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ABSTRACT 
In addition to needing remote planning and execution for 

This paper describes three autonomy architectures for a isolated spacecraft, a trend toward multiple-spacecraft 
system that continuously plans to control a fleet of missions points to the need for remote distributed planning 
spacecraft using collective mission goals instead of goals and execution. The past few years have seen missions with 
or command sequences for each spacecraft. A fleet of self- growing numbers of probes. Pathfinder has its rover 
commanding spacecraft would autonomously coordinate (Sojourner), Cassini has its lander (Huygens), Cluster I1 
itself to satisfy high level science and engineering goals in has 4 spacecraft for multi-point magnetosphere plasma 
a changing partially-understood environment - making 
feasible the operation of tens or even a hundred spacecraft 
(such as for interferometer or magnetospheric constellation 
missions). 

1. INTRODUCTION 

Until the past 5 years, missions typically involved fairly 
large expensive spacecraft. Such missions have primarily 
favored using older proven technologies over more 
recently developed ones, and humans controlled spacecraft 
by manually generating detailed command sequences with 
low-level tools and then transmitting the sequences for 
subsequent execution on a spacecraft controller. 

This approach toward controlling a spacecraft has worked 
spectacularly on previous NASA missions, but it has 
limitations deriving from communications restrictions - 
scheduling time to communicate with a particular 
spacecraft involves competing with other projects due to 
the limited number of deep space network antennae. This 
implies that a spacecraft can spend a long time just waiting 
whenever a command sequence fails. This is one reason 
why the New Millennium program has an objective to 
migrate parts of mission control tasks onboard a spacecraft 
to reduce wait time by making spacecraft more robust 
[Muscettola et al. 971. The migrated software is called a 
"remote agent" and can be partitioned into 4 components: 

a mission manager to generate the high level goals, 
a plannerlscheduler to turn goals into activities while 
reasoning about future expected situations, 
an executive/diagnostician to initiate and maintain 
activities while interpreting sensed events through 
reasoning about past and present situations, and 
a conventional reactive controller to interface with the 
spacecraft to implement an activity's primitive actions. 

measurements. This trend is expected to continue to 
progressively larger fleets. For example, one proposed 
interferometer mission [MettlerLkMilman 961 would have 
18 spacecraft flying in formation in order to detect earth- 
sized planets orbiting other stars. Another proposed 
mission involves 5 to 500 spacecraft in Earth orbit to 
measure global phenomena within the magnetosphere. 

To describe the 4 software components of autonomous 
spacecraft and constellations, the next section describes a 
masterlslave approach toward autonomously controlling 
constellations. While being a conceptually simple 
extension to single-spacecraft autonomy, this approach has 
several problems that motivate the next section on 
teamwork. Teamwork replaces masters and slaves with 
leaders and followers, where a follower has the autonomy 
to look after its teammates. The fourth section discusses 
ways to expand teamwork to let each spacecraft function 
both as a leader and a follower, and the last section 
concludes by discussing hybrids of the three architectures. 

2. MASTERISLAVE COORDINATION 

The easiest way to adapt autonomous spacecraft research 
to controlling constellations involves treating the constell- 
ation as a single spacecraft. Here one spacecraft directly 
controls the others as if they were connected. The 
controlling "master" spacecraft performs all autonomy 
reasoning while the slaves only transmit sensor values to 
the master and forward control signals received from the 
master to their appropriate local devices (fig. 1). The 
executiveldiagnostician starts actions and the master's 
reactive controller manages actions either locally or 
remotely through a slave. 

The 3 modules above the reactive controller essentially 
follow the standard belief-desire-intention (BDI) 
framework [Rao&Georgeff 951. The mission manager 
takes a set of beliefs and generates de.sire.s (goals) for the 
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FIG.: 1 Architecture for MasterlSlave Coordination 

plannerlscheduler, which translates them into intentions 
(plans) for execution. Gat describes 3T [Gat 971, another 
architecture with three layers to deliberate, sequence, and 
control. While deliberation combines mission manage- 
ment and planning, the other two layers match the 
executive and the reactive controller. EVAR [Schoppers 
951 illustrates another case where the executive subsumes 
both the planner and mission manager. In general, we can 
describe most autonomous agent research as variants on 
the BDI model with different approaches toward 
implementing the modules and their interactions. 

