, but has been simplified by unifying con-
cepts and simplifying the problem specifications. The
implemented planner is also based on the original plan-
ner. but a number of interesting enhancements have
been made. First of all, it is based on a new modular
system design, aimed at making it easy to modify, main-
tain and enhance the different components that make up
the system. Secondly, the interface that the core sys-
tem provides to the top-level planner search engine has
been significantly simplified. Whereas the original sys-
tem was limited to backtracking search, the new frame-
work, in conjunction with the simplified top-level in-
terface, make it possible to utilize other, possibly more
efficient, search techniques, such as repair-based search
and dependency-directed search. Third, the new system
includes a new constraint reasoning module that allows
arbitrary procedural constraints to be used. This speeds
up the constraint reasoning, which is a crucial part of

the planning process, and eliminates previous limita-
tions on the set of constraints that can be represented.

In this paper, we describe the simplified planning
framework, and give an overview of the new imple-
mented planning system. We first present the planning
framework in an informal manner. We then describe the
approach used to solve the planning problems, and give
an overview of the new planning system. We continue
by providing some details about the new constraint rea-
soning mechanism, and conclude by looking at what
has been done and what is on the agenda.

2. THE PLANNING FRAMEWORK

In this section, we will describe the simplified plan-
ning framework, on which the Next Generation Remote
Agent Planner is built. The planning framework defines
the class of planning problems being solved, i.e, what
the world looks like to the planner, and what constitutes
a valid plan.

Let us start by looking at what the end result of the
planning process should be, i.e, what constitutes a plan.
Considering the planner as part of the Remote Agent
system, a completed plan is a program or a recipe for
what activities the Remote Agent Executive should per-
form and what states should be maintained. In clas-
sical flight software systems, such a plan consists of
time-stamped tasks, each to be executed at the pre-
determined time. The problem with that approach is
that it requires an explicit tradeoff to be made between
robustness and efficiency. If the time allocated to a task
is close to the estimated execution, any delay will re-
sult in failure. However, if the time allocated to the
same task is much more than the estimated executio?
time, then time is wasted. To resolve this problem, the
Remote Agent is capable of handling temporal flexibil-
ity in timepoints describing transitions such as going
from the engine thrusting to the engine being off. This
means that the start of one task can be tied to the com-
pletion of another task, minimizing the effect of any de-
lays, while maintaining the robustness of the plan. The
end result of this is that the generated plan is defined,
not by fixed times for transition timepoints, but rather
by bounds on those timepoints and temporal constraints
between them. Figure 1 shows what a simplified, small
plan might look like.

In order to define the planning framework, we must
now specify what "activities" are, what temporal con-
straints are and what constitutes a valid plan. Since the
exact set of activities and rules will depend on the envi-
ronment in which the planner operates, the planner uses
a description of the activities and rules in each environ-
ment. Such a description is called a domain model, as

ENGINE

CAMERA /

ATTITUDE

Figure 1: A simplified plan showing activities for en-
gine. camera and attitude. Arrows show temporal con-
straints between transition timepoints.

i t models the domain in which the planner is operating.
Describing the planning framework is therefore largely
a question of defining what a domain model is.

Many real-world systems, including spacecraft, can
naturally be described in terms of components that at
each point in time are in a certain state or performing a
certain activity. For example, at any point in time, the
attitude system can either be holding a specific attitude,
or turning from one attitude to another. This natural ap-
proach to modeling real-world systems is mirrored in
the planner, which plans by reasoning about how the
states of such components can change over a given pe-
riod of time. To generalize this, the basic concept in the
domain model is an attribute which describes a part of
the world that can change over time, e.g, the state of a
spacecraft system component.

To specify an attribute, the set of possible val-
ues (representing states or activities) must be given.
Since states and activities are often fairly complex,
the attribute values are described in terms of predi-
cutcs that can have multiple parameters. For exam-
ple, the attribute value describing the state of hold-
ing a constant attitude must have the pointing coor-
dinates as parameters, resulting in a predicate of the
form constant Pointing (a , d) , assuming equa-
torial coordinates.'

