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ABSTRACT 
Use of A1 (Artificial Intelligence) algorithms such as 

adaptive planners, intelligent monitors, and data 

miners can help optimize overall return from space 

systems by providing adaptive operations that can 

exploit opportunities. Typically, space systems 

involve many hard real-time functions including: 

attitude, thermal, propulsion, and mechanism control; 

detectorlsensor data stream processing; telemetry 

gathering and packetization; command handling; and 

many other periodic tasks which must be executed 

such that processing is completed by a periodic 

deadline. While there has been a concerted effort to 

design A1 algorithms to have predictable execution 

requirements (e.g. anytime algorithms), most of these 

applications are relegated to running in a best effort 

fashion using slack time left over from the hard real- 

time periodic tasks which must be given higher 

priority to ensure safety and control. The problem 

with executing the A1 algorithms in slack time is that 

this makes their execution performance impossible to 

predict. The alternative of requiring A1 algorithms to 

be anytime algorithms so that they can be treated like 

a hard real-time task with a deterministic minimum 

response time can be prohibitive since such 

algorithms are hard to design and the minimum 

response may not provide much of an optimization. 

This paper describes an third alternative which 

provides an intelligent execution control mechanism, 

the EPA (Execution Performance Agent), that 

ensures execution of algorithms based on required 

reliability and confidence in meeting deadlines rather 

than priorities. The EPA provides predictable and 

safe execution of hard real-time safety critical and 

soft real-time mission optimizing tasks. By analogy, 

the EPA provides a balancing capability much like 

the everyday ability people have to walk without 

tripping while contemplating how to build a better 

career. It does this by executing tasks in specific 

execution reliability and confidence space and 

monitoring actual execution times to determine when 

resources must be adjusted. The EPA is currently 

being evaluated in a digital control and continuous 

video media testbed at the University of Colorado. 

Based upon testbed results, the EPA is also being 

considered for execution control of real-time 

operating system tasks including A1 and digital 

control applications on a small spacecraft, Citizen 

Explorer, being built by the Colorado Space Grant 

College. The EPA was inspired by experience with a 

Space Grant Space Shuttle small payload which 

included control of three instruments and 

optimization of their operations using an adaptive 

planner and an intelligent monitoring system from 

the NASA Jet Propulsion Laboratory. The 

requirements for both hard real-time tasks and the 

use of A1 applications on Citizen Explorer will be 

more demanding, and it is hoped the EPA can be 

shown to increase reliability and predictability of 

such systems. Details of the EPA mathematical 

forhulation, the testbed implementation, 

performance results, and results of the analysis to 

determine if the EPA meets the Citizen Explorer 

requirements will be discussed in the paper. 

1.0 Introduction 
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The RTE<PA ("Real-Time Execution 

Performance Agent") mechanism introduced in this 

paper is intended to provide time-critical applications 

with quantifiable assurance of system response using 

a simple EPA ("Execution-Performance Agent") 

interface to the deadline monotonic scheduling 

algorithm. In addition, the RTEPA provides a 

system call and signal interface which allows 

applications to monitor and control pipeline real-time 

performance on-line, and therefore significantly 

extends existing work on "in-kernel" pipelines. The 

set of applications requiring this type of performance 

negotiation support from an operating system is 

increasing with the emergence of virtual reality 

environments [Nu95], continuous media [Co94], 

multimedia [Ste95], digital control, and "shared- 

control" automation [Bru93][SiNu96]. The RTEPA 

mechanism is being implemented in the VxWorks 

microkernel, and is being tested in a rail-guided air- 

powered vehicle testbed incorporating continuous 

media, digital control, and "shared-control7' pipelines. 

Likewise, the R'TEPA is being tested with a 5 DOF 

robot arm that provides basic pick-and-place 

capabilities. 

Traditionally, if an application requires service 

time assurances, there are three approaches: best- 

effort systems. hard real-time systems, and 

application specific embedded systems. Best-effort 

systems rely upon adequate resources always being 

available whenever an arbitrary task requests service, 

and can make no guarantees when they are even 

temporarily overloaded. Hard real-time systems 

require that the application provide resource bounds 

(e.g., the "Worst-case Execution 'Time" or WCET) 

so that the operating system can mathematically 

check schedulability and admit only tasks whose 

complete execution can be guaranteed by hard 

deadlines. Embedded systems typically include 

cooperative tasks implemented in a single protection 

domain. Each task is designed with full knowledge 

of all other tasks and resource demands; it is difficult 

to change or scale embedded software. These three 

approaches do not provide controllable real-time 

reliability or ability to make on-line tradeoffs. 