At the lowest level the executiveldiagnostician (or just 
"executive") takes an activity sequence, incrementally 
feeds activities to the reactive controller and monitors 
results to update the system's state - a model of the 
constellation and its environment. Since performing an 
activity might have unintended situation dependant results, 
blindly feeding primitive activities to the reactive 
controller is unreliable. The issue here is that the 
Executive must rapidly diagnose and respond to detected 
contingencies. 

EVAR [Schoppers 951 resolved the problem by compiling 
large sequences into universal plans - a clever encoding of 
statelresponse rules that enumerates all states and their 
appropriate responses. Unfortunately this approach only 
works in restricted domains where we can make a practical 
representation that implicitly enumerates all states. 

Another approach involves robustly implementing each 
activity as a reactive action procedure (RAP) - an 
encoding of statelresponse rules for anticipated states 
[Firby 871. Here activities fail when the current state falls 
outside the anticipated set, and failure forces the executive 
to abort the sequence and inform the planner. The issue 
now involves how many actions to feed the executive at a 
time. 

For instance, one system uses variable size planning 
windows to generate sequences where one activity is to 
plan for the next window [Pell et al. 971, and another 

system runs the planner continuously and feeds individual 
activities to the executive as they become executable 
[Ambrose-Ingerson&Steel 881. While these examples 
show that the planner's continual operation is optional, all 
systems must continually run the executive to actively 
monitor and diagnose the reactive controllers. This 
involves using a production system to appropriately apply 
statelresponse rules to affect the system state or reactive 
controller. 

2.2. PLANNEWSCHEDULER 

While the executive reasons about current and past 
activities, the plannerlscheduler (or just "planner") reasons 
about future command sequences. Given the heavy use of 
time and metric resources in spacecraft planning domains, 
we use a heuristic iterative-repair strategy [Rabideau 991 
towards building and maintaining command sequences. 
This approach takes a complete plan at some level of 
abstraction and manipulates its actions to repair problems 
detected by envisioning how the plan would execute on the 
spacecraft. One type of problem involves multiple 
simultaneous actions with conflicting resource needs. For 
example, simultaneously activating too many sensors 
might cause a bus fault by drawing too much power. 
Repairing this problem would involve either deleting or 
moving sensor activation activities in the plan. 

At any given moment the mission manager can suggest 
tasks for the plannerlscheduler to add to the constellation's 
future behavior. Since these tasks are often abstract and 
might conflict with other established tasks the scheduler 
continuously debugs its tasks and sends actions to the 
executive (fig. 2). The planner essentially maintains a set 
of tasks that are abstract in the far future and become 
progressively more detailed as their execution times 
approach. For example, a suggested task to take a picture 
of a target might involve slewing and possibly calibrating 
the camera prior to acquiring the image. This task is 
detailed as its execution time approaches. By continuously 
detailing the earliest tasks, the planner assures that it 
always has actions to send to the executive. 

Abstract tasks from Mission Manager 

Actions sent to ExecutivelDiagnostician 

FIG.: 2 Continually updating the spacecraft acitivities 

As time progresses, activities move from the future plan 
through current execution into the past. During this 
process an activity's expected outcomes get replaced with 



its sensed outcomes, and the constellation's actual state 
will drift from the expected state and cause future 
expectations to drift as well. The planner repairs the tasks 
whenever this drift causes a conflict. 

2.3. MISSION MANAGER 

This module facilitates high-level spacecraft commanding 
by maintaining beliefs involving the high-level mission 
profile. This profile contains a high level behavioral 
description for the spacecraft. This description can take 
many forms from a simple set of temporally constrained 
goals to an elaborate production system that asserts goals 
upon detecting user specified scientific opportunities by 
analyzing parts of the constellation & environment model. 

For instance, the spacecraft would have periodic goals to 
transmit data to Earth. These goals would be temporally 
constrained in order to synchronize with a ground station. 
They also have to be high level to determine how to 
communicate based on the specific state of the spacecraft 
prior to preparing for a downlink. As another example, the 
mission manager might apply a feature detection algorithm 
on a previously captured picture and generate observation 
goals based on the results. 