A predicate is defined by a unique predicate name, a
sequence of parameter domains and optionally a set of
purametrr constraints, which limit the set of valid pa-
rameter value combinations. For an example of a pred-
icate, let us consider an attribute describing the amount

'Technically, these are not predicates, as they do riot evaluate to
true or- false by themselves. However, they can be viewed as shortcuts
for the predicates representing that a given attribute has that particular
compound value

of data stored on the onboard data recording mecha-
nism. A predicate describing data being recorded, aptly
named record, has four parameters; the amount of
data at the beginning of the activity, the rate at which
the data is being collected, the duration of the activ-
ity, and the amount of data at the end. Each parameter
takes a value from a given domain; for example, the
start-data and the end-data parameters have values be-
tween 0 and M, where M is the maximum data storage
capacity. Obviously, not all combinations of the pos-
sible parameter values give rise to a valid record activ-
ity description. Therefore, the final component of the
predicate definition is the constraint that for any instan-
tiation record (s, r, d, e) , the parameters must sat-
isfy s + rd = e.

To structure the domain model, attributes are ar-
ranged together as components of model objects, which
in turn are instances of model classes. This means that a
model class is essentially a set of named attributes. For
example, a class describing engine objects might have a
fuel level attribute, an engine state attribute and a thrust
attribute. The model objects, such as a specific engine,
are then instances of these classes. This allows the same
class definition to be used for multiple instances, e.g, in
a spacecraft with multiple engines.

Having seen how the predicates describe the values
that each attribute can take, let us now turn our attention
to the interactions between different attributes. This in-
teraction is the main complicating factor i n real-world
systems, as many configurations and sequences are ei-
ther not possible or not safe. For an example of such
interactions, let us consider a spacecraft that has an
engine and a camera. Since the engine thrust causes
vibrations, the camera cannot be taking pictures dur-
ing the times the engine is thrusting. This leads to the
constraint that whenever the camera is taking pictures,
the engine must be off. Rephrasing this slightly, the
constraint states that any continuous temporal interval
where the camera is taking a picture must be contained
within a continuous interval where the engine is off.

In order to be able to describe this containment and
other relations between intervals, the planner uses quan-
titative temporal relations. There are twelve possible
relations that come in pairs where one is the inverse of
the other. The six temporal relations classes are:

before, after

contains, containedBy

parallels, paralleledBy

Quantitative bounds can be placed on the distance be-

tween any two timepoints involved in the interval re-
lation. For example, "before[10,20]" indicates that the
tirst interval must end at least 10 and no more than 20
time units before the second one starts.

'113 specify rules, such as the one involving the en-
gine and camera, we use a construct called a conjig-
idration constraint. In principle, a configuration con-
straint is defined for each possible instantiation of a
predicate. Thus, each configuration constraint consists
sf a predicate instance (attribute value) v and a set of
pairs { (r , , 1;), . . . , (T ~ , I I k)) , where ri is a temporal
relation and 1; is a set of instantiations of a predicate.
The semantics of such a constraint are that for any in-
terval I where an attribute has the value ?/, there must,
for each I E (1:. . . , I c } , be an interval J , where an at-
tribute has one of the values in V; and the interval pair
(I. ,I,) satisfies the temporal constraint 7;.

For an example of such a configuration constraint,
let us write up the one for a camera taking a picture of
a specific asteroid. In textual form, the configuration
constraint can be specified as follows:

(camera == picture(asteroid))
containedBy(engine == off)
containedBy(attitude == pointAt(asteroid))
before[O,O](camera == ready)
after1 0,O](camera == ready)

ready

poin tAt(x) i

Figure 2: A graphical representation ot a configuration
constraint. The links indicate temporal constraints that
limit the distance from one timepoint to another.

possible developments of each attribute over the time
period for which the planner is planning. The goal of
this reasoning process is to generate a plan consisting of
a network of transitions between attribute values, such
that all configuration constraints are satisfied.

