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Abstract 

Binocular Robot Vision, the extraction of 3d- 
information from images from two distinct digital cam- 
eras, is subject to  intensive research for space and ter- 
restrial applications. 

In space applications we mainly find tracking t,asks 
(e.g. [I]) and explorative vision tasks (e.g. [2, 31). Our 
paper focuses on reconstruction which is indispensable 
for the latter type and might be used for tracking as 
well. The paper prcsents the results of a basic research 
exercise. 

Four different algorithms are presented that allow 
the reconstruction of an object point given its pro- 
,jections in two distinct digital cameras. The algo- 
rithms are compared with respect to absolute accuracy, 
relative preci\ion, and computational requirenierits by 
means of sin~ulations. From the simulation results we 
derive a rule of thumb that tells which algorithm to 
take for a given problem. Furthermore, the implernen- 
tation on a Digital Signal Processor (DSP) is discussed 
and results using experimental data are given. 

key words: robot vision, stereo reconstruction, DSP 
application. 

1 INTRODUCTION 

hlany 3d vision tasks with stereo cameras need inl- 
age feature matching and 3d reconstruction. If time 
and computational complexity are a minor issue, pho- 
tograrnrnetrists will rely on extensive camera ralibra- 

tion and "bundle adjustment", a process which is 
mostly semi-automatic. It yields the highest preci- 
sion rating by simultaneously performing object recon- 
struction, image feature matching, and, if desired, the 
computation of selected calibration parameters 141. In 
space applications often the computational capability 
is very restricted with respect to memory usage and 
processing power. Furthermore, many applications re- 
quire real-time performance and full automatic pro- 
cesses (e.g. visual servoing, scene perception for au- 
tonomous vehicles). 

The first step to  accelerate 3d reconstruction from 
stereo images is the gradual decomposition of the pro- 
cess into calibration, image feature matching, and pure 
geometrical reconstruction itself. Ideally calibration is 
needed only once before the images of the object of in- 
terest arc captured but can be performed to some ex- 
tent on the basis of the captured images, as well [3, 61. 
Image feature matching heavily depends on the actual 
task and will not be examined in this paper. Meth- 
ods vary from image patch distortion approaches via 
hierarchical procedures to knowledge based versions. 

The geonletrical reconstr~ct~ion of an object point, 
given the two 2d image locations of its projections, in 
two distinct cameras is known as forward intersection. 
This process does not  change with the application; only 
timing and accuracy requirements may vary. Forward 
intersection is needed when no a priori object model is 
a t  hand or when object/model matching is performed 
in 3d space. In reality the thus reconstructed 3d point 
won't match the exact object point because of imper- 
fections of perception of the projection of the object 
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point and imperfect calibration. 

Section 2 presents the mathematical formulation for 
the projection - the camera model - that has been 
used in our investigations. Section 3 describes the four 
investigated algorithms that solve the inverse problem, 
the forward intersection. 

The quality of a reconstruction can be judged in 
two different ways. One is the deviation of the recon- 
structed point to the real object point, referred to as 
absolute deviation. The second is the divergence of a re- 
~onst~ructed point cloud to the real object point cloud, 
the consistency deviation. In fact, an object is recon- 
st,ructed as a point cloud and the point cloud is rotated 
and t,ranslated, the consistency deviation remains con- 
stant but t,he absolute deviation changes. The absolute 
deviation includes the relationship between the object 
coordinate system and the camera coordinate system - 
needed for example for autonomous navigation tasks. 

The accuracy of the forward intersection is influ- 
cnccd by 2 x 10 different camera parameters - such as 
the angle of intersection of the optical axes - by the 
quality of image point perception (2 x 2 error param- 
eters), and the quality of the calibration result of the 
2 x 10 camera parameters. Because of this multi di- 
mensional variety it is impossible to  base the decision 
which algorithm is most suitable on a comprehensive 
error analysis. Instead it must be done with the help 
of realistic parameters of real world applications, where 
the parameters are slightly altered and the effects on 
the reconstruction quality are measured. This can be 
done by error propagation analysis, as has been done 
in [lo], or by means of simulations. For our investiga- 
tions we have chosen the latter method. 

