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ABSTRACT 

Our overall objective is to  improve the productivity of 
Mars rovers by increasing the flexibility and robustness 
of their autonomous behavior. To achieve this objec- 
tive, we set out to  increase the on-board autonomy of 
rovers and enable commanding a t  a higher level with a 
more flexible command language. In February, 1999, 
we demonstrated some of our rover autonomy tech- 
nologies as part  of a Marsokhod rover field test that 
simulated aspects of the Mars '01-'05 missions. In this 
paper, we present the commanding language employed 
in this field test, called the Contingent Rover Language 
(CRL), and describe the ground tools and on-board 
executive capabilities that  were developed to  generate 
and execute CRL plans. A key feature of CRL is that 
it. enables the encoding of contingent plans specifying 
what to do if a failure occurs, as well as what to do if 
;i serendipitous science opportunity arises. 

I .  INTRODUCTION 

'I'raditionally, spacecraft commanding is accomplished 
oza rigid time-stamped sequences of primitive opera- 
tions. tf anything goes wrong during execution, built- 
in  routines attempt to  safe the spacecraft and await 
furt,her instructions from Earth. As NASA missions 
become more challenging, more sophisticated space- 
craft are required, as are more advanced means of 
c-ommmding them. As a case in point,, the Mars 
Pathfinder's Microrover Flight Experiment made sig- 
nificant advances over previous robotic missions. So- 
,lourner had to  operate in an uncertain environment 
and respond more autonomously to sensor input. 

\Vith respect to  the Sojourner microrover, for the pur- 
poses of this paper, we focus on the issues of command- 
Ing and contingency; for more details, see Mishkin, et 
n l . ,  1998. L ~ k e  traditional spacecraft, Sojourner was 
c-ommanded with time-stamped sequences, 
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and the commands tended to  be primitive opera- 
tions. However, there were operations that were spec- 
ified a t  a higher level; the primary example is the 
"Go to  Waypoint" command, which implemented au- 
tonomous navigation to  a specified coordinate. 

A command sequence typically specified the activities 
for one sol (Martian day) plus "runout" commands in 
case the next sol's sequence was delayed. These se- 
quences contained no explicit contingencies; however, 
contingency responses to  certain drastic scenarios were 
pre-loaded on both the Pathfinder lander and rover. 
The "Backup Mission Load" was to be used in the 
event of a communication loss from Earth to the lan- 
der, and the "Contingency Mission Load" was to  be 
used in the event of a communication loss from the 
lander to  the rover. 

Our aim is to continue in the technology direction set 
by the Pathfinder mission and increase the robustness 
of autonomous rovers by enabling a higher level of 
commanding with a more flexible and contingent lan- 
guage. The intended benefit is to  increase rover pro- 
ductivity without a decrease in safety. Our strategy 
is to make incremental advancements in this direction 
so as to maintain relevance to  currently planned Mars 
rover missions and to eventually enable missions be- 
yond the current capabilities of flight rovers. 

With planetary rovers, there is uncertainty about 
many aspects of sequence execution: exactly how long 
operations will take, how much power will be con- 
sumed, and how much data  storage will be needed. 
Furthermore, there is uncertainty about environmen- 
tal factors that influence such things as rate of bat- 
tery charging or which scientific t,asks are possible. In 
order to  allow for this uncertainty, sequences are typ- 
ically based on worst-case estimates and contain fail- 
safe checks. If an operation takes less time than ex- 
pected, the rover waits for the next time-stamped op- 
eration. If operations take longer than expected, they 
may be t,erminated before completion. In some cases, 
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all non-essential operations may be halted until a new 
command plan is received. These situations result in 
unnecessary delays and lost science opportunities. 

