
Increased Flexibility and Robustness of Mars Rovers

John L. Bresina Keith Golden
Phone: 650.604.3365 Phone: 650.604.3585

bresina@ptolemy.arc.nasa.gov kgolden@ptolemy.arc.nasa.gov

David E. Smith Rich Washington*
Phone: 650.604.4383 Phone: 650.604.1 140

de2smith@ptolemy.arc.nasa.gov richw@ptolemy.arc.nasa.gov

Fax: 650.604.3594

NASA Ames Research Center
Mail Stop: 269-2

Moffett Field, CA 94035-1000 USA

ABSTRACT

Our overall objective is to improve the productivity of
Mars rovers by increasing the flexibility and robustness
of their autonomous behavior. To achieve this objec-
tive, we set out to increase the on-board autonomy of
rovers and enable commanding a t a higher level with a
more flexible command language. In February, 1999,
we demonstrated some of our rover autonomy tech-
nologies as part of a Marsokhod rover field test that
simulated aspects of the Mars '01-'05 missions. In this
paper, we present the commanding language employed
in this field test, called the Contingent Rover Language
(CRL), and describe the ground tools and on-board
executive capabilities that were developed to generate
and execute CRL plans. A key feature of CRL is that
it. enables the encoding of contingent plans specifying
what to do if a failure occurs, as well as what to do if
;i serendipitous science opportunity arises.

I . INTRODUCTION

'I'raditionally, spacecraft commanding is accomplished
oza rigid time-stamped sequences of primitive opera-
tions. tf anything goes wrong during execution, built-
in routines attempt to safe the spacecraft and await
furt,her instructions from Earth. As NASA missions
become more challenging, more sophisticated space-
craft are required, as are more advanced means of
c-ommmding them. As a case in point,, the Mars
Pathfinder's Microrover Flight Experiment made sig-
nificant advances over previous robotic missions. So-
,lourner had to operate in an uncertain environment
and respond more autonomously to sensor input.

\Vith respect to the Sojourner microrover, for the pur-
poses of this paper, we focus on the issues of command-
Ing and contingency; for more details, see Mishkin, et
n l . , 1998. L ~ k e traditional spacecraft, Sojourner was
c-ommanded with time-stamped sequences,

-

' N A S A t ontractor with Caelum Resrarch Corporation

and the commands tended to be primitive opera-
tions. However, there were operations that were spec-
ified a t a higher level; the primary example is the
"Go to Waypoint" command, which implemented au-
tonomous navigation to a specified coordinate.

A command sequence typically specified the activities
for one sol (Martian day) plus "runout" commands in
case the next sol's sequence was delayed. These se-
quences contained no explicit contingencies; however,
contingency responses to certain drastic scenarios were
pre-loaded on both the Pathfinder lander and rover.
The "Backup Mission Load" was to be used in the
event of a communication loss from Earth to the lan-
der, and the "Contingency Mission Load" was to be
used in the event of a communication loss from the
lander to the rover.

Our aim is to continue in the technology direction set
by the Pathfinder mission and increase the robustness
of autonomous rovers by enabling a higher level of
commanding with a more flexible and contingent lan-
guage. The intended benefit is to increase rover pro-
ductivity without a decrease in safety. Our strategy
is to make incremental advancements in this direction
so as to maintain relevance to currently planned Mars
rover missions and to eventually enable missions be-
yond the current capabilities of flight rovers.

With planetary rovers, there is uncertainty about
many aspects of sequence execution: exactly how long
operations will take, how much power will be con-
sumed, and how much data storage will be needed.
Furthermore, there is uncertainty about environmen-
tal factors that influence such things as rate of bat-
tery charging or which scientific t,asks are possible. In
order to allow for this uncertainty, sequences are typ-
ically based on worst-case estimates and contain fail-
safe checks. If an operation takes less time than ex-
pected, the rover waits for the next time-stamped op-
eration. If operations take longer than expected, they
may be t,erminated before completion. In some cases,

I'roc 1'1lih 1ntt:rnational Symposium on Artificial Intelligence.
I<obotics ;und ."\utomation in Spacc. 1-3 Sune I999 (ESA SP-440)

all non-essential operations may be halted until a new
command plan is received. These situations result in
unnecessary delays and lost science opportunities.