Section 4.1 depicts a subset of the simulations per- 
formed [ll] to derive the results presented in section 4.2 
and verified by experiments in section 5. 

Section 6 discusses the computational requirements 
of the algorithms and the performance on a space qual- 
ified floating point DSP. A short summary is given in 
section 7. 

2 CAMERA MODEL 

The pin hole camera model we use does not contain 
distortion parameters. If needed, distortion parame- 
ters can be identified and measured image points cor- 
rected according to the distortion model. In this way 
the described forward intersection algorithms for the 
pin hole camera model can be used even if distortion 
needs to  be taken into consideration [7]. 

Figure 1: The KTH Robot Head. 

dinate system (WCS) the metric coordinates (x,1, y,l) 
and ( X , ~ ,  ya2) of its two projections measured in pixels 
is obtained with the help of the so called collinearity 
equations (1, 2) and an equation that allows the trans- 
formation of the metric coordinates (x,, , Y , ) ~  into pixel 
coordinates (x,, Y , ) ~ .  

The parameter c is the distance from the optical cen- 
tre of the lens t o  the projection plane of the camera 
and s,, s ,  are the lengths of the pixels in the x and y 
directions. The coordinates of the principal point are 
(xo, y o )  These intrinsic parameters do not change, if 
the cameras are moved and can be identified by cali- 
bration' [7, 81. The other (extrinsic) parameters de- 
termine the translation (Xo, Yo, 20) and the rotation 
to the WCS. The values rij are the matrix components 
of a rotation matrix that depends on three rotation 
parameters of the camera [5]. 

The extrinsic parameters can be identified by cali- 
bration but vary with camera movement. If the cam- 
eras are mounted on a robot head, see fig. 1, the kine- 
matics of the robot head can be included in a more 
comprehensive model. Such a model reveals the extrin- 
sic parameters with respect to the commanded poses 
of the cameras of the robot head [9]. 

3 THE FOUR ALGORITHMS 

This section presents the four algorithms that are sub- 
ject to our investigation. They are presented in the 
order of their computational complexity. 

'The values of intrinsic parameters may vary if a zoom lens 
Given a 3D point A = (X, Y, Z)T in a world coor- is used. In this case a lookup table can be established. 



APP:  The simplest algorithm expresses the X and 
I' coordinate of A out of eq. 1, 2 as follows [5]. 

These equations appear two times, once for the left and 
once for the right camera. From the two equations 5 
we can express Z but from the two equations 6, as well. 
The mean value is taken and X and Y computed [5]. 

VECTOR: The computationally second cheapest 
algorithm reconstructs the beams of sight from the 
known camera parameters and the measured image 
points. These will not intersect - due to the imper- 
fections mentioned. The object point A is assumed to 
lie in t,he middle of the shortest distance between the 
two beams [4], see fig. 2. 

lY 

World coordinate system 

, , , 
Image coordinate system 

Projection plane I 
Figure 2: Point reconstruction with vector analysis. 

LIN: Let's rewrite the 2 x 2 collinearity equations 
as shown for one camera [8, 111 

\lie interpret this as a linear system of equations in 
the variables X, Y and Z .  The left hand side can be 
rewritken as a matrix S multiplied with the coordinates 
of A. The right hand side is a four dimensional column 
vector b. A least squares estimation for A is given by 

A. into equations 1 and 2. In general, these theoretical 
values will deviate by some few pixels from the mea- 
sured image points (x reas ,  y reas) .  We may tune the 
values for the coordinates of Ao, obtaining a new guess 
Al such that the deviation 

becomes smaller. This process is reiterated until a 
threshold is reached. If we take several points simul- 
taneously, we can also include camera parameters in 
this adjustment and overcome imperfections of the cal- 
ibration. The resulting minimisation problem is best 
solved with a Gauss-Newton method. Photogrammet- 
ric literature contains the Jacobian Matrix needed for a 
numerically efficient implementation in symbolic form 
[5]. The computational costs of the process described 
increase with the square of the number of points used. 