Our first steps in this effort involved designing a new 
commanding language, called the Contingent Rover 
Language (CRL,), described in the next section. A key 
feature of CRL is that it enables the encoding of con- 
t,ingent plans specifying what to do if a failure occurs, 
as well as what to do if a serendipitous science oppor- 
tunity arises. For example, a CRL plan could specify 
the following contingent rover behavior: when a failure 
occurs, execute a contingency plan to recover from the 
failure; if none is available, then execute a contingency 
plan to acquire additional data  to support failure diag- 
nosis and recovery by the ground operations team. We 
also implemented the ground tools and on-board exec- 
utive capabilities needed to  generate and execute CRL 
plans, described in the following sections. For further 
discussion of the ground and on-board techniques, see 
[Washington, et al., 19991. 

In February, 19'39, we had an opportunity to demon- 
strate some of these rover autonomy technologies as 
part of a field test that was meant to simulate the 
main objectives of the Mars '01-'05 missions. During 
this exercise, b o ~ h  advanced rover technologies and sci- 
ence investigation strategies for planetary surface op- 
erations were demonstrated. In this paper, we primar- 
ily report the aspects of this field test relevant to rover 
commanding via CRL plans. 

2. CONTINGENT ROVER LANGUAGE 

In this section, we describe a new commanding lan- 
guage, called the Contingent Rover Language (CRL). 
CRL was designed to serve as the communication 
medium between the ground operations team and a 
planetary rover, under the following design criteria. 

0 Contingency and Flexibility. The language 
should express the constructs that are necessary 
to achieve scientific goals. In particular, the lan- 
guage should express a variety of temporal and 
state constraints, and it should support condi- 
tional execution of contingency plans based on the 
execution context. 

0 Simplicity. The language should be simple 
enough that an automatic, mixed-initiative plan- 
ning system can provide effective support for plan 
generation. The intended benefit is to reduce ef- 
fort on operations staff and to improve the qual- 
ity of the command plans. Similarly, the language 
should not be so complex that verification of com- 
mand plans is impractical. Safety is of paramount 
importance in space missions, given the high cost 
of mission failure, so guarantees on execution cor- 
rectness are critical for any deployed system. 

0 Compatibility. The language should be com- 
patible with existing command languages; i.e., it 
should allow ground operators to control a rover 
in the same way that they do now. In particu- 
lar, it should be possible to easily specify a time- 
stamped command sequence. The additional ca- 
 abilities should be available for incremental in- 
corporation as needed to achieve mission goals. 

A CRL command plan contains a nominal sequence 
(possibly) with a set of contingent branches, as well 
as a library of alternate plans. The alternate plans 
can be thought of as global contingencies, whereas the 
contingent branches are local contingencies at  specific 
points in the command plan. 

If there are no deviations from the a priori execution 
expectations, then the rover's behavior is governed by 
the nominal sequence. The contingent branches spec- 
ify alternative courses of action in response to expec- 
tation deviations. Within any contingent branch there 
may be further contingent branches; hence, the plan is 
a tree of alternative courses of action. 

The alternate plans are not attached to particular 
points in the command plan; rather, they can be used 
throughout plan execution, whenever their eligibility 
conditions are satisfied. When eligible, each alternate 
plan can either replace the rest of the current plan or 
be inserted before the rest of the current plan. 

Consistent with our compatibility crzterion, CRL can 
be used to encode the type of sequences used in the 
Mars Pathfinder mission, including both the daily up- 
link sequences as well as the Backup Mission Load and 
Contingency Mission Load; these loads would be en- 
coded as alternate plans. 

Due to our simplicity criterion, CRL does not include 
any control constructs for looping. The design decision 
we made is that when control loops are needed for 
execution robustness, they should be embedded within 
a high-level CRL command. An example of a high- 
level, robust command with embedded control loops 
is the "Visual Servo" command, which is somewhat 
similar to Sojourner's "Go to Waypoint" command. 
The Visual Servo command, which was used in the 
1999 Marsokhod Field Test, implemented autonomous 
navigation to a specified coordinate via visual tracking 
of a target at  that coordinate [Wettergreen, Thomas, 
and Bualat 19971. 