Our first steps in this effort involved designing a new
commanding language, called the Contingent Rover
Language (CRL,), described in the next section. A key
feature of CRL is that it enables the encoding of con-
t,ingent plans specifying what to do if a failure occurs,
as well as what to do if a serendipitous science oppor-
tunity arises. For example, a CRL plan could specify
the following contingent rover behavior: when a failure
occurs, execute a contingency plan to recover from the
failure; if none is available, then execute a contingency
plan to acquire additional data to support failure diag-
nosis and recovery by the ground operations team. We
also implemented the ground tools and on-board exec-
utive capabilities needed to generate and execute CRL
plans, described in the following sections. For further
discussion of the ground and on-board techniques, see
[Washington, et al., 19991.

In February, 19'39, we had an opportunity to demon-
strate some of these rover autonomy technologies as
part of a field test that was meant to simulate the
main objectives of the Mars '01-'05 missions. During
this exercise, b o ~ h advanced rover technologies and sci-
ence investigation strategies for planetary surface op-
erations were demonstrated. In this paper, we primar-
ily report the aspects of this field test relevant to rover
commanding via CRL plans.

2. CONTINGENT ROVER LANGUAGE

In this section, we describe a new commanding lan-
guage, called the Contingent Rover Language (CRL).
CRL was designed to serve as the communication
medium between the ground operations team and a
planetary rover, under the following design criteria.

0 Contingency and Flexibility. The language
should express the constructs that are necessary
to achieve scientific goals. In particular, the lan-
guage should express a variety of temporal and
state constraints, and it should support condi-
tional execution of contingency plans based on the
execution context.

0 Simplicity. The language should be simple
enough that an automatic, mixed-initiative plan-
ning system can provide effective support for plan
generation. The intended benefit is to reduce ef-
fort on operations staff and to improve the qual-
ity of the command plans. Similarly, the language
should not be so complex that verification of com-
mand plans is impractical. Safety is of paramount
importance in space missions, given the high cost
of mission failure, so guarantees on execution cor-
rectness are critical for any deployed system.

0 Compatibility. The language should be com-
patible with existing command languages; i.e., it
should allow ground operators to control a rover
in the same way that they do now. In particu-
lar, it should be possible to easily specify a time-
stamped command sequence. The additional ca-
 abilities should be available for incremental in-
corporation as needed to achieve mission goals.

A CRL command plan contains a nominal sequence
(possibly) with a set of contingent branches, as well
as a library of alternate plans. The alternate plans
can be thought of as global contingencies, whereas the
contingent branches are local contingencies at specific
points in the command plan.

If there are no deviations from the a priori execution
expectations, then the rover's behavior is governed by
the nominal sequence. The contingent branches spec-
ify alternative courses of action in response to expec-
tation deviations. Within any contingent branch there
may be further contingent branches; hence, the plan is
a tree of alternative courses of action.

The alternate plans are not attached to particular
points in the command plan; rather, they can be used
throughout plan execution, whenever their eligibility
conditions are satisfied. When eligible, each alternate
plan can either replace the rest of the current plan or
be inserted before the rest of the current plan.

Consistent with our compatibility crzterion, CRL can
be used to encode the type of sequences used in the
Mars Pathfinder mission, including both the daily up-
link sequences as well as the Backup Mission Load and
Contingency Mission Load; these loads would be en-
coded as alternate plans.

Due to our simplicity criterion, CRL does not include
any control constructs for looping. The design decision
we made is that when control loops are needed for
execution robustness, they should be embedded within
a high-level CRL command. An example of a high-
level, robust command with embedded control loops
is the "Visual Servo" command, which is somewhat
similar to Sojourner's "Go to Waypoint" command.
The Visual Servo command, which was used in the
1999 Marsokhod Field Test, implemented autonomous
navigation to a specified coordinate via visual tracking
of a target at that coordinate [Wettergreen, Thomas,
and Bualat 19971.

Next, we describe the representations used in CRL.
The basic data type in CRL is a node. Each node
has associated with it a set of conditions that must be
satisfied for successful execution; the following are the
condition types.

0 start-conditions: The set of conditions that must
be true for the node to begin execution. Condi-
tions can include information about the internal
state of the rover wheel current), external
state (e.g.,

0 wait-for-conditions: A subset of start-conditions
for which the rover will wait until they become
true. Other conditions will fail without wait-
ing. Some conditions are automatically waited for
whether or not that is specified explicitly; e.g., a
constraint on when an action can start executing.

