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Abstract 

'Tllrl 11 tw  gcncration of satellit,es are complex au- 
t oliolnolis systems t,hat present similarities with au- 
tonorno~ls r o h t s .  This paper analyses a design ap- 
p~.o;lcl~ and tools t,aken from robotic research. It fo- 
cuses on t,ho knowledge representations handled by the  
ciifft~rnt archit,ccture components and on the  proble~ns 
;irisi~ig i'roni tho int,cgrat,ion of the  decision capacit,ies 
(i~lcremcnt,al reactive planner). Formal models of ac- 
t io l~s  and tasks from which local representations of a 
1-;rricd lliit,ure are automatically derived, ensure the 
c,o~isistcr~cy of the data.  

Tlic, approiich has been evaluated using a real system 
s~wc,ific.;~t,io~i and a co~nplet~e architectural instance has 
bw11 i~riplenir:nt,cd frorn the  low level real-time control 
rout inch to the hight level missions. 

1 Introduction 

' I l l (>  nelv gcr~cratiori of satellites have to  fit  constraint,^ 

r hat have irnporta~it  repercussions on the  design phi- 
losophy: lighter satellit,es, reduction of the design pro- 
cws d u ~ x t i o n ,  use of "standard" components, simpli- 
fication of thcl on-site rriairitenance (in p a r t k d a r  the  
11t>;1vy cwriti.ol froni t,he cent,ral ground station), and so 
0 1 1 .  T h ~ w  constrairits lead to satellite designs which 
~ri,iri;~gc> I ~ o t l ~  ~ w ~ c t i v e  and  decision cepacities on-board 
t I I V  systerri, that  is a u t o n o n ~ o u s  satellites. 

In this paper, we propose an  approach along with 
tools to dcsign software architectures which are in- 
spired 1)y work in autonomous robot. To illustrate 
dlid ( l e l ~ l ~ ~ i ~ t ~ i l t ~  the relcvarlce of thls approach, we 
li,tvc> ronsidercd, in collaboration with Matra Marconi 
S~).I(  t\ the cxarnple of an  autonomous observation 

'Y'l~is collabol-ation has been supported by t h e  R6gion 
?\l~(li-I'.r.bnbes (France) within the project SyDRE Systhnrs 
Dist~.iI)u~:s Reactifs Ernbarques (On-Board Reactive Dis- 

- 

I'ioc I 11th Intcrnatmnal S>mpos~um on Artificial Intell~gencc. 
liobot~c\ ,rnd Autornat~on In Space. 1-3 lunc 1999 (I'SA CP-440 

satellite. 
The main objective of these new satellites is to allow 

direct access t o  end-users using the World Wide Web 
through ground stations situated all around the world. 
Thus,  unlike SPOT satellites for instance, it must offer 
high level interactions (e.g., "Take a photo of Noord- 
wijk between 9AM and lOAM local time") and must 
be able t,o integrate all the  client requests. 

Consequently, the  system must be able to  man- 
age the planning of the  actions required t o  accom- 
plish the  missions (maneuvers, irnage processing, da ta  
down-loadings, . . . ) and their rxecut ion control, in- 
cluding failure recovery and redundancy management, 
071- board. 

In order to  integrate all these capacities we propose 
a generic software architecture structured in two main 
hierarchic levels (section 2).  A lower functional level 
which embeds all the  basic capabilities of the system 
(device control, servo-control, monitoring, etc) is con- 
trolled by a n  upper decision levrl tha t  plans and con- 
trols the  execution of the  operations required to  ac- 
complish a mission. 

We consider the  elaboration of a real-time, rnodu- 
lar and controllable functional lcvel, using tools such 
as the Generator of Modules Grnohl,  a mastered op- 
eration and we therefor focus 011 the  decisional level. 
Indeed, if the  organization of this level is also well de- 
fined and if different tools exist to implement, its com- 
ponents, t,he actual realization of such complex sys- 
tems still raises important difficulties, the major ones 
being: 

0 t he  knowledge representatiorls: the  different com- 
ponents of the  architecture have to  handle and to 
share da ta  of a varied nature (static models, dy- 
namic state vectors, ~iurrierical/syr~~bolical da ta ,  

tribut,ed Systems) 

') 



etc). 'I'o avoid redundancies and to ensure the 2.1 The Decision Level 
consistency of the system we propose a unified 
knowledge representation associated with an au- 
tomatic synthesis of the local models (section 3) .  