Next, we describe the representations used in CRL. 
The basic data type in CRL is a node. Each node 
has associated with it a set of conditions that must be 
satisfied for successful execution; the following are the 
condition types. 

0 start-conditions: The set of conditions that must 
be true for the node to begin execution. Condi- 
tions can include information about the internal 
state of the rover wheel current), external 
state (e.g., 

0 wait-for-conditions: A subset of start-conditions 
for which the rover will wait until they become 
true. Other conditions will fail without wait- 
ing. Some conditions are automatically waited for 
whether or not that is specified explicitly; e.g., a 
constraint on when an action can start executing. 

0 maintazn-conditions: A list of conditions that 
must be true throughout node execution 

0 end-conditions: A list of conditions that must be 
true at  the end of node execution, to verify that 
an action had the intended effects. Constraints 
on action duration can be included here. 

The conditions can contain variables to be bound dur- 
ing constraint checking; these bindings are used to spe- 



cialize the plan according to the execution-time con- 
text. The rich expressiveness of temporal and other 
state constraints on the plan supports effective speci- 
fication of science goals and safety policies, as well as 
providing increased flexibility during execution. For 
example, rather than time-stamps, each action can 
have a start time interval (and an end time interval). 

A node also includes information regarding the ex- 
pected utility of executing the rest of the plan, as 
well as information regarding how to react to  execu- 
tion failures: execution may continue to the next node 
o r  abort. 

CRL has three node subtypes: block, task, and branch; 
a command plan is defined to be a node, typically of 
subtype block. A block represents a sequence of nodes 
over which there may be shared state conditions. A 
task represents an action to execute. A task also spec- 
ifies what action to  perform if the task is interrupted 
due to execut,ion failure. In addition, a task specifies a 
relative priority and expectations about resource and 
time usage. ,4 branch represents a mutually exclusive 
choice point in the command plan. Each of the alter- 
native exec~t~ion paths is represented by an option. 

An option is not a node subtype but a separate data 
type that has one subtype: alternate plan. Options 
and alternate plans specify the conditions under which 
they are eligible for execution and the node (typically 
of subtype block) to execute. In addition to the el- 
igibility conditions, an alternate plan specifies when 
to check its eligibility: ( a )  whenever a failure occurs, 
(ii) whenever a node finishes execution, or (iii) periodi- 
ca ly throughout plan execution. As mentioned earlier, 
when an alternate plan is selected for execution, it can 
either be inserted before the command plan suffix or 
i t ,  can replace the suffix. 

3.  CONDITIONAL PLAN EXECUTION 

In this section, we describe the version of the on-board 
executive that was employed in the 1999 Marsokhod 
Field Test. The conditional executive (CX) is respon- 
sible for interpreting the command plan uplinked from 
ground control, monitoring plan execution, and select- 
ing contingency plans when warranted. CX interacts 
with the rover control system (RC) and with the Mode 
Identification system (MI), which performs monitoring 
and fault diagnosis (described in the next section). 

C X  starts by executing the nominal sequence of the 
command plan. At each point in time, CX may have 
to choose among different courses of action defined by 
the eligible alternate plans and, if at  a branch point, 
the eligible branch options. CX chooses the course of 
action with the highest estimated expected utility. 

C X  receives state information from the Mode Identifi- 
cation system (MI). It uses this information to check 
the various types of state conditions (in nodes), as well 
as to check the eligibility conditions of the alternate 
plans. The ability to  branch on any state condition 
provides the plan writer with a powerful language for 
specifying rover behavior. 

When a failure occurs, CX responds as dictated by the 
node, either continuing to the next node or aborting 
the executing plan and checking for eligible alternate 

plans. In the case that no alternate plans apply, CX 
aborts the plan and awaits new instructions. 