While a spacecraft can operate entirely autonomously with 
a mission profile. Humans analyzing the science results 
will tend to suggest changes to mission goals for answering 
questions arising from their analysis. We can even vary 
the constellation's level of autonomy by varying the 
abstractness of the mission profile. When using primitive 
action sequences, the profile can short-circuit the planner 
to allow absolute commanding. Adding abstract tasks to 
the profile lets the spacecraft adapt its behavior to its local 
environment, and adding data analysis for rule based 
autonomous goal generation makes a spacecraft detect and 
respond to scientific opportunities. 

3. TEAMWORK 

While the masterlslave approach benefits from conceptual 
simplicity, it relies on an assumption that the master space- 
craft's reactive controller can continuously monitor the 
slaves' hardware, and this relies on high-bandwidth highly- 
reliable communications. Since unintended results occur 
fairly rarely, one way to relax the bandwidth requirements 
involves putting reactive controllers on the slaves and only 
monitoring unexpected events. Unfortunately, this disables 
the ability to monitor for unexpected events between 
spacecraft and leads to a host of coordination problems 
among the slaves [Tambe 971. Also, failures in the 
communications system can result in losing slaves. 

We can apply teamwork models [Tambe 97, Stone& 
Veloso 981 to reduce the communications problem by 
giving the slaves their own executives (fig. 3). This 
replaces the masterlslaves relationship with one between a 
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FIG.: 3 Architecture for Teamwork 

team leader and its followers. Here each follower can 
monitor its own performance and selectiveiy transmit 
results to the leader. Partitioning the system's state into 
local spacecraft states and shared team-states facilitates 
this selective transmission. While the spacecraft keep their 
local states private, they communicate to keep team-states 
consistent across teams in the constellation. 

3.1. REPRESENTING TEAM PLANS 

Instead of sending separate actions to each follower for 
execution, the leader broadcasts the entire reactive team 
plan' to all followers. This lets each follower actively 
monitor its own progress and passively track its 
teammates' activities. This passive monitoring process 
maintains robustness while reducing communications. 

In addition to regular activities found in the masterlslave 
approach, reactive team plans also include team activities. 
These define coordination points where the team 
synchronizes before and after executing the team activity. 
For instance, a 3 spacecraft interferometer has a combiner 
spacecraft to generate pictures by processing light reflected 
from two collector spacecraft. A reactive team plan to 
control the constellation might have 3 team activities (fig. 
4) to coordinate the 3 spacecraft while making an 
observation, and each activity has 2 or 3 sub-activities 
defining how the constellation behaves during the joint 
activities. As illustrated, team activities have brackets and 
those suffixed with an asterisk only apply to subsets of the 
team. In this case the subset denotes the combiner 
spacecraft. The activities in this plan subsequently make 
the constellation attain a rough formation, dress up the 
formation for finer tolerances to make a measurement, and 
transmit the results to Earth. 

While this interferometer's impoverished number of 
spacecraft do not sufficiently motivate the need for 
teamwork, other interferometer mission proposals describe 
over a dozen, or even a hundred, collectors to support the 
combiner. To support teamwork for these larger missions, 

I Given our heavy use of Tambe's formalism, we adopt his 
terminology and call a sequence a reactive team plan. 
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FIG.: 4 Structure of a reactive team plan for a 3 
spacecraft interferometer 

we must alter the executives' underlying architectures to 
manage each spacecraft team's associated team-state. We 
illuminate these changes by describing the machinery 
underlying team activity execution. 

3.2. EXECUTING TEAM ACTIVITIES 

A team of spacecraft contains a leader and one or more 
followers that jointly intend to accomplish some task by 
executing a team activity. Teams dynamically form when 
team activity execution starts and dissolve upon comple- 
tion. When a team performs a task, it shares a team-state. 
This state contains facts like a list of teammates, their roles 
in performing the joint task, and other information to 
coordinate team activity. 