0 maintazn-conditions: A list of conditions that
must be true throughout node execution

0 end-conditions: A list of conditions that must be
true at the end of node execution, to verify that
an action had the intended effects. Constraints
on action duration can be included here.

The conditions can contain variables to be bound dur-
ing constraint checking; these bindings are used to spe-

cialize the plan according to the execution-time con-
text. The rich expressiveness of temporal and other
state constraints on the plan supports effective speci-
fication of science goals and safety policies, as well as
providing increased flexibility during execution. For
example, rather than time-stamps, each action can
have a start time interval (and an end time interval).

A node also includes information regarding the ex-
pected utility of executing the rest of the plan, as
well as information regarding how to react to execu-
tion failures: execution may continue to the next node
o r abort.

CRL has three node subtypes: block, task, and branch;
a command plan is defined to be a node, typically of
subtype block. A block represents a sequence of nodes
over which there may be shared state conditions. A
task represents an action to execute. A task also spec-
ifies what action to perform if the task is interrupted
due to execut,ion failure. In addition, a task specifies a
relative priority and expectations about resource and
time usage. ,4 branch represents a mutually exclusive
choice point in the command plan. Each of the alter-
native exec~t~ion paths is represented by an option.

An option is not a node subtype but a separate data
type that has one subtype: alternate plan. Options
and alternate plans specify the conditions under which
they are eligible for execution and the node (typically
of subtype block) to execute. In addition to the el-
igibility conditions, an alternate plan specifies when
to check its eligibility: (a) whenever a failure occurs,
(ii) whenever a node finishes execution, or (iii) periodi-
ca ly throughout plan execution. As mentioned earlier,
when an alternate plan is selected for execution, it can
either be inserted before the command plan suffix or
i t , can replace the suffix.

3. CONDITIONAL PLAN EXECUTION

In this section, we describe the version of the on-board
executive that was employed in the 1999 Marsokhod
Field Test. The conditional executive (CX) is respon-
sible for interpreting the command plan uplinked from
ground control, monitoring plan execution, and select-
ing contingency plans when warranted. CX interacts
with the rover control system (RC) and with the Mode
Identification system (MI), which performs monitoring
and fault diagnosis (described in the next section).

C X starts by executing the nominal sequence of the
command plan. At each point in time, CX may have
to choose among different courses of action defined by
the eligible alternate plans and, if at a branch point,
the eligible branch options. CX chooses the course of
action with the highest estimated expected utility.

C X receives state information from the Mode Identifi-
cation system (MI). It uses this information to check
the various types of state conditions (in nodes), as well
as to check the eligibility conditions of the alternate
plans. The ability to branch on any state condition
provides the plan writer with a powerful language for
specifying rover behavior.

When a failure occurs, CX responds as dictated by the
node, either continuing to the next node or aborting
the executing plan and checking for eligible alternate

plans. In the case that no alternate plans apply, CX
aborts the plan and awaits new instructions.

CX communicates with the rover control system (RC)
using a datagram model of communication. This com-
munication model allows RC to execute its real-time
control loops without blocking on communication, but
it carries with it a risk of lost packets. Hence, the
communication protocol between CX and RC must be
robust to this possibility.

RC broadcasts state and command status information
on a continual, periodic basis (currently 10 timeslsec).
The command status information indicates whether a
command is currently executing or terminated; for the
latter, success or failure is also indicated.

CX sends out a single packet to initiate action along
with a unique command identification. CX then waits
for confirmation that RC has received the packet, in-
dicated by seeing a command status (associated with
the ID) of executing or terminated. If no such message
is received within the time limit, CX will resend the
packet. There is a maximum number of command re-
sends that are allowed before causing execution failure.
RC ignores the receipt of duplicate command IDS that
might arise from the asynchronous communication.

4. MODE IDENTIFICATION

Health maintenance is an important issue for rovers;
additionally, in order to support the execution of con-
tingent plans, the executive must have an assessment
of the current rover state. The traditional approach
for fault detection is to monitor the values of particu-
lar sensors and trigger an alarm if a sensor value ever
exceeds a given threshold. For example, if the product
of current and time ever gets too large (i e . , there is a
high current over an extended interval of time), that
may indicate a motor stall or other malfunction.