The approach used by the planner is to generate and
reason about structures called tokens. Each token rep-
resents a restriction on the set of values that an attribute
may take over a specified temporal interval. A value to-
ken is a special type of token, having the additional re- The "containedByM relations specify that each of the
striction that the attribute must maintain a single value engine-off and point-at-asteroid intervals must start no
throughout the associated interval. Other types of to-

later than at the start of the picture-taking interval and
kens are used in the RA planner, such as constraint to- end n o earlier than when the picture-taking interval

ends.2 The "before[O,O]" and "after[O,O]" relations
kens which limit the attribute value to a given set, but do
allow the attribute value to change during the interval. enforce that camera-ready intervals must immediately
However, for clarity we will only consider value tokens

precede and follow the picture-taking interval. Figure
i n this paper. From here on, any reference to a token 2 shows a graphical representation of this configuration
should therefore be read as referring to a value token. constraint.

I t should be noted that although configuration con- The planner utilizes variables to represent the differ-

straints are conceptually defined for each predicate in- ent elements of a token. This allows the planner to rea-

stantiation, in practice, they are specified in the form son effectively about tokens and their interactions. As a
result. a token consists of: of mnfig~warion constraint schemata. Such schemata - .

specify patterns rather than instantiated attribute values,
thus collapsing large sets of constraints into a single
schema. The constraints are then instantiated from the
schemata whenever sufficient information is available
to determine that they are applicable to a given interval.

3. THE PLANNING PROCESS

The Next Generation Remote Agent planning pro-
cess is based on representing and reasoning about the

'Not d~splaying the bounds is short-hand for the distance bounds
being [O, m1.

0 A predicate name

A variable representing the start time

A variable representing the end time

0 A variable representing the duration

0 A set of parameter variables, one for each pa-
rameter to the predicate

In addition to the variables, any applicable parameter
constraints are associated with a token, and so is a tem-
poral constraint enforcing that the sum of the start time
and the duration is equal to the end time

Other temporal constraints may then link start and
end timepoints from different tokens. These can stem

from configuration constraints, or be instantiated as part
of the planning process. Taken all together, the vari-
ables and the constraints, both temporal and parameter,
form a network of variables linked by constraints, i.e,
a constraint network. The constraint network is a dy-
namic entity, as variables and constraints can be added
and removed throughout the planning process. The con-
straint network plays an important role in this approach
to planning, since any plan which gives rise to an incon-
sistent constraint network cannot possibly be extended
to a valid plan.

The planner uses timelines to represent and reason
about the set of possible developments for attributes.
For each attribute of each domain object, the planner
has exactly one timeline. The reason for utilizing such
a specialized construct is that there is a strong relation
between tokens that apply to the same attribute of the
same object, i.e, the same timeline. Consider any two
tokens for the same timeline, each describing a set of
valid attribute values for a temporal interval. If the sets
of attribute values do not overlap, then the two tokens
cannot overlap in time, i.e, one must come before the
other Conversely, if any two tokens necessarily over-
lap. then they must describe the same interval having
the same attribute value. Conceptually, a timeline con-
sists of a sequence of timepoints, each representing a
possible transition from one attribute value to another,
i.e, the start or end of a token. The interval between
any two adjacent timepoints is called a slot. During the
planning process, a slot will either contain one or more
codesignated tokens, or it will be empty.

A set of tokens, along with the associated parameter
variable domains, temporal constraints and timelines,
describes a partial plan. The goal of the planning pro-
cess is to modify this partial plan, until it is a complete
and valid plan. The key observation behind this process
is that for any given partial plan, there are only four re-
quirements that can prevent a partial plan from being
complete and valid:

1. Parameter variables must be assigned values

2. Tokens must be scheduled onto timelines

3. Configuration constraints must be satisfied
4. Underlying constraint network must be consistent

Any violations of the first requirement can be ad-
dressed by selecting a value to assign to each unac-
signed parameter variable. The second requirement
can be enforced by selecting a suitable (not necessar-
ily empty) slot for each uninserted token, and insert the
token there. Depending on whether the slot is empty
or not, the token will be scheduled between two other
tokens or codesignated with a previously scheduled to-
ken. The third requirement can be satisfied without any

selection criterion. The simplest approach is to instan-
tiate any tokens required to satisfy a configuration con-
straint, as soon as a token is inserted on a timeline and
all parameter domains have been grounded. If the token
is later removed from a timeline or the parameter do-
mains are relaxed, then the instantiated tokens are also
removed. Finally, if the constraint network is found to
be inconsistent, one or more constraints and value as-
signments can be removed.