Depending on the action, execution can manipulate the 
reactive controller and alter the local and team-state 
information. Since team-states are replicated across all 
teammates, a spacecraft must broadcast all team-state 
changes to maintain consistency. The standard protocol 
for changing a team-state is a 3-step process where one 
spacecraft broadcasts the change, all teammates broadcast 

syntax, techniques for building and managing hierarchical 
plans, like those described earlier, also apply to generating 
reactive team plans. As such planning does not change 
much when moving from master/slave plans to reactive 
team plans. Just like in master/slave coordination, there is 
a spectrum of ways to generate plans and feed them to the 
executives. At one extreme the lead spacecraft can 
generate a whole plan and then feed the resultant sequence 
to its executives, and at the other extreme it repairs the plan 
incrementally and maintains a copy in the shared team- 
state. 

The real difference between the two approaches involves 
limiting the knowledge to plan from. Where the master 
knew everything about the constellation, the team leader 
only knows a subset of everything. The issue now 
becomes a matter of what status information to put in the 
subset and how fresh to keep it. While increasing the 
information and its freshness improves the leader's results, 
it also increases the communication overhead as the 
constellation's status changes. 

A second issue involves whether the information belongs 
in the team-state, and whether it should be transmitted 
privately to the leader. While putting information in the 
team-state increases the followers' abilities to keep track of 
each other, it also increases the communications overhead. 
Where changing the team-state involves a broadcast 
followed by waiting for multiple acknowledgements, 
changing the leader's local state involves one transmission 
followed by waiting for the leader's acknowledgement. 

One planning approach has the leader managing the team 
plan and follower roles in the team-state, but lets the 
followers privately transmit state updates to the leader. 
Here the leader changes the team plan and roles based on 
pmjecting its expected results given the privately received 
status information. 

acknowledgements in turn, and all teammates update their Another approach still has the leader managing the team 
copies upon hearing everyone else. If a teammate does not plan's activities with heuristically assigned roles in the 
respond before a time-out interval, the original spacecraft team-state, but followers keep status information local and 
rebroadcasts the change. submit change requests as they perform their roles in the 

While only transmitting team-state changes reduce 
communications, the number of broadcasts still implies 
bandwidth problems as the spacecraft population increases. 
Stopping spacecraft from broadcasting a change when 
teammates can infer it from observation further reduces 
communications [HubertkDurfee 95, Tambe 971. For 
Instance, the combiner in our interferometer example docs 
not have to signal the end of a formation activity. Thc 
mere act of slewing to downlink the results tells the 

cvolving team plan [FujitaLkLesser 961. While we can 
assign and reassign roles at random, a better approach 
involves auctioning off the unassigned roles to the 
teammates. The teammates bid on these roles based on 
local information as well as currently assigned roles, and 
the leader can either change the plan or assign roles based 
on these bids. 

4. PEER-TO-PEER COORDINATION 

collectors that the formation activity is over. The approach to alter communication overhead by 
distributing execution monitoring across the constellation 

3.3. GENERATING AND REPAIRING TEAM PLANS can extend to also distributing the planning process. This 
addresses the possibility where the lead spacecraft is 

Although reactive team plans might look like an extension 
disabled. For interferometers this is not an issue because 

on standard hierarchical plans by virtue of the bracket 



losing the combiner spacecraft ends the mission anyway, 
but missions like a 50 satellite constellation are function- 
ally redundant and should not end when any one spacecraft 
is disabled. 

One way to increase robustness involves giving the other 
spacecraft backup planners and mission managers (fig. 5). 
While this lets the next spacecraft in a designated chain of 
command replace a disabled leader, these extra modules 
are underutilized. Instead of transmitting data to a central 
spacecraft for planning, we can use the extra planners to 
move parts of the planning process closer to the data. This 
makes the spacecraft symmetric and coordination becomes 
a collaborative effort among peers. 

Peers 

FIG.: 5 Architecture for Peer-To-Peer Coordination 

This architecture works particularly well with constell- 
ations of satellites that loosely coordinate. For instance, a 
constellation of picture taking satellites might coordinate to 
partition desired targets, but each satellite runs in isolation 
to take its picture. Here the mission managers coordinate 
to partition the goals, and the planners and executives run 
in isolation. This class of loose coordination problem is 
common in the mobile robot community, and some 
systems even call this module a cooperative planning (or 
social) module [Miiller 961. 