0 t he  m a s t e r  of a lgori thm complexi ty  which requires 
automatic synthesis based on validated models 
and the use of generic tools and control algorithms 
(section 4.2). 
t he  mtegra t ion  of a reactive temporal  p lanner  in 
the decision level raises problems related to i n -  
r remen ta l  p lanning and to the synchronization 
between the future plan (elaborated from a pre- 
dicted state and models of actions) and the on- 
going execution (section 4.3). 

A cornplvte integration based on a simulated satel- 
lite will illustrate our approach (section 5). 

2 Software Architecture Overview 
In order to reconcile both decision and real-time capac- 
ities on board an autonomous robot, a generic software 
architecture composed of 2 hierarchic levels has been 
developed [I] : 

At the lower level a reactive distributed fun,ctional 
level embeds all the operational functions (control 
of devices, processing, . . . ). 
At the upper level, the decisional level decides 
which actions are to be executed according to the 
mission and the state of the system and controls 
their execution at  the lower level. 
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Figurv 1: X generic architecture instantiated for an 
autonomous observation satellite. The functional level 
cwibetls about 20 modules generated by GenolCI. 

The decisional part is responsible for mission manage- 
ment and for the control of the on-board system: it 
has to  interpret the mission, to plan the adequate se- 
quence of actions according to the current state of the 
system and to  control on-board execution. It is com- 
posed of three entities: a supervisor, a planner and 
an execution controller. The planner is used as a re- 
source by the supervisor which actually interacts with 
the next level, controls the execution of the plan and 
reacts to incoming events. An instance of this level 
will be presented in the following sections. 

2.2 The Functional Level 

The actions are executed at  the functional level which 
embeds all the operation functions like the control of 
the various hardware devices (magneto-meters, earth 
sensors, gyroscope, gps, reaction wheels, ...), and also 
processing like orbit prediction or image processing. 
This level is organised as a network of modules: the 
functions are embedded in independent modules that 
have the responsibility of physical or logical resources. 

The modules are capable of performing a number 
of specific services by processing inputs from, or act- 
ing on, physical robot devices and/or other modules. 
The services are parameterised and activated asyn- 
chronously through a non-blocking clientlserver proto- 
col: a relevant request,  that may include input param- 
eters, applies to every service of each module. Thus 
requests start processings. The end of the service is 
marked by a reply returned to the client that includes 
an execut ion report and possibly data results. 

For this application we have developed about 20 
modules: one basic module for each hardware device 
(sensors, actuators, payloads, communication), one for 
the orbit prediction'computation, and several to esti- 
mate and to servo-control the attitude using the pre- 
vious basic ones (Figure 1). 

Every module at  the functional level is an instance 
of a generic model. They are automatically generated 
using the generator of modules GenoSI which simplifies 
the design process and ensures a correct implementa- 
tion (see [2]). 

3 Knowledge Representations 

A unified and consistent knowledge representation is 
fundamental to design and implement complex high 
level software architectures. Only a unified and for- 
malized knowledge representation: 

0 ensures the consistency of the local representation 
of the different architectural components; 

0 allows the use of generic, and thus validated, ar- 
chitectural components; 
allows automatic code synthesis. 



However if all the components of the architecture 
(i.e., the supervisor, the execution controller and the 
planner for the proposed architecture) i n  fine reason 
on, or handle, the same low level functional operators 
of the functional level, they do not consider the same 
properties of these operators. 

Whereas the activities of the functional level are 
essentially characterized by numerical processing, the 
decisional level needs an abstract and symbolical rep- 
resentation (effects, conditions, resources used) to  or- 
ganize their execution. 

Moreover, each component of this decision level re- 
quires specific knowledge: 

for planning purposes the planner needs to know 
their effects, their (pre-)conditions, their dura- 
tion, their resource consumption, using or pro- 
duction, etc.; 

0 the supervisor that supervises the correct execu- 
tion of the plan of actions and implements the 
failure recovery needs to  know all potential mal- 
functions of every action. 
and finally the execution controller needs to know 
how to control (start, stop or parameterize) these 
actions at the lower level. 

From these considerations we have elaborated act ion 
models that can be seen as an abstraction of module 
requests. Thus these actions modelise the low level 
operators and fill the gap between the functional and 
the decisional levels. 

The hight level missions will be realized by combin- 
ing these basic actions into tasks.  The tasks are se- 
quences of actions that allow us to predefine complex 
operators. They fill the gap between the hight level 
rriissions arid t,he on-board capacities (the actions). 