CX communicates with the rover control system (RC) 
using a datagram model of communication. This com- 
munication model allows RC to execute its real-time 
control loops without blocking on communication, but 
it carries with it a risk of lost packets. Hence, the 
communication protocol between CX and RC must be 
robust to this possibility. 

RC broadcasts state and command status information 
on a continual, periodic basis (currently 10 timeslsec). 
The command status information indicates whether a 
command is currently executing or terminated; for the 
latter, success or failure is also indicated. 

CX sends out a single packet to initiate action along 
with a unique command identification. CX then waits 
for confirmation that RC has received the packet, in- 
dicated by seeing a command status (associated with 
the ID) of executing or terminated. If no such message 
is received within the time limit, CX will resend the 
packet. There is a maximum number of command re- 
sends that are allowed before causing execution failure. 
RC ignores the receipt of duplicate command IDS that 
might arise from the asynchronous communication. 

4. MODE IDENTIFICATION 

Health maintenance is an important issue for rovers; 
additionally, in order to support the execution of con- 
tingent plans, the executive must have an assessment 
of the current rover state. The traditional approach 
for fault detection is to monitor the values of particu- 
lar sensors and trigger an alarm if a sensor value ever 
exceeds a given threshold. For example, if the product 
of current and time ever gets too large ( i e . ,  there is a 
high current over an extended interval of time), that 
may indicate a motor stall or other malfunction. 

Such a simple mechanism can be useful, but does not 
easily scale when faults cannot be determined by look- 
ing at one or two sensors, or when multiple faults can 
occur simultaneously. For example, if an ammeter in a 
motor is failed, then wheel current cannot be used to 
determine whether the motor has stalled. However, if 
the encoder (which measures motor position) indicates 
that the motor is not turning when it should be, that 
could indicate a motor stall. It could also indicate an 
encoder failure. If other sensors are available, such as 
accelerometers, cameras, compass or GPS, these could 
then be used to disambiguate between the two possi- 
ble failures. Such reasoning is very difficult using the 
approach discussed above. 

Qualitative model-based diagnosis has been success- 
fully applied in such domains, using a model of the sys- 
tem's normal behavior, and optional models of faulty 
behavior, to produce robust, reliable diagnoses based 
on all the sensor data, even in the presence of multiple 
failures. This approach is used in the MIR (Mode- 
Identification and Reconfiguration) component of the 
Remote Agent, which flew on board the Deep Space 
1 spacecraft [Bernard et al., 19981. Thus, we decided 
to use the same system to do mode identification in 
our architecture. There are many advantages to this 
approach, which we outline below. However, we also 
found that due to differences between spacecraft and 



rovers, some of the assumptions and design decisions 
used in MIR are inappropriate for rovers. In the sec- 
tion on the field t,est experience, we discuss these prob- 
lems and propose some solutions for them. 

The Mode Identification (MI) component of the on- 
board architecture eavesdrops on commands sent by 
CX t.o the rover. As each command is executed, MI 
receives observat,ions from low-level monitors, which 
extract qualitative information from the rover sen- 
sors. For example, a current monitor may map the 
continuous-valued current into the set of qualitative 
values {low, nominal, high). MI is informed whenever 
the qualitative value returned by a monitor changes. 
Based on monitor inputs, the commands executed on 
the rover, and a declarative model of the rover, MI 
infers the most likely current state. MI also provides 
a layer of abstraction to the executive, allowing plans 
to be specified in terms of component modes, rather 
than in terms of low-level sensor values. 

The behavior of each state of a component is expressed 
using qualitative, abstract, modular models [Weld and 
de Kleer, 1990; Williams and de Kleer, 19911, which 
describe qualities of the rover's structure or behavior 
without the detail needed for precise numerical pre- 
diction. Such models are much easier to acquire and 
verify than quantitative engineering models, and are 
easier to reuse. For example, although the Marsokhod 
has six wheels, each containing a motor, only one wheel 
module is needed. 