Such a simple mechanism can be useful, but does not
easily scale when faults cannot be determined by look-
ing at one or two sensors, or when multiple faults can
occur simultaneously. For example, if an ammeter in a
motor is failed, then wheel current cannot be used to
determine whether the motor has stalled. However, if
the encoder (which measures motor position) indicates
that the motor is not turning when it should be, that
could indicate a motor stall. It could also indicate an
encoder failure. If other sensors are available, such as
accelerometers, cameras, compass or GPS, these could
then be used to disambiguate between the two possi-
ble failures. Such reasoning is very difficult using the
approach discussed above.

Qualitative model-based diagnosis has been success-
fully applied in such domains, using a model of the sys-
tem's normal behavior, and optional models of faulty
behavior, to produce robust, reliable diagnoses based
on all the sensor data, even in the presence of multiple
failures. This approach is used in the MIR (Mode-
Identification and Reconfiguration) component of the
Remote Agent, which flew on board the Deep Space
1 spacecraft [Bernard et al., 19981. Thus, we decided
to use the same system to do mode identification in
our architecture. There are many advantages to this
approach, which we outline below. However, we also
found that due to differences between spacecraft and

rovers, some of the assumptions and design decisions
used in MIR are inappropriate for rovers. In the sec-
tion on the field t,est experience, we discuss these prob-
lems and propose some solutions for them.

The Mode Identification (MI) component of the on-
board architecture eavesdrops on commands sent by
CX t.o the rover. As each command is executed, MI
receives observat,ions from low-level monitors, which
extract qualitative information from the rover sen-
sors. For example, a current monitor may map the
continuous-valued current into the set of qualitative
values {low, nominal, high). MI is informed whenever
the qualitative value returned by a monitor changes.
Based on monitor inputs, the commands executed on
the rover, and a declarative model of the rover, MI
infers the most likely current state. MI also provides
a layer of abstraction to the executive, allowing plans
to be specified in terms of component modes, rather
than in terms of low-level sensor values.

The behavior of each state of a component is expressed
using qualitative, abstract, modular models [Weld and
de Kleer, 1990; Williams and de Kleer, 19911, which
describe qualities of the rover's structure or behavior
without the detail needed for precise numerical pre-
diction. Such models are much easier to acquire and
verify than quantitative engineering models, and are
easier to reuse. For example, although the Marsokhod
has six wheels, each containing a motor, only one wheel
module is needed.

While such models cannot specify how far to the left
the rover will drift if the motor has failed in one of
its left wheels, they can be used to identify the source
of failure, given the available sensor data. Such infer-
ences are robust. since small changes in the underlying
parameters do not generally affect the high-level be-
havior of the rover. In addition, abstract models can
be reduced to a set of clauses in propositional logic,
allowing behavior prediction to use unit propagation,
a restricted and very efficient inference procedure.

5. COMMAND PLAN GENERATION

In this section, we discuss the ground tools developed
to support the generation of CRL command plans.
The process begins with the specification of science
goals. CRL wa.s designed to encode not only com-
mand plans but also goals. For the 1999 Marsokhod
Field Test,, a powerful set of intelligent user interface
tools was used to support science planning and goal
specification. The capabilities provided include gen-
eration, display, and manipulation of 3D photorealis-
tic VR. models of the rover and its environment; this
VR user interface could be used to generate science
goals. A separat,e form-based user interface could also
be used to generate and edit CRL goals as well as
CRL command plans. The user interface tools also
provided the capability to generate CRL command
plans with the support of a mixed-initiative, contin-
gent planner/scheduler, which we refer to as CPS. For
more details on these user interface tools, see Black-
mon, et al., 1999 (in this volume).

A typical field test planning cycle proceeded as follows.

1. The scientists provided a set of high-level tasks to
be performed on the next simulated sol.

2. Based on this information, we developed a set of
high-level CRL tasks using the VR environment
and the form-based interface. The VR environ-
ment was used for the following tasks: (2) to se-
lect the best route for drive operations; (ii) to help
compute angles and distances to targets; and (iii)
to envision possible obstructions and illumination
for image and spectrometer commands.

3. The resulting set of high-level CRL tasks was then
passed from the form-based interface to CPS to be
recursively decomposed into lower-level tasks and
sequences of rover operations. Some decomposi-
tions included checks and contingent branches to
deal with common faults. In some cases, the de-
compositions resulted in hundreds of individual
rover commands (e.g., panoramic image). If the
resulting tasks were unordered, CPS would deter-
mine an ordering that satisfied the given time and
power constraints.

