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Abstract 

This paper addresses the problem of learning 
resource profiles: upper and lower predic- 
tion bounds for engineering resources (e.g. 
power). We argue for data-driven techniques 
which specifically learn interval-valued pre- 
dictions (i.e. best and worst-case bounding 
functions), as opposed to probabilistic (i.e. 
soft) predictions. We present and discuss 
a simple preliminary example using actual 
data from a rover prototype in a laboratory 
test-bed environment. We discuss exten- 
sions to  this work, including integration with 
an onboard planner that could use these re- 
source profiles, toward improving overall sci- 
ence throughput. 

1 Introduction 
This work addresses the problem of automated learn- 
ing and updating of resource models (e.g. battery 
power availability) using sensor data. Robust space- 
craft/rover autonomy requires the ability to maintain 
resource models onboard, to reflect changing environ- 
mental and degrading spacecraft conditions with min- 
imal ground attention. Furthermore, future planned 
missions and economic constraints present increasing 
pressures to  deal with largely unknown environments 
and short design-build-launch cycles (with minimal 
time for rigorous testing). Thus, careful preflight 
manual preparation of resource models is likely to be 
infeasible and inadequate. 

The t,radit,ional ground-based approach (send all 
data to ground, perform trending and statistical 
modeling manually, update models) is both subop- 
timal and impractical. It results in reduced science 
t l~oughpu t ,  due to both spacecraft-ground communi- 
cation delays and the need to use excessively conser- 
vatjive resource margins. Furthermore, for key future 
mission contexts such as multiple cooperating rovers, 

spacecraft fleets, and Deeper Space missions (such as 
planned Pluto flybys), the telemetry bandwidth re- 
quirements and/or communication delays would be 
enormous. 

1.1 Adaptive Resource Profiling 
To address such problems, we have developed ma- 
chine learning and data  mining techniques t o  both 
learn initial resource models from historic sensor data  
(e.g. testbeds, simulations, early mission behavior) 
and to continually adapt them using online sensor 
data. Specifically, we have adapt,ed our earlier work 
in abnormality/fault detection via learning red-line 
envelope functions ([1,2]) to the task of resource pro- 
filing: learning upper and lower bounds on expected 
future resource availability over time. 

Each profile projects how much of a resource may 
be available over future time points, based on the 
current resource level and on the durations of ac- 
t,ions which can produce (e.g. activate solar panel) 
or consume (e.g. turn on motor) the target resource 
(e.g. battery power). To reflect uncertainty in the 
impact of such actions (due t,o both unobserved- 
yet-contextually-significant effect,s and routine sens- 
ing noise), these predictions can be based on learned 
context-sensitive interval-valued (rather than nominal 
mean-valued) estimates of the production and con- 
sumption rates of such actions. 

The end result is an envelope profile showing the 
best-case and worst-case resource availability over 
time. Such profiles are useful both for plan exe- 
cution monitoring (i.e. when actions are observed) 
and planning/scheduling (when future actions are 
pla~med). These models allow reasoning under both 
best and worst-case scenarios, to  guide aggressive at- 
tempts toward maximum science throughput while 
avoiding controlling dangerously close to  worst-case 
limits (e.g. heading into night-fall without sufficient 
battery charge to run critical night-time operations 
or experiments). 

Det,ails for some techniques to learn bounding func- 
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tions from data can be found in ([1],[2]). The key 
property of these techniques is that they: 1) result in 
few false alarms (e.g. they properly contain all the 
data within the resulting bounding intervals) while 
otherwise striving to  be as tight as possible and 2) 
overcome key limitations of other data-driven alter- 
natives. For example, the common approach of error 
bars (e.g. neural network predictions of means and 
variances) make strong assumptions about the nature 
of the prediction error distribution (e.g. synimetric 
Gaussian ~ioise). More general non-parametric prob- 
ably density e s t i m a t i o n  overcomes that problem, but 
t,ends t,o be very "data hungry" and spends significarit, 
cffort modelling the nature of the data between the 
rxtrrma mlues. 

In contlast, our bounding techniques essentially 
vicw the problem as a form of constrained optimiza- 
tion: make predictions which are as close to the target 
( e . ~  in the least squared error sense) while ensuring 
that those predictions are always above (or below, in 
the case of low bounds) the target values. Our tech- 
nique does not spend effort modelling the entire prob- 
ability spread (only predicting the context-sensitive 
extrema values), nor does it make strong assumptions 
about the nature of the prediction error distribution, 
except, that the maximum error is bounded (i.e. fi- 
nite range between the tails of the distribution), as 
is typically the case in practice for digitally-sampled 
engineering data. 

2 Example: Mars Rover Battery 
Drain 

As a concrete example, consider a key resource for a 
Mars rover: power. Solar panels provide power, loads 
(e.g. motors, cameras) consume it, and the battery 
stores it. There is uncertainty in the rate at. which 
the solar panels recharge the battery, due to condi- 
tions such as dust accumulation and Sun position. 
The loads also have uncertain consumption, due to 
variabilities that existing sensors are inadequate to 
capture. In our experiments (running the R.ocky 7 
rover prototype in the JPL Mars Yard), the possi- 
ble training inputs are: 1) sensed quantities such as 
bat,tery voltage, wheel motor torques and currents, 
and solar intensity and 2) the times of various actions 
(such as turning on/off cameras, which do not have 
their own sensors of currents). 