While such models cannot specify how far to the left 
the rover will drift if the motor has failed in one of 
its left wheels, they can be used to identify the source 
of failure, given the available sensor data. Such infer- 
ences are robust. since small changes in the underlying 
parameters do not generally affect the high-level be- 
havior of the rover. In addition, abstract models can 
be reduced to a set of clauses in propositional logic, 
allowing behavior prediction to use unit propagation, 
a restricted and very efficient inference procedure. 

5. COMMAND PLAN GENERATION 

In this section, we discuss the ground tools developed 
to support the generation of CRL command plans. 
The process begins with the specification of science 
goals. CRL wa.s designed to encode not only com- 
mand plans but also goals. For the 1999 Marsokhod 
Field Test,, a powerful set of intelligent user interface 
tools was used to support science planning and goal 
specification. The capabilities provided include gen- 
eration, display, and manipulation of 3D photorealis- 
tic VR. models of the rover and its environment; this 
VR user interface could be used to generate science 
goals. A separat,e form-based user interface could also 
be used to generate and edit CRL goals as well as 
CRL command plans. The user interface tools also 
provided the capability to generate CRL command 
plans with the support of a mixed-initiative, contin- 
gent planner/scheduler, which we refer to as CPS. For 
more details on these user interface tools, see Black- 
mon, et al., 1999 (in this volume). 

A typical field test planning cycle proceeded as follows. 

1. The scientists provided a set of high-level tasks to 
be performed on the next simulated sol. 

2. Based on this information, we developed a set of 
high-level CRL tasks using the VR environment 
and the form-based interface. The VR environ- 
ment was used for the following tasks: ( 2 )  to se- 
lect the best route for drive operations; (ii) to help 
compute angles and distances to targets; and (iii) 
to envision possible obstructions and illumination 
for image and spectrometer commands. 

3.  The resulting set of high-level CRL tasks was then 
passed from the form-based interface to CPS to be 
recursively decomposed into lower-level tasks and 
sequences of rover operations. Some decomposi- 
tions included checks and contingent branches to 
deal with common faults. In some cases, the de- 
compositions resulted in hundreds of individual 
rover commands (e.g., panoramic image). If the 
resulting tasks were unordered, CPS would deter- 
mine an ordering that satisfied the given time and 
power constraints. 

4. The resulting schedule was passed back to the 
form-based interface, where it could be displayed 
and edited. Using the editor, individual steps, 
groups of steps, or whole branches could be re- 
moved or replaced. The resulting schedule frag- 
ment was fed back through CPS for any necessary 
decomposition and completion. 

5 .  Finally, the schedule would be run through a sim- 
ple syntax checker and uplinked to the on-board 
rover executive. 

In order to allow the kind of mixed-initiative schedul- 
ing outlined above, CPS uses a greedy local search 
strategy. It accepts a seed schedule (possibly empty) 
and recursively attempts to improve it by fitting addi- 
tional tasks into gaps in the schedule. When a plateau 
is reached, tasks already present in the schedule can 
be exchanged, removed, or shifted. Random walk and 
restarts further help CPS escape from local minima. 

CPS also has the ability to automatically add contin- 
gent branches to schedules where appropriate. Build- 
ing contingency plans is, in general, intractable, and so 
contingency planners tend to be slow [Draper, Hanks, 
and Weld, 1994; Pryor and Collins, 1996; Weld, Ander- 
son, and Smith, 19981. To overcome this problem, CPS 
employs the Just-in-Case (JIC) approach [Drummond, 
Bresina, and Swanson, 19941, originally developed to 
handle action duration uncertainty in telescope obser- 
vation schedules. For the rover domain, we extended 
the JIC approach as follows. 

To consider uncertainty in power consumption 
and data production (as well as in task duration). 
To choose among potential contingency branch 
points based on an assessment of expected util- 
ity rather than just probability of failure. 
To allow insertion of setup steps for a contingent 
branch prior to the actual branch point. 