4. The resulting schedule was passed back to the
form-based interface, where it could be displayed
and edited. Using the editor, individual steps,
groups of steps, or whole branches could be re-
moved or replaced. The resulting schedule frag-
ment was fed back through CPS for any necessary
decomposition and completion.

5 . Finally, the schedule would be run through a sim-
ple syntax checker and uplinked to the on-board
rover executive.

In order to allow the kind of mixed-initiative schedul-
ing outlined above, CPS uses a greedy local search
strategy. It accepts a seed schedule (possibly empty)
and recursively attempts to improve it by fitting addi-
tional tasks into gaps in the schedule. When a plateau
is reached, tasks already present in the schedule can
be exchanged, removed, or shifted. Random walk and
restarts further help CPS escape from local minima.

CPS also has the ability to automatically add contin-
gent branches to schedules where appropriate. Build-
ing contingency plans is, in general, intractable, and so
contingency planners tend to be slow [Draper, Hanks,
and Weld, 1994; Pryor and Collins, 1996; Weld, Ander-
son, and Smith, 19981. To overcome this problem, CPS
employs the Just-in-Case (JIC) approach [Drummond,
Bresina, and Swanson, 19941, originally developed to
handle action duration uncertainty in telescope obser-
vation schedules. For the rover domain, we extended
the JIC approach as follows.

To consider uncertainty in power consumption
and data production (as well as in task duration).
To choose among potential contingency branch
points based on an assessment of expected util-
ity rather than just probability of failure.
To allow insertion of setup steps for a contingent
branch prior to the actual branch point.

6. THE FIELD TEST EXPERIENCE

In this section, we describe results and lessons learned
from our Marsokhod field test experience. The 1999
field test was meant to simulate the main objectives of
the Mars '01-'05 missions; the field test employed the

ficiently executed using CRL.

Figure 1: Marsokhod a t the 1999 Mojave Field Test.

Ames Marsokhod rover (Figure 1) and took place dur-
ing February. The remote site was a t Silver Lake dry
lake bed in California's Mojave desert, and the opera-
tions center was a t NASA Ames. The field test team
consisted of computer scientists and engineers from the
NASA Ames Computational Sciences Division, scien-
tists from NASA Ames Space Sciences Division, and
planetary scientists from around the world; there were
about seventy people who participated.

The Marsokhod platform has been demonstrated at
field tests starting with Russian tests in 1993, followed
by tests in the Mojave desert in 1994, a t Kilauea in
Hawaii in 1995, and in the Arizona desert in 1996.
Marsokhod is a medium-sized planetary rover built on
a Russian chassis. The rover has six wheels, indepen-
dently driven, with three chassis segments that artic-
ulate independently. It is currently configured with
imaging cameras that correspond to those planned for
use in near-term missions, a spectrometer, and an arm
equipped with cameras. The on-board computing en-
vironment is a Pentium-based Linux system, for ease
of research software integration.

In the rest of this section, we describe the field test
rcsults and lessons learned for each of the major au-
tonomy arch~tecture modules: plan execution, mode
identification, and plan generation.

6.1. PLAN E:XECUTION RESULTS

This was the‘ first Ames field test during which the
rover was commanded by uplinking sequences, which
were automatically executed on-board, rather than by
"joysticking" with the Ames Vzrtual Dashboard inter-
face [Wettergreen, et al., 19971. A major result of the
field test was to build confidence in sequence-based
commanding using the CRL language. Although,
as cxpected, complex positioning tasks remain eas-
ier through real-time feedback and "joystick" controls,
many tasks that involve repetitive activities or precise
orientations can be more easily specified and more ef-

The following are some examples of how contingency
plans were used in the 1999 Marsokhod Field Test and
the preparatory readiness tests.

If a visual-servo command terminates with fail-
ure, then acquire an image mosaic to enable re-
localization by the operations team.

If a wheel failure is detected, then acquire images
of the failed wheel to support diagnosis.

If orientation (taco angles) limits are exceeded,
then stop and acquire images around all six wheels
to support recovery planning.

During a dead-reckoning traversal, if time (and
data storage) allows, then take additional images,
to support science and future operations, when-
ever the rover turns.