In photogrammetric applications it is common to 
add control points to the fields of view of the cameras. 
Control points are points with known coordinates in 
the WCS. This is not relevant for space applications 
and therefore omitted in this article. 

4 SYNTHETIC DATA EXPERIMENTS 

4.1 Description of the Simulations 
In the simulations the camera set-up always consists of 
two identical cameras in differnet poses. The working 
space is defined as the area which is covered by both 
camera views. Within this working space a cloud of 
random object points is generated. The projection of 
every single object point onto the projection planes of 
both cameras is computed with the model given in sec- 
tion 2. To model erroneously evaluated image point lo- 
cations, random pixel noise is added. The evaluation of 
the four forward intersection procedures has been per- 
formed on a basis of 10000 random points per camera 
set-up and has been performed for different scales and 
applications [Ill .  This section presents results from a 
possible mobile robot application where we place the 
WCS into the object centre, for simplicity, without loss 
of generality. 

Let's warm up with simulations where we consider 
a camera set-up of two cameras facing the origin of 
the WCS with a constant distance to the origin of the 
WCS. The cameras are moved along a cricular course 
with its centre in the origin of the WCS. Their cur- 

A = (sTs)-'sTb (9) 
rent pose is described by the angle between the cam- 
eras. For a mean absolute pixel noise set to 0.2 pixels 
and perfectly calibrated cameras (i.e. the exact intrin- 

NONLIN: Given a start estimation A. for the co- sic and extrinsic camera parameters are known) we no- 
ordinates of A - based on one of the three algorithms tice similar deviations of the reconstruction results for 
described previously - we can compute the theoretical all four algorithms. The accuracy of the reconstruc- 
image points ( x F o d ,  yrOd)T in each camera by inserting tions only differs in the range between 150" and 180". 



Large deviations are observed in the regions of very 
small and very large angles between the cameras (es- 
pecially for APP), caused by the glancing intersection 
of the viewing beams at these angles. The absoulte 
deuiatians reach their minimum a t  an angle of 90" be- 
tween the cameras, of course. 

We will now discuss more realistic scenarios: noisy 
data and imperfectly calibrated cameras. The camera 
set,-up complies with a typical set-up of a mobile robot. 
Both cameras are at a distance of 4 m to  the origin of 
t,he WCS, the angle between the cameras is 10" and 
the working space is constrained by a cylinder with a 
diarnet,er of 3 m, see fig. 3. To estimate the influence 

F i g u r ~  3: Camera set-up of a mobile robot. 

of the calibration error of each of the three angles de- 
scribing the rotation of the left camera, we set the mean 
absolute pixel noise to 0.5 pixels and vary the calibra- 
tion error Figures 4 to 6 demonstrate the simulation 
~csults.  The unit of the ordinates are the absolute de- 
vzatzons, normalised to  the range of the working space. 
Note the large influence of an erroneously calibrated 
vergence angle on the absolute devzatzon of the recon- 
struction. NONLIN may converge to  a wrong mini- 
mum, because of the missing reference to  the WCS 

Figure 5 :  Imperfectly calibrated vergence. 
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Figure 6: Imperfectly calibrated roll. 

observe the absolute deviat ions  of thc reconstructions 
illustrated in fig. 7. A random noise of 0.5 pixels is 
added to the projection points. In the subsequent sim- 

Figure 7: Imperfect calibration of one camera, 
absolute deviation. 
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Figure 4: Imperfectly calibrated elevation. 