6. THE FIELD TEST EXPERIENCE 

In this section, we describe results and lessons learned 
from our Marsokhod field test experience. The 1999 
field test was meant to simulate the main objectives of 
the Mars '01-'05 missions; the field test employed the 



ficiently executed using CRL. 

Figure 1: Marsokhod a t  the 1999 Mojave Field Test. 

Ames Marsokhod rover (Figure 1) and took place dur- 
ing February. The remote site was a t  Silver Lake dry 
lake bed in California's Mojave desert, and the opera- 
tions center was a t  NASA Ames. The field test team 
consisted of computer scientists and engineers from the 
NASA Ames Computational Sciences Division, scien- 
tists from NASA Ames Space Sciences Division, and 
planetary scientists from around the world; there were 
about seventy people who participated. 

The Marsokhod platform has been demonstrated at  
field tests starting with Russian tests in 1993, followed 
by tests in the Mojave desert in 1994, a t  Kilauea in 
Hawaii in 1995, and in the Arizona desert in 1996. 
Marsokhod is a medium-sized planetary rover built on 
a Russian chassis. The rover has six wheels, indepen- 
dently driven, with three chassis segments that artic- 
ulate independently. It is currently configured with 
imaging cameras that correspond to those planned for 
use in near-term missions, a spectrometer, and an arm 
equipped with cameras. The on-board computing en- 
vironment is a Pentium-based Linux system, for ease 
of research software integration. 

In the rest of this section, we describe the field test 
rcsults and lessons learned for each of the major au- 
tonomy arch~tecture modules: plan execution, mode 
identification, and plan generation. 

6.1. PLAN E:XECUTION RESULTS 

This was the‘ first Ames field test during which the 
rover was commanded by uplinking sequences, which 
were automatically executed on-board, rather than by 
"joysticking" with the Ames Vzrtual Dashboard inter- 
face [Wettergreen, et al., 19971. A major result of the 
field test was to build confidence in sequence-based 
commanding using the CRL language. Although, 
as cxpected, complex positioning tasks remain eas- 
ier through real-time feedback and "joystick" controls, 
many tasks that involve repetitive activities or precise 
orientations can be more easily specified and more ef- 

The following are some examples of how contingency 
plans were used in the 1999 Marsokhod Field Test and 
the preparatory readiness tests. 

If a visual-servo command terminates with fail- 
ure, then acquire an image mosaic to  enable re- 
localization by the operations team. 

If a wheel failure is detected, then acquire images 
of the failed wheel to  support diagnosis. 

If orientation (taco angles) limits are exceeded, 
then stop and acquire images around all six wheels 
to support recovery planning. 

During a dead-reckoning traversal, if time (and 
data storage) allows, then take additional images, 
to support science and future operations, when- 
ever the rover turns. 

Another use of contingent plans is to support on- 
board, automated science analysis techniques, such 
as those being developed within the "Graduate Stu- 
dent on Mars (GSOM)" project [Gulick, et al., 19991. 
One of the GSOM suite of tools identifies rocks in an 
image. The following is an example employing this 
rock-finding algorithm within a contingent command 
plan. The rover drives a pre-set pattern (e.g., a rect- 
angular circuit) while scanning the environment for 
rocks. When a rock is found, the rover takes a high- 
resolution image of the region where GSOM indicates, 
and it stores this image for later downlink. Other tests, 
such as spectrometer readings, could be performed on 
the target location as well, potentially leading to other 
opportunities for on-board science analysis, e.g., auto- 
matically identify carbonates from spectrometer read- 
ings. The rover is given a time limit to drive the search 
pattern, so if it spends too much time analyzing the 
images and performing tests, it skips some analyses in 
favor of reaching its way points on schedule. 