4.1. LEVELS OF AUTONOMY 

In teamwork or a chain of command, one spacecraft plans 
how to perform a task and its followers accept and execute 
the results. Combining loose coordination with teamwork 
facilitates letting different spacecraft act as leaders for 
different tasks. Here all spacecraft know about all tasks, 
and each task has a designated lead spacecraft. Research 
on autonomy levels [Martin&Barber 961 generalizes this 
idea. We can give each spacecraft a copy of the plan with 
tasks annotated with one of 5 autonomy levels: 

Observer: spacecraft does not participate, 
Command-driven: spacecraft serves as a follower, 
Consensus: spacecraft collaboratively plans with others, 
Local: spacecraft plans to perform task alone, and 
Master: spacecraft plans and serves as a leader. 

As the 5 definitions imply, autonomy levels specify 
whether or not a spacecraft can change a task. For instance, 
a team's leader has tasks annotated with "master", and its 
followers' tasks have "command-driven" annotations. 
Given these annotations, a spacecraft can simultaneously 
serve as a leader and a follower in two separate teams. A 
spacecraft can even plan and perform tasks in isolation 
while participating in teams. 

While autonomy levels specify which constellation 
members plan out mission manager requested tasks. These 
levels are not static - a spacecraft can communicate with 
the constellation to change a task's autonomy level 
annotations. For instance, a mission manager might 
always assign tasks to its spacecraft at the "local" 
autonomy level. If a team is needed to perform the task, 
the spacecraft will have to change the annotation to 
"master." As Martin points out [Martin&Barber 961, this 
change involves communicating to find spacecraft willing 
to accept "command-driven" annotations. 

Using autonomy levels, we can treat the plan and state 
information as a shared database where each spacecraft has 
varying capabilities to modify tasks based on their 
autonomy-level annotations. Softening the distribution 
requirement from full to partial plan sharing makes a 
constellation operate as a team at one point and as multiple 
independent spacecraft as another. The change involves 
letting spacecraft keep locally planned and executed tasks 
private. 

4.3. COLLABORATIVE PLANNING 

Unlike the other annotations where a single spacecraft 
plans a task, the "consensus" annotation implies that 
multiple spacecraft collaboratively plan to perform a task. 
Collaborative planning involves distributing the plan 
across the constellation and letting each spacecraft detect 
and repair problems. The question now becomes a matter 
of how to keep the plan consistent across the constellation 
while all spacecraft are updating it. The main objective is 
to minimize communications overhead while planning. 

One approach would fragment the plan and distribute the 
fragments [Corkill 791. Since the fragments are disjoint, 
their union would be consistent. Each spacecraft would 
expand its own fragment and communicate to detect and 
resolve interactions. To detect interactions, each spacecraft 
broadcasts its fragment's effects upon determining them. 
When a spacecraft hears of an effect that either helps or 
hinders its own fragment, it initiates a dialog with the 
broadcasting spacecraft to add signaling actions to their 
plans to coordinate the interaction. Thus the required 
bandwidth depends the amount of interaction. 

An alternative approach would give every spacecraft a 
copy of the plan and have them maintain consistency by 
broadcasting changes as they make them. The main 



problem with this approach involves communication 
overhead - the spacecraft would spend most of their time 
responding to each other's updates. 

These two approaches define a whole spectrum of 
collaborative planners depending on the amount of shared 
plan and state information. While the first case shared all 
state information in the form of advertised effects the 
second shared all plan information. 

5. CONCLUSIONS 

This paper described several autonomy architectures for an 
autonomous constellation of spacecraft. Such a constell- 
ation would continually plan to control its spacecraft using 
collective mission goals instead of goals or command 
sequences for each spacecraft. The first architecture made 
use of research relating to a single autonomous spacecraft 
by treated the constellation as a single master spacecraft 
with virtually connected slaves. 

The utilized research describes implementations in terms 
of 4 interacting modules, and the masterlslave architecture 
placed all modules on the master. While the teamwork and 
peer-to-peer architectures keep the 4 modules, they 
progressively give the slaves more authority by replicating 
more of the modules across the constellation. 

While this paper described each architecture in isolation, 
these architectures can coexist within a constellation. Such 
a constellation would have 3 classes of spacecraft: leaders, 
followers, and slaves. Where leaders have the ability to 
plan and collaborate, followers can only execute plans and 
watch out for each other. Both leaders and followers can 
have virtually attached slave spacecraft. 
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