The actions represent the basic platform-dependent 
capacities of the system (control of hardwa.re devices, 
servo-control, moriit,oring, filtering, etc), whereas the 
t,asks represent complex application-depend functional 
capacities. 

Action and task representations must be formal to 
allow aut,omatic synthesis and reasoning both for the 
plannirig arid the supervising processes. 

3.1 Action Representation 

Thc decisional level has to decide which of the opera- 
tional functioris (ie, of the requests) are to  be executed 
at  t,he lower level. However, it can not reason directly 
011 the request descriptions provided by GenoM. These 
descriptions are only functional and do not integrate 
information related to their conditions or effects on the 
state vector of the agent. Moreover this data cannot 
be added to t,he module description as they depend 
on the application context (eg: according to t,he situa- 
tion, satellite maneuvers can be allowed or not during 
image acquisitions). 

Thus, from a bottom-up view point, the requests 
have been enriched with the actions: actions are exten- 
sions of module requests with semantic information. 

The description of an action is basically composed 
of two parts : 

0 structural and functional information (name, re- 
quests involved, all possible termination status, 
. . . ) to  control the execution of the action when 
required; 

0 resource and logical information (effects on the 
resources, conditions and effects on agent state) 
which allow reasoning about the usage and conse- 
quences of the action. 

Actions are defined as a list of ( a t t r i b u t e :  
value)  couples containing executive service name 
(serv ice) ,  the non-nominal possible termina- 
tions (end-slots) ,  resource usage/production and 
consumption (uses ,  consumes, e f f e c t s ) ;  the 
conditions and effects specifications ( a s se r t i ons ,  
e f f e c t s ) .  

The following example is the action CAMERA that al- 
lows to take an image: 

act ion CAMERA 
service 
concurrence 
end-slots 
uses 
consumes 

produces 
assertions 
effects 

>; 

: take-image; 
: interrupt; 
: cam-hard-failed, cam-soft-failed; 
: camera(1); 
: power(20)Qstart, 
mmu(100)Qstart; 

: image(1)Qok; 
: on-zone() = ?zone in [start,okl; 
: image(?zone) = taken Qok; 

The actions are characterized by the following prop- 
erties: 

An action starts on the controllable2 event 
s t a r t / - .  

0 The end of an action is associated with the termi- 
nal contingent event3 -/end. 
The terminal event is always associated with a re- 
port that characterizes how the action has ended 
(the default report is ok). 
An action may be interrupted by the controllable 
event k i l l / - .  

0 An action may produce intermediate contin- 
gent events. The default intermediate event 
- / s t a r t e d  confirms its starting. 

Act ions  are the  smalles t  en t i t y  handled at the  up-  
per levels o f  the  architecture. The decisional level can 

2This event is controllable from the decisional level view 
point. The controllable events are not,rd evt/-. 

3This event is contingent from the decisional level view point. 
The contingent events are noted -/evt. 



act on t,he system only using the controllable events 
s t a r t / -  and k i l l / - ,  and the evolution of the system 
is perceptible (measurable) only through the incom- 
ing (:ontingent event - / s t a r t e d  and -/end (associated 
with t,hrir terminal reports). The state vector of the 
system is the integration of all these events. 

From the textual description of an action a graph- 
ical representation can be derived (Figure 2). This 
representation will be used to  define tasks. 

ACTION 
Resources 
Conditions other-1 

Effects 
other-N 

IDLE INIT : RUNNING I IDLE 

Figure 2: G'rapt~ic 11nd synthetic uiew of action. The  
trrrre I-UTLS from left to right. T h e  incoming black ur- 
TWIS (or  slots) rr:ceiue the s t a r t / -  ( o n  the left) and 
t h ~  k i l l  / -  ( o n  the top)  events. The outgoing ones 
c:rpv-t the w e n t s  produced b y  the action during i ts  ex- 
P I . I I ~ O T L  ( o n  the bot tom) or  at its end ( o n  the right). 
Tlw r.nd slots o n  the right are ezclusive and allow ex- 
presston of corlditional tasks according to  t e r m i ~ ~ a t i o n  
I ' ? ~ O T ' ~ S .  

3.2 Task Representation 

'Thv task model is defined as a complex combination of 
ar t  ions, expressing control and ordering information of 
iictio~ls. Formally, a task can be defined as { { A i ) ,  R ) ,  
{A,} being a set of actions and R being a partial order 
I-rlatiori bet,wee~i these actions. 