Another use of contingent plans is to support on-
board, automated science analysis techniques, such
as those being developed within the "Graduate Stu-
dent on Mars (GSOM)" project [Gulick, et al., 19991.
One of the GSOM suite of tools identifies rocks in an
image. The following is an example employing this
rock-finding algorithm within a contingent command
plan. The rover drives a pre-set pattern (e.g., a rect-
angular circuit) while scanning the environment for
rocks. When a rock is found, the rover takes a high-
resolution image of the region where GSOM indicates,
and it stores this image for later downlink. Other tests,
such as spectrometer readings, could be performed on
the target location as well, potentially leading to other
opportunities for on-board science analysis, e.g., auto-
matically identify carbonates from spectrometer read-
ings. The rover is given a time limit to drive the search
pattern, so if it spends too much time analyzing the
images and performing tests, it skips some analyses in
favor of reaching its way points on schedule.

An important part of robust, autonomous execution is
to handle and react to failures that are not within the
plan but throughout the system. We have taken steps
in that direction with our explicit communication pro-
tocol to handle lost packets; however, other challenges
remain, such as software failures within real-time con-
trollers or hardware failures in the rover itself. Some
of these are handled via fault identification by MI and
recovery by contingency plans. Some system failures
need to be handled in a more comprehensive manner
to ensure the rover performs as desired. In particular,
approaches ranging from simple heartbeat monitoring
and pstate parameter recording to system reconfigura-
tion need to be considered.

The plans constructed by CPS can include contingent
branches to handle deviations from expected resource
usage. The resources currently considered, in addition
to time, are power and data storage. CX could make
use of a resource manager to track resource usage and
availability, as well as to signal resource conflicts or op-
portunities. We have developed a prototype resource
manager and are integrating it into the on-board exec-
utive architecture. The resource manager will ensure
that the rover executes its plans within the limits of
the available resources and will support branching on
a richer set of resource availability conditions.

6.2. MODE IDENTIFICATION RESULTS

Despite the advantages of our approach to state as-
sessment and fault diagnosis, discussed above, MI does
have some representation limitations, with respect to
modeling rovers. These limitations can be classified as
quantitative, probabilistic, and temporal.

Quantitative: There are many advantages to using
qualitative models, as outlined above, but many of
the more complex aspects of a rover that we would
like to model, such as motor behavior and kinematics,
are inherently quantitative. Consider again the simple
threshold test discussed at the beginning of Section 4:
a motor stall is indicated when the current-time prod-
uct is too high. But how do we determine what is too
high? "Normal" wheel currents depend on whether
the rover is turning, driving uphill, or going over rocky
terrain. The expected current, thus, is a quantitative
function of factors such as pitch, turning, and bumpi-
ness (as measured, perhaps, by accelerometers).

The approach we have taken is to use a purely qualita-
tive model, abstracting away quantitative details using
monitors. However, using this approach, we either end
up with most of the complexity hidden in the monitors,
or we are forced to discretize the values in question into
many intervals and rely on qualitative arithmetic to do
the math in MI, which can be computationally expen-
sive. It would be much simpler and more efficient to
work with the numbers directly. This is possible by
incorporating quantitative models, using hybrid con-
tinuous/discrete systems, such as HCC [Carlson and
Gupta, 19981. HCC is already used for a simulation of
the Marsokhod [Sweet, Blackmon, and Gupta, 19991,
and work is underway to combine it with MI, for use in
diagnosis. We are also considering the use of Kalman
filters, which are ideal for combining numerical data
from multiple noisy sensors, and which have success-
fully been used in MIR monitors.

Probabilistic: In MI, transitions to particular states
can be conditional or probabilistic, but not both. That
is, they are ether deterministic, commanded transi-
tions into "okay" modes, or unconditional random
transitions into fault modes. Many aspects of the
rover behavior involve conditional probabilistic tran-
sitions. For example, going up a steep hill results in
high torque on the rear wheels, which leads to an in-
creased probability that the wheel motors will stall.

With the current, representation, we cannot express the
fact that motor stalls are more likely to occur in the
presence of high torques. To do so, we need conditional
probabilities. Effectively using conditional probabili-
t,ies requires tracking multiple trajectories, which is
not currently done in MI for efficiency reasons; thus,
entailing a larger computational burden. We are also
considering other representations, including Markov
decision processes.