An important part of robust, autonomous execution is 
to handle and react to failures that are not within the 
plan but throughout the system. We have taken steps 
in that direction with our explicit communication pro- 
tocol to handle lost packets; however, other challenges 
remain, such as software failures within real-time con- 
trollers or hardware failures in the rover itself. Some 
of these are handled via fault identification by MI  and 
recovery by contingency plans. Some system failures 
need to be handled in a more comprehensive manner 
to ensure the rover performs as desired. In particular, 
approaches ranging from simple heartbeat monitoring 
and pstate parameter recording to system reconfigura- 
tion need to be considered. 

The plans constructed by CPS can include contingent 
branches to handle deviations from expected resource 
usage. The resources currently considered, in addition 
to time, are power and data storage. CX could make 
use of a resource manager to track resource usage and 
availability, as well as to signal resource conflicts or op- 
portunities. We have developed a prototype resource 
manager and are integrating it into the on-board exec- 
utive architecture. The resource manager will ensure 
that the rover executes its plans within the limits of 
the available resources and will support branching on 
a richer set of resource availability conditions. 



6.2. MODE IDENTIFICATION RESULTS 

Despite the advantages of our approach to state as- 
sessment and fault diagnosis, discussed above, MI does 
have some representation limitations, with respect to 
modeling rovers. These limitations can be classified as 
quantitative, probabilistic, and temporal. 

Quantitative: There are many advantages to using 
qualitative models, as outlined above, but many of 
the more complex aspects of a rover that we would 
like to model, such as motor behavior and kinematics, 
are inherently quantitative. Consider again the simple 
threshold test discussed at the beginning of Section 4: 
a motor stall is indicated when the current-time prod- 
uct is too high. But how do we determine what is too 
high? "Normal" wheel currents depend on whether 
the rover is turning, driving uphill, or going over rocky 
terrain. The expected current, thus, is a quantitative 
function of factors such as pitch, turning, and bumpi- 
ness (as measured, perhaps, by accelerometers). 

The approach we have taken is to use a purely qualita- 
tive model, abstracting away quantitative details using 
monitors. However, using this approach, we either end 
up with most of the complexity hidden in the monitors, 
or we are forced to discretize the values in question into 
many intervals and rely on qualitative arithmetic to do 
the math in MI, which can be computationally expen- 
sive. It would be much simpler and more efficient to 
work with the numbers directly. This is possible by 
incorporating quantitative models, using hybrid con- 
tinuous/discrete systems, such as HCC [Carlson and 
Gupta, 19981. HCC is already used for a simulation of 
the Marsokhod [Sweet, Blackmon, and Gupta, 19991, 
and work is underway to combine it with MI, for use in 
diagnosis. We are also considering the use of Kalman 
filters, which are ideal for combining numerical data 
from multiple noisy sensors, and which have success- 
fully been used in MIR monitors. 

Probabilistic: In MI, transitions to particular states 
can be conditional or probabilistic, but not both. That 
is, they are ether deterministic, commanded transi- 
tions into "okay" modes, or unconditional random 
transitions into fault modes. Many aspects of the 
rover behavior involve conditional probabilistic tran- 
sitions. For example, going up a steep hill results in 
high torque on the rear wheels, which leads to an in- 
creased probability that the wheel motors will stall. 

With the current, representation, we cannot express the 
fact that motor stalls are more likely to occur in the 
presence of high torques. To do so, we need conditional 
probabilities. Effectively using conditional probabili- 
t,ies requires tracking multiple trajectories, which is 
not currently done in MI for efficiency reasons; thus, 
entailing a larger computational burden. We are also 
considering other representations, including Markov 
decision processes. 

Temporal: One of the assumptions underlying MI is 
that the system being monitored is synchronos, spend- 
ing most of its time in a steady state (at least at 
the qualitative level reflected by the models) and that 
transitions between states are rapid enough that by 
simply waiting for quiescence, MI can treat them as 
instantaneous. However, on the rover, this assump- 
tion is violated. State transitions are sufficiently fre- 

quent and transitions between states are sufficiently 
slow that there is no guarantee that the rover will 
reach a steady state. This is due in part to a high 
degree of uncertainty in the time that will be required 
for a transition to occur. 