Needless to say, the above methods for enforcing
the four requirements interact with one another, one
fix causing another break. The process of navigating
through these operations is called search, and it can
be a complex and expensive process. However, in this
framework, there are only three relatively simple oper-
ations that require decisions to be made, namely:

Insert a token on a timeline

0 Remove token from timeline

Modify domain of variable, which includes as-
signing single values

Although having a simple set of operations does not
by itself reduce the cost of searching, it does provide
a great deal of flexibility in how the search is done.
However, the resulting flexibility may lead to signifi-
cant reductions in search costs, as more effective search
techniques can be brought to bear.

4. THE SYSTEM MODULES

One of the key goals of this work is to design and
implement a flexible, extendible and portable planning
system that can serve as a research framework for fur-
ther development of autonomous planning and reason-
ing techniques, while also providing the core for future
applications of the Remote Agent Planning technology.
The new system is written in C++, to provide structured
programming, fast execution and portability. As of May
1999, the redesign is complete, the implementation is
almost complete and testing is under way.

The new implementation is based on a careful object-
oriented modular design, which allows modules to be
easily replaced, improved and tested. Figure 3 shows
an overview of the main modules and the relations be-
tween them.

The construint network rnanagr,r is the constraint
reasoning module, responsible for handling the dy-
namic constraint network described above. The main
responsibilities are:

Add and remove variables.

0 Add and remove constraints.

0 Manage and reason about variable domains.

Search

Token Network

Figure 3. An overview of the key modules in the Next
Generation Remote Agent Planner.

0 Inform about local and global consistency.

0 Provide heuristics for variables and values.

The constraint network manager utilizes the temporal
network manager for handling the temporal variables
and the temporal constraints that connect them. This is
done to allow more efficient algorithms to be applied to
the computationally simpler temporal network (Dechter
rt al. 1991). The constraint network also uses external
constraint procedure for representing constraints. Such
external procedures can represent any constraint, rang-
ing from simple arithmetic equalities to the complicated
feasibility evaluations. The design and capabilities of
our constraint reasoning framework are discussed fur-
ther in the next section.

The model manager handles all the information re-
lating to the domain model. As a result, it serves a dual
role; as the input module responsible for setting up the
domain model, and as an information module responsi-
ble for providing information about the domain model.

To facilitate the model manager's role as an input
module, it has a well-defined input interface that can
serve as the single interface for the various different
ways in which a model can be specified. As a result,
it can be connected to a parser for reading domain de-
scriptions from input files, just as well as it can be con-
nected to a graphical user-interface for building models
interactively.

In its role as an information module, the model man-
ager is responsible for effectively responding to queries
about the domain model. This includes providing in-
formation about the hierarchy of domain classes, the

attribute definitions and the predicate definitions. How-
ever, most of the work done by the model manager is in
providing information about configuration constraints.
As the constraints are described by configuration con-
straint schemata, the model manager can map any given
set of attribute values into the applicable configuration
constraint instantiation. Furthermore, to facilitate incre-
mental reasoning, it can also determine what changes
occur in the applicable configuration constraints, given
any two sets of attribute values.

The token network manager handles the top-level
planning operations, thus providing the interface that
the search engine will use. Its main responsibilities are
the following:

0 Initialize timelines and tokens according to the do-
main model and the set of goals to be achieved.

0 Addlremove temporal constraints between token
timepoints.

Insert and remove tokens from timelines. This in-
cludes inserting into empty slots and codesignat-
ing with existing tokens.

0 Provide access to parameter variables in tokens so
that their domains can be modified and assigned
values.

0 Automatically generate and eliminate tokens in re-
sponse to applicable and instantiated configuration
constraints.

0 Determine consistency and validity for the current
partial plan.

Finally, on top of the token network manager, there
is a search engine that controls the planning process.
As mentioned above, only a small set of operations is
required to modify the partial plan during the planning
process. The role of the search engine is to control the
application of these operations, with the goal of finding
a valid and complete plan.