Assuming that all 3 angles, that describe the rota- 
tion of one camera, are calibrated erroneously, we can 
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ulation NONLIN regards the camera calibration pa- 
rameters. That means the set of unknowns is extended 
with the erroneously calibrated angles of one camera. 
NONLIN uses 10 object points simultaneously in its 
minimisation procedure. Thus, the overdetermined 
system of equations consists of 40 equations derived 
from the 10 points to  evaluate 33 unknowns (10 x 3 
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object coordinates, 3 angles). Fig. 8 presents the con- 
.sistency deviations for the same set-up. We see that 
this is the domain of NONLIN, because it can correct 
the defective calibration parameters at the cost of com- 
putational complexity and the need for several points. 

I A P P  - V E C T O R  - - L I N  - NONLIN 
0 07 , ,/ , -1 

0 2 4 6 8 10 12 14 16 18 
error of omega, p h ~ ,  kapa (let camera) [rnnd] 

a cylinder with a diameter of 377 rnm. In the working 
space an ellipsoid solid was situated, see fig. 9 for the 
images of the left and right camera. The object co- 
ordinates of marked points on the ellipsoid have been 
determined previously with the help of a high precision 
bundle adjustment together with extensive camera cal- 
ibration and the image coordinates of the respective 
projections have been identified by ellipse fitting. 

Figure 8: Imperfect calibration of one camera, 
consistency deviation. 

4.2 Sirnulation Results 
For the absolute devzatzons we can nominate a clear 
winner of the contest: VECTOR, followed closely by 
LID! This was the case for all simulations we have per- 
formed. APP is third, NONLIN can not compete 
it might converge to  a wrong minimum, because its 
rnininiisation does not regard the WCS. 

Thc consistency deviations are minimal when NOK- 
LIK is used. However, if the computational power is 
restricted VECTOR is the second best - with one ex- 
ception. A badly calibrated roll error of one of the 
carneras can irritate VECTOR considerably and make 
LI?J the winner. The roll of a camera is defined as a 
rotation about its optical axis. Robot heads mostly 
have ;i rigid construction that only allow pan and tilt 
movements, i.e. no rolling, and thus it is very unlikely 
that VECTOR is outperformed by LIN in most robot 
applications. The last - APP - lags more behind the 
others, when consistency deviations are regarded, com- 
pared to the results for absolute deviations. 

5 REA4L WORLD EXPERIMENTS 

'The implemented algorithms have been tested with 
real data provided by off-the-shelf cameras in a stereo 
set-up. Two JAI-235 industrial CCD carneras were 
rriount,ed at a distance of 1000 mm to the object coordi- 
nate system, t,he angle between the cameras was fixed 
;it 15" and thus the working space was constrained by 

Figure 9: Images of the binocular camera set-up. 

The following table lists the mean absolute devia- 
t ions and the mean consistency deviations of the recon- 
structed object points normalised to the range of the 
working space. In this first approach NONLIN does 
not include calibration parameters in the minimisation 
procedure. 

deviation [10W3] 1 

NONLIN 3.3 0.6 

algorithm 

,4PP 

If NONLIN regards the camera calibration parameters 
of one camera and computes t h t  object coordinates 
of 40 points simultaneously its mean consistency de- 
viation reaches 0.2 . lop3, but note the quadratically 
increasing computational costs. 

absolute I consistency ] 
15.2 1 15.6 

The results of these practical experiments underline 
the simulation results. Due to the comparatively large 
deviations of APP this algorithm is recommended as a 
start estimation, only. 

6 DSP IMPLEMEKTATION 

The presented algorithms require the following num- 
ber of floating point operations (FLOPS) for the re- 
construction of one object point. The MATLAB im- 



plementation used was without sophisticated optimisa- MATLAB implementations of the algorithms can be 
tions and can be retreived from [Ill .  obtained in electronic form [ l l ] .  

I algorithm I FLOP count 1 
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7 SUMMARY 
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