6.3. PLAN GENERATION RESULTS 
During the field test, we learned a number of lessons 
about generating command plans. Some parts of the 
process worked very well, but there were places where 
we clearly needed additional software tools, or needed 
to improve the capabilities of our existing tools. 

Probably the most glaring omission was the lack of 
adequate tools to allow the scientists to generate high- 
level CRL tasks directly. Although a web interface was 
developed for this purpose, it did not cover the full 
spectrum of possible scientific experiments and objec- 
tives. In addition, the interface did not allow them to 
specify temporal constraints and did not provide ad- 
equate feedback concerning resource requirements or 
expected data production for proposed experiments. 
As a result, the interface received little use by the sci- 
entists and, instead, the scientific goals were relayed 
verbally. As a result, significant manual labor was in- 
volved in turning the scientists requests into a fleshed 
out set of high-level CRL tasks. 

In contrast, we made extensive use of automated de- 
composition of high-level science tasks into detailed 
sequences of rover commands. This capability was es- 
sential for efficient development of command plans. In 
some cases, the command plans contained hundreds 
of commands and we simply could not have generated 
these by hand in the time allotted. 

We did not make significant use of the automated 
scheduling capabilities. The primary reason for this 
is that for each sol the scientists were providing a spe- 
cific ordered set of tasks to be performed. They did 
not provide a larger set of prioritized tasks from which 
choices could be made, based on time, power, and data 
considerations. This was due, at  least in part, to the 
relatively short duration of the field test, which did 
not allow the scientists to develop a set of longer-term 
objectives. Additionally, the scientists were not made 
aware of how to take full advantage of the capabilities 
CPS could provide. For an extended mission with a 
larger number of distributed scientists submitting re- 
quests, we believe that the scheduling capability would 
become more important, especially if employed to gen- 
erate multi-sol command plans. 

We also did not make significant use of automatically 
generated contingency branches. Without a larger set 
of tasks to choose from, CPS cannot build useful al- 
ternative branches. However, even with a larger set 
of tasks, CPS would not have been able to anticipate 
many of the failures that occured during the field test. 

Currently, CPS only develops contingent branches for 
failures that result from time and resource conflicts. 
During the field test, most of the plan failures were 
due to other things, such as losing visual targets dur- 
ing traverses and motor current anomalies. In these 
cases, useful alternative plans could have been devel- 
oped automatically, but to do so, we need to enrich 
the set of potential failures considered by CPS. 



7. CONCLUDING REMARKS 

In this paper, we presented the Contingent Rover Lan- 
guage (CRL for commanding planetary rovers, and 
we describe d the ground-based and on-board systems 
that were demonstrated in the 1999 Marsokhod Mo- 
jave Field Test. Our overall objective is to increase 
the flexibility and robustness of autonomous rover be- 
havior in order to improve science productivity. The 
initial efforts towards this objective (reported here fo- 
cused on the concept of "contingency". CRL al 1 ows 
t,he specification of contingent courses of action for 
the purposes of recovering from expectation failures 
or taking advantage of serendipitous science opportu- 
nity. Our mixed-initiative planner/scheduler (CPS) 
supports the generation of contingent CRL command 
plans and our on-board executive systems (CX and 
MI) enable robust plan execution that is responsive to 
t,he runtime, dynamic environment. 

In the previous section, we mentioned future work di- 
rections for each of the three component technologies. 
In addition, we intend to pursue command plan ver- 
ification. In order to support verification, as well as 
plan generation, we plan to  integrate rover simulation 
with constraint reasoning and planning techniques. In 
the future, we would also like to migrate some of the 
planning activities on-board the rover as appropriate; 
for example, the ability to replan science activities in 
response to on-board science analysis and runtime con- 
ditions (e.g., resource availability). 
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