Figure I :  In-Kernel Pipe with Filter Stage and 
Device Interface Modules 
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In contrast, the RTEPA mechanism supports a 

broad spectrum of contemporary applications ranging 

from virtual environments to semi-autonomous 

systems [Si96]. The RTEPA facility allows an 

application developer to construct a set of real-time 

kernel modules that manage an input (source) device; 

apply simple processing stages on the input stream 

(pipeline stage filters); control individual processing 

stage behavior through parameters obtained from a 

user-space application; provide performance 

feedback to the controlling application; and manage 

the output (sink) device. This basic "in-kernel" 

pipeline design is very similar to the splice 

mechanism [Fa194], but the EPA and scheduling 

control are much different. Each RTEPA module, 

shown in Figure 1, is implemented as a kernel thread 

configured and controlled through the EPA and 

scheduled by the DM ("Deadline Monotonic") 

algorithm. The controlling application executes as a 

normal user thread. The RTEPA mechanism is 

efficient due to removal of overhead associated with 

protection domain crossings between device and 



processing buffers, and reliable due to kernel thread 

scheduling (compared to split-level scheduling of 

user threads). The RTEPA interface provides 

configuration and execution flexibility on-line, with 

performance-oriented "reliable" execution (in terms 

of expected number of missed soft deadlines and 

missed tennination deadlines). 

The EPA interface is intended to allow an 

application to specify desired service and adjust 

performance for both periodic pipelines requiring 

isochrony and aperiodic pipeline execution. Many 

scenarios exist for on-line RTEPA service 

renegotiation for continuous media, digital control, 

etc. [Si96]. For example, a continuous media 

application might initially negotiate reliable service 

for a video pipeline with a frame-rate of 30 fps, and 

later renegotiate on-line for 15 fps so that an audio 

pipeline may also be executed. An application 

loading pipeline stages must specify the following 

parameters for a service epoch: 

1)  Service type common to all modules in a 

single pipeline; <guaranteed, reliable, or best- 

efforP 

i) Computation time type; <C,,,,,,, for 
guaranteed, C,,,,,, for reliable, or none 
for best-efforp 

ii) Off-line execution samples for 

C,,,,;<{Sample-array), [distribution-free 

Or (normar, s Cqmled/' 
2) Input source or device interface designation 

(source must exist as stage or device interface); 

(Fource> 

3 )  Input and output block sizes; <s,, So,,, 
The application must also provide and can control 

these additional parameters on-line during a service 

epoch: 

5) Desired termination and soft deadlines with 

confidence for reliable; <D,,, Dsof0 term-conf, 

soft-conf, 

6) Minimum and optimal time for output 

response (earlier responses are held by EPA); 

<R,", R,, 

7) Release period (expected minimum 

interarrival time for aperiodics) and 110 periods; 

<T, Tin, Toup 

The approach for scheduling RTEPA thread 

execution is based on the EPA interface to the fixed 

priority DM scheduling policy and admission test 

called the EPA-DM approach here. The EPA-DM 

approach supports reliable soft deadlines given 

pipeline stage execution times in terms of an 

execution time confidence interval instead of 

deterministic WCET. Also noteworthy, the RTEPA 

facility uses two protection domains; one for user 

code and one for operating systems code. However, 

the RTEPA facility allows "untrusted" code to be 

executed in the kernel protection domain. We have 

focused on the functionality of architecture, relying 

on the existence of other technology such as that used 

in the "SPIN" operating system [Be953 to provide 

compile time safety checking. The negotiative 

control provided by RTEPA is envisioned to support 

isochronous and event-driven applications which can 

employ and control these pipelines for guaranteed or 

reliable execution performance. 