Tlit, tasks are designed by the operator using an 
in tu i t i~c  graphical tool called TaskBuilder.  Within 
this environment,, the actions are composed using their 
graphical representation: "contingent" slots (ie, inter- 
rllt&~te or terminal slots) are linked to  L'controllable" 
o n t ~  (ir ,  Sti~rt  or kill slots). In such a way, one car1 ex- 
press part of known plans or skeletons (partial graphs) 
of actions t,hat represent complex satellite processes, 
includir~g failure detections and recovery actions (us- 
ing the difft:rent termination slots). 

Figure 3 presents a simple example of a task with 
three different actions. The nominal process of this 

task involves two actions: CAMERA to t,ake an image 
and D O W N L O A D  t o  down-load it to  a ground station. In 
case of camera failure the CHECK-UP action is invoked. 

Figure 3: A n  example of task composed of three ac- 
t ions.  According t o  the report of the CAMERA action, 
the sys tem down-loads the image or checks the equip- 
m e n t .  

3.3 Automatic synthesis of the models 

The action arid task formal modc.1~ have been de- 
signed t,o unify the representations handled in the 
architecture. From the action and task descriptions 
TaskBuilder a u t o m a t i c a ~ ~ y   produce.^ (Figure 4 ) :  

0 the upper execution controller procedures that al- 
low execution of the different itctions by sending 
the adequate module requests; 

0 the planning operators for tht) planner that are 
elaborated from both the resource and logical in- 
formation on the actions i n v o l ~ t ~ d  in t,he task, and 
the partial order relation betwcmi these actions; 

0 the supervision procedures elaborated from the 
relations between the all the evmts arid their ter- 
mination or intermediate reports. 

Because of the limitations of planning algorithm (2.e. 
no handling of conditional plans) the planning oper- 
ators derived from the complete task model, contain 
only t,he subset of nominal actions and their relations. 
The supervision procedures integrate the complete de- 
scription including nominal arid rlon-nominal events 
and actions. The contingent events that are not ex- 
plicitly considered in the task description, implicitly 
aim to a failure state and a survival mode of the satel- 
lite if they occur during the task execution. 

4 Decision Level Integration 

4.1 The execution controller 

The execution controller, or executive, interfaces the 
functional and the decision levels. It is a purely reac- 
tive system without reasoning. It controls the module 
requests according to  the "controllable" eventas coming 
from the supervisor, and returns "contingent" events 
from the execution reports. An action can involve 
several module requests coordinated by the executive. 
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Thc~ cwcutlve is written with PRS and its proce- 
<l~lri,s 11d~c bccm entirely produced by the couple of 
51 >tcnls TaskBuilder and GenoM (Figure 4). 

4.2 The Supervisor 

-45 presented 111 section 2, the supervisor is actually 
thc conductor of the decisional level. It is in relation 
ultll 

tlw users, through mission requests; 
the planner, t,hrough planning requests and tlie 
returned solution plans; 

0 t h  execution controller, through action events. 

Tlw supervision system is divided into two differ- 
(mt subsystenls (Figure 1). The upper one deals wit,ll 
tlicl clients' requests. It receives mission obscrvations, 
prowssos the111 taking into account client priority and 
Hight over target area. According to these data tlie 
supcwision sends a planning request to the planner. 
This part is applicat,ion dependent as it contains all 
the application specificities due t,o the interface be- 
t M.(:oI~ users and the autonomous satellite. 

Tlic lower subsystem is in charge of the c~xecution 
nrid thr' supervision of the pla,n produced by the plan- 
I I ( T .  Ulilike the. upper one, this subsysterrl is generic.  
Following t,he dynamic t,ask plan and the task niodrls 
pr.otilict~1 by TaskBuilder,  it st,arts actions by send- 
ing the adeqnatc everit,s t,o t,he executive and integrates 
rc~turried fectdbacks to makc the plan progress and to 
cmtrol its c.xccut,ion. 

The plan rnaintairied by the supervisor is composed 
of the. 3 following part,s: 

Static description of task produced from the for- 
mal model by TaskBuilder.  

0 Numerical temporal data: the planner returns a 
temporal window for each event corresponding to 
an action event contained in the newly inserted 
tasks of the plan 

0 Symbolic temporal relations between events of dif- 
ferent tasks. 

The two last parts of the plan are dynamically pro- 
duced by the planner in response to planning requests. 