Temporal: One of the assumptions underlying MI is
that the system being monitored is synchronos, spend-
ing most of its time in a steady state (at least at
the qualitative level reflected by the models) and that
transitions between states are rapid enough that by
simply waiting for quiescence, MI can treat them as
instantaneous. However, on the rover, this assump-
tion is violated. State transitions are sufficiently fre-

quent and transitions between states are sufficiently
slow that there is no guarantee that the rover will
reach a steady state. This is due in part to a high
degree of uncertainty in the time that will be required
for a transition to occur.

6.3. PLAN GENERATION RESULTS
During the field test, we learned a number of lessons
about generating command plans. Some parts of the
process worked very well, but there were places where
we clearly needed additional software tools, or needed
to improve the capabilities of our existing tools.

Probably the most glaring omission was the lack of
adequate tools to allow the scientists to generate high-
level CRL tasks directly. Although a web interface was
developed for this purpose, it did not cover the full
spectrum of possible scientific experiments and objec-
tives. In addition, the interface did not allow them to
specify temporal constraints and did not provide ad-
equate feedback concerning resource requirements or
expected data production for proposed experiments.
As a result, the interface received little use by the sci-
entists and, instead, the scientific goals were relayed
verbally. As a result, significant manual labor was in-
volved in turning the scientists requests into a fleshed
out set of high-level CRL tasks.

In contrast, we made extensive use of automated de-
composition of high-level science tasks into detailed
sequences of rover commands. This capability was es-
sential for efficient development of command plans. In
some cases, the command plans contained hundreds
of commands and we simply could not have generated
these by hand in the time allotted.

We did not make significant use of the automated
scheduling capabilities. The primary reason for this
is that for each sol the scientists were providing a spe-
cific ordered set of tasks to be performed. They did
not provide a larger set of prioritized tasks from which
choices could be made, based on time, power, and data
considerations. This was due, at least in part, to the
relatively short duration of the field test, which did
not allow the scientists to develop a set of longer-term
objectives. Additionally, the scientists were not made
aware of how to take full advantage of the capabilities
CPS could provide. For an extended mission with a
larger number of distributed scientists submitting re-
quests, we believe that the scheduling capability would
become more important, especially if employed to gen-
erate multi-sol command plans.

We also did not make significant use of automatically
generated contingency branches. Without a larger set
of tasks to choose from, CPS cannot build useful al-
ternative branches. However, even with a larger set
of tasks, CPS would not have been able to anticipate
many of the failures that occured during the field test.

Currently, CPS only develops contingent branches for
failures that result from time and resource conflicts.
During the field test, most of the plan failures were
due to other things, such as losing visual targets dur-
ing traverses and motor current anomalies. In these
cases, useful alternative plans could have been devel-
oped automatically, but to do so, we need to enrich
the set of potential failures considered by CPS.

7. CONCLUDING REMARKS

In this paper, we presented the Contingent Rover Lan-
guage (CRL for commanding planetary rovers, and
we describe d the ground-based and on-board systems
that were demonstrated in the 1999 Marsokhod Mo-
jave Field Test. Our overall objective is to increase
the flexibility and robustness of autonomous rover be-
havior in order to improve science productivity. The
initial efforts towards this objective (reported here fo-
cused on the concept of "contingency". CRL al 1 ows
t,he specification of contingent courses of action for
the purposes of recovering from expectation failures
or taking advantage of serendipitous science opportu-
nity. Our mixed-initiative planner/scheduler (CPS)
supports the generation of contingent CRL command
plans and our on-board executive systems (CX and
MI) enable robust plan execution that is responsive to
t,he runtime, dynamic environment.

In the previous section, we mentioned future work di-
rections for each of the three component technologies.
In addition, we intend to pursue command plan ver-
ification. In order to support verification, as well as
plan generation, we plan to integrate rover simulation
with constraint reasoning and planning techniques. In
the future, we would also like to migrate some of the
planning activities on-board the rover as appropriate;
for example, the ability to replan science activities in
response to on-board science analysis and runtime con-
ditions (e.g., resource availability).

ACKNOWLEDGMENTS

We'd like to acknowledge the following collaborators
who helped with the work reported here: Corin Ander-
son for his help with CPS and user interface; Kather-
ine Smith for her help with the MI systern and Mar-
sokhod models; Trey Smith for his help with plan ex-
ecution; and Corin Anderson, Ted Blackmon, David
Miller, Barney Pell, and Trey Smith for their help in
CRL development. The implementation of CX uses
constructs from ESL [Gat, 19961.