From actual sensed data of such inputs over time, 
our system learns to  predict bounds on the battery 
power at  any given time T+deltaT into the future. 
In our experiments with Rocky 7 so far, these predic- 
tions are based on the current battery voltage (and 
other selected sensors) a t  time T ,  as well as some fixed 
lagged time values in the past (e.g. a t  T-L1, T-L2, 

...). In practice, a prediction targr.t of the remain- 
ing kilo-watt/hours of power (instead of voltage levels 
per se) is more meaningful. This rrquires computing 
backwards from a final (0 KW/hr) battery dead state, 
computation of load watt requirements (i.e. from ob- 
served current and duration data),  and integrating to 
compute target values of "remaining power" over each 
sensed time point. For simplicity, the experiments 
discussed below focus on predicting the voltage level. 

2.1 Example Performance 

Figure 1 shows t,he training dat,a, co~isisting of 23 sen- 
sors over about 7.5 hours. This data was gathered 
ovcr six independent trials of Rocky 7, under vari- 
ous load arid solar conditions, and combined into one 
time-series data-set. ' Each trial was run from a 
full battery charge until the batterv power dropped 
so low that the CPU and data sanipling shut down. 
The solar panel 011 the Rocky 7 prototype is actu- 
ally insufficient to recharge the batt,ery, even with no 
loads other than CPU; so, it merely slows down the 
power drain rate. Thus, the plot of the battery volt- 
age sensor (labelled MezVoltage-batteries) shows 
6 distinct periods of high-to-low voltage drop, one for 
each trial. 

Figure 2 shows the same sensors, for t,he single test 
(seventh) trial. The test trial was ahout one third the 
duration of a nominal (no load) bat,tery drain trial, 
due to especially heavy loads (i.e. much wheel mo- 
tor activity). Figure 3 shows the evaluation of the 
learned battery resource profiles when applied to  the 
test data. Those high and low resource bounds were 
learned using only the training data,  for a prediction 
forward lag of 1 minute (i.e. deltaT=60). The in- 
puts for this example were various lagged values of 
the battery volt,age (specifically, T,T-1,T-2,T-4, and 
T-8). The test data completely fits within the bounds. 
The noticable looseness is a result of having learned 
bounds which contain all 6 of the training trials; a 
profile learned for this test trial alone would be much 
tighter (but more prone to not fit future data). The 
looseness is especially obvious for t,he high bound. 
This arises from the fact that the t,raining trials in- 
volved a variety of loads, some much less than for the 
test trial. Including relevant action events (such as 
motors being on or off) as inputs to these bounding 
functions would lead to tighter predictions. 

' ~ a t a  gap periods of 1000 seconds (not shown in 
plots) were inserted between each of the six training 
data subsets, to avoid lag vectors from crossing any trial 
boundaries. 
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Figure 1: Plot of training data 
Each box is a time-series plot of the named sensor. These time-series represent a concatenated sequence of six test-bed 
experiments, as suggested by the battery voltage (plot box which is 6th down, 2nd across) starting six times at high (full) 
values (near 16 volts). 

3 Discussion 

For more accurate, context-sensitive resource profil- 
ing, t,he inputs to the bounding functions should in- 
clude quantities related to  the actual loads over time. 
However, simply using the relevant raw sensor data 
(e.g. motor currents) will generally not work well. 
For resources such as battery power, integration over 
t,ime windows greater than a few local samples is often 
effectively required, to  model with sufficient precision 
the contributions and depletions of the underlying re- 
source quantity (e.g. power). 

Thus, we are investigating using features represent- 
ing the total duration of various actions (e.g. camera 
on, motors on) between the current time T and thc 
predicted time T+deltaT. We believe that using such 

aggregate durations for each type of load activity (e.g. 
number of seconds motor 1 is on between time T and 
T+deltaT) as inputs, instead of the sensed quantities 
of those loads (e.g. actual electric current values a t  
each motor over time) per se, also provide more useful 
models for use in resource management by planners. 
This is because a planner will reason a t  the level of 
such actions, and our model must itself be able to  
map those actions into worst-case and best-case con- 
sumption rates. Our use of such load-activity dura- 
tions as inputs does reflect an assumption that  the 
resource consumption is an additive function of such 
durations. Balancing the predictive imprecision that 
results from such abstractions, while still providing 
useful abstracted interfaces for planners (i.e. not a t  
the detailed level of sensed load quantities), is our 
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Figure 2: Plot of test data 

current focus in ongoing research. 

To overcome the expense and limited sample size 
of current testbed testing, we are currently evaluat- 
ing these techniques on simulated R.over data, under 
a variety of load and action contexts. We plan to 
more tightly integrate this resource profiling capabil- 
ity with existing automated planning capabilities over 
the coming months (for preliminary architecture for 
such integration, see [3]). 
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Figure 3: Plot of battery envelopes for test data 
Time-ssies plot of upper and lower profile bound values, for 1 minute look-ahead prediction. The artual test data is 
between these bounds over all time points. 