The supervision of the plan is achieved by analysing 
received feedbacks from the executive. According to 
the execution report of the actions, the plan progresses 
following nominal or non-nominal branches of the com- 
plete static description. A fatal error occurs when 
there are no action operations (starting or interrup- 
tion) associated with a received c3xecution report. The 
satellite switches automatically to a survival mode, 
closing all client connections and waiting for the main- 
tainer's intervention. 

Our supervision system is irnplemented using a tool 
called P R S  (for Procedural Reasoning System) ([3,4]).  

4.3 Planner 

The asynchronous arrival of nunierous client requests, 
their strong temporal constraints (ie, the communi- 
cation or image acquisition temporal windows), the 
inaccuracy of t,he orbit prediction in long term, the 
ilnportant resource constraints (eg, shared hardware 
devices, images storage capacities before their down- 
load, limited energy capacities between two battery 
rechargings with the solar panels, etc) call for an effi- 
cient incremental  temporal planner. 

This incremental planning has been elaborated upon 
I m T ,  a temporal planner developed in our research 

group (PI). 
A temporal planner. IXmT is a general and open 
planner (see [6] for an adapted planner). Its formalism 
is based on a reified temporal logic that defines sev- 
eral temporal predicates on both state and resource at- 
tributes. State attributes are handled with the event 
predicate to express a change in the world, whereas 
the persistence can be expressrd by the hold pred- 
icate. Concerning resource management, one can ex- 
press resource usage during a determined time interval 
(use predicate) or resource production (produce) and 
consurnption (consume). I m T ' s  algorithms are sound 
and co~nplete. Until now ImT has not been integrated 
witah a supervisor as an increment,al reactive planner. 

An incremental planner. The incremental plan- 
ner, based on an I.WT's kernel, has to maintain a 
global historical plan of all missions sent by the clients, 
updating it for each new request. 

Thus, the planner is a plan scrver running concur- 
rently to thr  supervisor: the supervisor sends a plan- 



ning request to the planner and get back a new tem- 
poral plan. This dynamic link between the supervisor 
and planner builds the planning problem online, using 
the planning operators synthesized by TaskBuilder 
from the task descriptions. 

A reactive planner. Another problem to integrate 
the planner/supervisor couple is related to the syn- 
chronisation of the plans. In order to predict the fu- 
ture state of the system, the planner maintains a global 
plan elaborated from the task and action models that 
will quickly diverge from the real executed plan with- 
out synchronisation. Thus, several synchronisation op- 
erators have been added allowing the supervisor to  up- 
date the planner plan: 

the planner gets the real execution date of all 
events as they occur, 

0 the resource and logic states predicted by the 
plannrr are updated by the supervisor according 
to the real feedback of the actions, 

0 the planner can retract tasks from its plan in case 
of failures or mission abortion. 

In return, the planner informs the supervisor about 
a new plan insertion resulting from a new planning 
request. A translation between the planning represen- 
tation and the supervision one is necessary, including 
completion of a nominal plan by failure recovery ac- 
tions. Therefore, the supervisor plan model is dynam- 
ically updated. 

Finally, the planning time process must be bounded 
to ensure the global system dynamics. 

5 Application to  an Autonomous 
Satellite 

The presented methodology and tools to  design the 
software architecture of autonomous systems have 
been evaluated on a future autonomous observation 
satellite project. 

To run the whole system, we have implemented a 
simulator to emulate the physical system: the earth 
rotation, the orbital motion of the satellite (including 
noises), the energy consumption of the hardware de- 
vices, the occurrence of failures, and so on. 

An example of a user mission is presented bellow. It 
corresponds to an image acquisition request with pa- 
rameters including: the target area (Toulouse), some 
constraints for the image acquisition (local time in- 
terval, maximum inclination, type of camera . . . ) and 
on-board image processing, the client identification (in 
particular to know where to down-load the image) and 
t,he request priority (in case of resource saturation). 

r (IMAGE-RUST (ZONE TOULOUSE 43.62 1.45 30 
12:OO 13:OO) 

(IMAGE HIGH NONE NONE ( . . ) )  
878 12)) 

Once selected by the supervisor, this client request 
is translated to  a planning request and sent to  the 
planner. 