We'd also like to acknowledge the following collab-
orators that worked on Marsokhod's hardware, on-
board software, user interfaces, stereo modeling, simu-
lation, and other ground tools: Ted Blackmon, Maria
Bualat, Vineet Gupta, Gary Haith, Aaron Kline,
Linda Kobayashi, Cesar Mina, Charles Neveu, Laurent
Nguyen, Sergey Sokolov, Hans Thomas, Anne Wright,
and Eric Zbinden.

We'd l ~ k e to 1,hank all the field test collaborators: John
Schreiner (Freld Test Lead), Michael Sims (Technical
Lead), Hans Thomas (Engineering Lead), Carol Stoker
(Science Lead), and Nathalie Cabrol (Science Deputy),
the NIR and MIR instrument teams, the GSOM team,
and the other 50+ participants. We'd also like to
thank NASA Ames management, in particular within
the Computational Sciences Division, for supporting
o u r research and the field test activity.

REFERENCES

Bernard, D.E., Dorais, G.A., Fry, C., Gamble Jr . ,
E.B., Kanefsky, R., Kurien, J . , Millar, W. , Muscet-
t,ola, N . , Nayak, P.P., Pell, B., Rajan, K., Rouquette,

N., Smith, B., and Williams, B.C. 1998. Design of the
remote agent experiment for spacecraft autonomy. In
Proc. of the IEEE Aerospace Conference.

Blackmon, T., et al., 1999. Command generation for
planetary rovers using virtual reality. In Proc. of i-
SA IRA S.

Carlson, B., and Gupta, V. 1998. Hybrid CC and in-
terval constraints. In Proc. of the International Work-
shop on Hybrid Systems: Computation and Control.

Draper, D., Hanks, S., and Weld, D. 1994. Proba-
bilistic planning with information gathering and con-
tingent execution. Proc. of the Second International
Conference on AI Planning Systems.

Drummond, M., Bresina, J . , and Swanson, K . 1994.
Just-in-case scheduling. Proc. of the Twelfth National
Conference on AI.

Gat, E. 1996. ESL: A language for supporting robust
plan execution in embedded autonomous agents. Proc.
of the AAAI Fall Symposium on Plan Execution.

Gulick, V.C., Morris, R.L. , Ruzon, M., and Roush,
T.L. 1999. Autonomous science analysis of digital im-
ages for Mars sample return and beyond. The 30th
Lunar Planetary Science Conference.

Mishkin, A.H., Morrison, J.C., Nguyen, T .T . , Stone,
H.W., Cooper, B.K., and Wilcox, B.H. 1998. Expe-
riences with Operations and Autonomy of the Mars
Pathfinder Microrover. Proc. of the IEEE Aerospace
Conference.

Pryor, L., and Collins, G. 1996. Planning for con-
tingencies: A decision-based approach. Journal of AI
Research.

Sweet, A, , Blackmon, T . , and Gupta, V. 1999. Sim-
ulation of a Rover and Display in a Virtual Environ-
ment. In Proc. of the American Nuclear Society 8th
International Topical Meeting on Robotics and Remote
Systems.

Washington, R., Golden, K., Bresina, J . , Smith, D.E.,
Anderson, C., and Smith, T . 1999. Autonomous rovers
for Mars exploration. In Proc. of the 1999 IEEE
Aerospace Conference.

Weld, D.S. and de Kleer, J . 1990. Readings in Qualita-
tive Reasoning About Physical Systems, Morgan Kauf-
mann Publishers, Inc., San Mateo, California.

Weld, D.S., Anderson, C.R., and Smith, D.E. 1998.
Extending Graphplan to handle uncertainty and sens-
ing actions. Proc. of the Fifteenth Natzonal Confer-
ence on AI.

Wettergreen, D., Bualat, M., Christian, D., Schwehr,
K., Thomas, H. Tucker, D., and Zbinden, E. 1997.
Operating Nomad during the Atacama Desert Trek.
In Proc. Fzeld and Service Robotics Conference.

Wettergreen, D., Thomas, H., Bualat, M. 1997. Ini-
tial Results from Vision-based Control of the Ames
Marsokhod Rover. In Proc. of the International Con-
ference on Intelligent Robots and Systems, Control of
Wheeled Robots.

Williams, B. C. and de Kleer, J . 1991. Qualitative
reasoning about physical systems: A return to roots.
Artificial Intelligence, 51:l-10.