Recall that the only required operations were the
ability to modify a parameter variable domain and the
ability to insert and remove tokens from timelines. Any
of these operations can be undone by performing an-
other operation from the set. For example, assigning
a single value to a variable can be undone by modi-
fying the variable domain to have the set of values it
had before. More importantly, the semantics of the op-
erations guarantee that the effect of undoing an opera-
tion is is the same as not performing the original op-
eration. This holds regardless of what has been done
in between, which is exactly what allows us to utilize
non-chronological methods in the search engine.

The added flexibility available to the search engine
opens a number of possibilities in making the plan-
ning process more efficient. In other domains, vari-
ous search engines have proven to be effective at solv-
ing decision problems such as planning, even in real-
world domains. Among the many candidate search
techniques that may prove applicable to this planning
framework are dependency-directed search (Stallman
& Sussman 1977), limited discrepancy search (Har-
vey 1995), relevance-bounded search (Bayardo Jr. &
Miranker 1996), iterative sampling (Langley 1992),
heuristic-biased sampling (Bresina 1996) and repair-
based search (Minton et al. 1990).

5. THE CONSTRAINT REASONING SYSTEM

The Next Generation Remote Agent Planner is based
on a redesign of the existing RA planner and thus in-
herits a number of existing solutions and algorithms.
However, a completely new framework has been devel-
oped and implemented for doing the constraint reason-
ing. The new constraint reasoning framework is very
general, as it can reason about any set of variables and
constraints. At the same time, it is also quite efficient
as it combines efficient internal reasoning methods with
fast external special-purpose procedural methods.

A constraint network consists of a set of variables,
each taking values from a given domain, and a set of
constraints connecting the variables. Formally, a con-
straint is a relation that specifies which combinations of
values are allowed for the set of variables in the con-
straint's scope. However, this is not how constraints
are specified in practice, as listing the allowed combi-
nations requires excessive amounts of space. As a result
of this, constraints are typically specified using special-
purpose constraint descriptions that the constraint rea-
soning system can understand. In this system, for ex-
ample, temporal constraints are specified by noting the
two variables and the bounds on the distance from one
to the other. The problem with this approach is that al-
though it is very efficient and easy to use, it limits the
set of constraints to those specifiable in this descrip-
tion language. To solve this problem, without incurring
significant efficiency penalties, the Remote Agent con-
straint network manager can handle external constraint
procedures.

A cmstmint procedure is a program that that is ap-
plied to a set of variables, the scope of the constraint.
The procedure implements a mapping that maps each
variable domain to a subset (although not necessarily a
strict subset) of that domain. In other words, the proce-
dure reduces the set of possible value assignments for
the variables, by eliminating values from the domains.

To see how this defines a constraint, let us consider ap-
plying the procedure to a set of domains where each
domain has only one value, i.e, a variable assignment.
The procedure can then either map the set of domains
to itself (indicating that this is a valid assignment to
the variables) or reduce one or more domains to the
empty set (indicating that the given assignment is in-
valid). A procedure therefore implicitly defines a set
of allowed value assignments for the variables in the
scope; in other words, it defines a constraint. The only
restriction placed on a constraint procedure, in order to
make it useful for constraint reasoning, is that it never
eliminate any allowed assignments when reducing the
domain sets.

The key reasoning task in a dynamic constraint rea-
soning system is to try to prove the network consistent
or inconsistent. This is done by applying a technique
called propagation, where information about possible
and impossible solutions is propagated between vari-
ables, through the constraints. In general, correctly de-
termining consistency is NP-complete and will there-
fore have a worst-case complexity that is exponential
in the number of variables. As a result of this, dynamic
constraint reasoning is typically done with limited prop-
agation techniques like maintaining arc-consistency.