This mission uses the task take-image which con- 
tains 4 main steps involving 8 basic actions: 

1. satellite orientation (SLEW action) 
2. image acquisition (CAMERA, ZONE-IN and ZONE-OUT 

actions) 
3. data processing (IMAGEPROC action) 
4. processed image down-loading to the client's 

ground station (DOWNLOAD, ZONE-IN and ZONE-OUT 
actions). 

ZONE-IN and ZONE-OUT are monitoring actions that 
allow detection of the entrance or the exit of the satel- 
lite over a given area (for photographic or for com- 
munication purpose): a contingent event is returned 
to the decisional level once the monitored condition is 
satisfied. 

Note that a single action may involve several mod- 
ule requests a t  the functional level. For instance, the 
SLEW action requires several sensors and actuators to 
estimate and control the attitude of the satellite. 

The average time taken by the planner to find the 
solution plan is about 2 seconds4. The resultant plan 
is presented in figure 5. In this example the request 
has been integrated in a plan that already contained 
2 previous user requests. Only three planning opera- 
tors have been used here (the two first operations of 
the take-image task have been gathered) TAKE-IMAGE, 
DSP, DOWNLOAD. 

/ END OF P U N  > I  

Figure 5: A n  example of temporal plan. The opera- 
tors (listed on  the left) of three different tasks ( R ~ s T ~ ,  
RQST2, RqST3) are intertwined. The arrows represent 
their precedence constraints. 

4Let us recall t h a t  the  t ime allocated to the  planner to  find 
out  a solution is bounded. T h e  request is put back to  the mission 
queue if no solution is found. 



The planner translates the  plan as a chronology of 
events for the  supervisor. The  following PRS facts give 
an  illustration of tha t  data.  The first group shows sym- 
bolic temporal constraints between events belonging t o  
different tasks. 

(EPP 1 (EVENT TI END CAMERA I) 1 (EVENT TI END DRBCP.OUT 1)) 
(EPP 1 (EVENT TI END CAMERA 1) 2 (EVENT TI START SLEY 1)) 
(EPP 1 (EVENT TI EN0 DRBCPLIN 1) 1 (EVENT TI START DRBCP.DUT 1)) 

The next 3 facts express the  temporal window of 
cach event of the plan. 

r (ETY 1 (EVENT TI START DRBCP-IN 1) 300 3889 642) 
( E N  1 (EVENT TI START ORBCP-OUT 1) 3600 4189 -1) 
(ETU 1 (EVENT TI START SLEW 1) 0 3689 236) 

Arid finally, t o  complete this da ta  dynamically pro- 
duced by the planner, the  supervisor uses PRS pro- 
ccdures, synthesized by TaskBui lder  from the  static 
tiescription of the  tasks (pair of condition/action-like 
rules). 

(ETP (.(EVENT TI END CAMERA 1) ok .)(EVENT TI KILL ORICP-OUT 1)) 
(ETP ( (EVENT TI END ORBCP-OUT 1) inter .)(EVENT TI START DSP 1)) 
(ETP (.(EVENT TI END DSP 1) ok .)  (END)) 

Figure 6 is a screen copy of a n  experiment session. 
One can distinguish the  supervisor ( top left), the  exe- 
cution controller ( top right), the user console (bottom 
Icft), the planner (bottom right) and the simulator in 
the center showing the  satellite and the current area 
being flown over. 

Figure 6: A snapshot of the experiment running 

6 Conclusion 

The objective of this study is t o  analyze and demon- 
strate concepts and tools taken from research in 
robotics to design the new generation of autonomous 
satellites. Formal hierarchic models of knowledge rep- 
rcwntations (z.e. action and task) have been pro- 
posed and allowed to: 

automatically produce the  derived instances han- 
dled by the  different architecture components, 
ensure the  consistency between model instances. 

Concerning the  deliberative processes, we have im- 
plemented the  integration of planning within the  dy- 
namic loop of execution/supervision. This includes a n  
incremental planning based on I m T  and a n  extension 
of the  planning capabilities (necessity t o  extend the  
task insertion control). 

Actions and tasks describe both nominal and non- 
nominal situations tha t  are managed by the  supervisor 
according t o  the  feedback received from the  functional 
level. 

The executive and the  lower part  of the supervisor 
are generic and handle models automatically synthe- 
sized by GenoM and TaskBui lder .  This simple the  
integration procedure masters the  complexity of the  
system. 

The  approach has been evaluated using a real spec- 
ification, and a complete a r~h i t~ec tu ra l  instance has 
been implemented from the  low level real-time control 
routines to  the  highest level missions. 
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