In its simplest form, arc-consistency guarantees that
for each value in the domain of a given variable, any
single other \,ariable can be assigned some value from
its domain, without directly violating a single con-
straint. Maintaining arc-consistency is therefore the
process of eliminating any values that do not satisfy the
above condition. This can be accomplished with algo-
rithms that have low-order polynomial complexity. The
tradeoff is that inconsistencies may remain undetected,
as there is no guarantee that three or more variables
can be assigned values without violating a constraint.
However, the fact that inconsistencies may remain un-
detected is not a problem in this planning framework.
The reason is that any uninstantiated variables are even-
tually assigned single values, and i n that situation arc-
consistency is sufficient to determine the overall consis-
tency correctly.

As in most other dynamic constraint reasoning sys-
tems, a propagation algorithm is the core of the con-
straint network manager. The algorithm we have de-
veloped is based on maintaining arc-consistency, but
i t has been extended so that it can take advantage of
other methods that also eliminate values from vari-
able domains. The advantages of this extension are
twofold. First, it allows the propagation to directly take
advantage of the procedural constraints, which can of-
ten eliminate values faster and more effectively than
the arc-consistency maintenance. Secondly, the prop-

agation method can be augmented with other efficient
propagation algorithms such as the one that performs
the propagation within the temporal subnetwork.

The result of all this is not only an efficient frame-
work for performing constraint reasoning, but one that
can easily be extended. Constraint procedures can
be written separately and simply added to the system,
without any modification to the constraint reasoning
mechanism. In addition to that, specialized techniques
for handling certain parts of the network, e.g, the tem-
poral subnetwork, can be added into the constraint net-
work manager with minimal changes.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an overview of the
Next Generation Remote Agent Planner, the next step
in the continuing evolution of the RA Planner. The new
planning system, with the simplified framework and
a modular and flexible design, provides a solid foun-
dation for future applications in autonomous planning
for spacecraft, and a framework for further research
into the many aspects of autonomous planning for real-
world systems.

The development of the Remote Agent planning sys-
tem is ongoing work, as new challenges arise and better
reasoning techniques are developed. This gives us both
clear near-term goals and a number of interesting re-
search venues for future work. As of May 1999, the
planning framework definition and the modular system
design have been completed. The system implementa-
tion is close to completion and testing is already under-
way. Aside from concluding the main system tests, the
near-term goals include the development and study of
different search engines for driving the planning pro-
cess. For the longer-term goals, there are too many in-
teresting research questions and application opportuni-
ties to list them fully in this paper. However, regardless
of which goals are pursued, this new system will pro-
vide a solid foundation for both further research into au-
tonomous planning techniques and future applications
of the Remote Agent Planner.

Bayardo Jr., R. J. & D. P. Miranker (1996). A complex-
ity analysis of space-bounded learning algorithms
for the constraint satisfaction problem. In Pro-
ceedings of the Thirteenth National Conference on
Artificial Intelligence, pages 298-304.

Bylander, T. (1994). The computational complexity of
propositional STRIPS planning. Art@cial Intelli-
gence, 69: 165-204.

Dechter, R., I. Meiri, & J. Pearl (1991). Temporal con-
straint networks. Artijicial Intelligence, 49:61-95.

Harvey, W. D. (1995). Nonsystematic Backtracking
Search. PhD thesis, Stanford University, Stanford,
CA.

Langley, P. (1992). Systematic and nonsystematic
search strategies. In Artijicial Intelligence Plan-
ning Systems: Proceedings of the First Interna-
tional Conference, pages 145-52. Morgan Kauf-
mann.

Minton, S., M. D. Johston, A. B. Philips, & P. Laird
(1990). Solving large-scale constraint satisfaction
and scheduling problems using a heuristic repair
method. In Proceedings of the Eighth National
Conference on Art@cial Intelligence, pages 17-
24.

Muscettola, N., P. P. Nayak, B. Pell, & B. William
(1998). Remote agent: To boldly go where no ai
system has gone before. ai, 103(1-2):5-48.

Stallman, R. M. & G. J. Sussman (1977). Forward rea-
soning and dependency-directed backtracking in a
system for computer-aided circuit analysis. Art$-
cia1 Intelligence, 9: 135-96.

Bresina, J. (1996). Heuristic-biased stochastic search.
In Proceedings of the Thirteenth National Confer-
ence on ArtiJicial Intelligence.