2.0 EPA-DM Approach to Thread 
Scheduling 

The concept of EPA-DM thread scheduling for 

pipeline stages is based upon a definition of soft and 

termination deadlines in terms of utility and potential 

damage to the system controlled by the application 

[Bu91]. The concept is best understood by 

examining Figure 2, which shows response time 

utility and damage in relation to soft and termination 

deadlines as well as early responses. In this design, 

the EPA will signal the controlling application when 

either deadline is missed, and specifically will abort 

any thread not completed by its termination deadline. 

Likewise, the EPA will buffer early responses for 

later release at R,,, or at R,  worst case. The EPA 

allows execution beyond the soft deadline. Signaled 

controlling applications can handle deadline misses 

according to specific performance goals, using the 



EPA interface for renegotiation of service. For 

applications where missed termination deadline 

damage is catastrophic (i.e. termination deadline is a 

"hard deadline"'), the pipeline must be configured for 

guaranteed service rather than reliable service. 

The well established DM scheduling policy and 

schedulability test are used due to their ability to 

handle execution where deadline does not equal 

period [Au93]. This may often be true for the 

applications to be supported. One major drawback of 

the DM scheduling policy is that to provide a 

guarantee, the WCET of each pipeline stage thread 

must be known along with the release period. 

Otherwise, for performance-oriented applications -- 
where occasional soft and termination deadline 

failures are not catastrophic, but simply result in 

degraded performance -- the "reliable" option with 

quantifiable assurance is provided, given expected 

execution time. Despite the ability to opt for no 

guarantee, this mechanism does not just provide "best 

effort" execution. Instead, a compromise is provided 

based on the concept of execution time confidence 

intervals and the EPA interface to the DM scheduler. 

An example of the EPA-DM approach is given here 

with a simple two-thread scenario preceded by a 

review of the goals for the EPA-DM approach. 

Figure 2: Execution Events and Desired Response Showing Utility 
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time is based on off-line determination of the 

The EPA-DM schedulability test eases restriction execution time confidence interval. Knowledge of 

on the DM admission requirements to allow threads expected time can be refined on-line by the EPA each 

to be admitted with only expected execution times (in time a thread is run. By easing restriction on the 

terms of an execution confidence interval), rather WCET admission requirement, more complex 

than requiring deterministic WCET. The expected processing can be incorporated, and pessimistic 



WCE.T with conservative assumptions (e.g. cache 

misses and pipeline stalls) need not reduce utility of 

performance-oriented pipelines which can tolerate 

occasional missed deadlines (especially with 

probability of misses). 

With this approach, the DM schedulability tests, 

which consider computation time and interference for 

a thread set. can still be used by the EPA as stages are 

loaded. Basic DM scheduling formulas are extended 

to return expected number of missed soft and 

termination deadlines to the controlling application. 

For this capability, when a module is loaded, the 

computation time must be provided with a sufficient 

sample set for distribution-free confidence estimates, 

or an assumed distribution and a smaller sample set 

of execution times measured off-line. From this, the 

computation time used in the schedulability tests is 

computed based upon desired confidence for meeting 

soft and termination deadlines. All interfering 

threads are pessimistically assumed to run to their 

termination deadline where they either will have 

completed or are aborted. For example, for thread i, 

let C(i) = expected execution time; D,,,(i) = soft 

deadline; Dte,,(i) = termination deadline; and T(i) = 

period; with the DM condition that C(i) <= D,,,(i) <= 

D,,,(i) <= T(i). The worst-case confidence interval 

execution times C(i),,, and C(i),,,, used in the 

extended DM schedulability tests below are based on 

desired confidence in execution time and probability 

of late response. In cases where the actual execution 

time is greater than the worst-case confidence 

interval execution time, deadlines will be missed. 

The expected number of missed deadlines will be 

less-than or equal to expected execution times 

outside the confidence interval resulting in response 

beyond a given deadline. So, if a thread has an 

execution time confidence of 0.999 and passes the 

admission test, then it is expected to miss its 

associated deadline 0.1% of the time or less. 

For example, consider two threads that have a 

normal distribution of execution times (the normal 

distribution assumption is not required, but greatly 

reduces the number of off-line samples needed 

compared to assuming no distribution), so that unit 

normal distribution quantiles Zp,,, and Zp,,,, can be 

used, and assume that WCET(i) is known for 

comparison, so that we have: 

thread i=l: 

thread i=2: 

Cexpecte,( 1 )=40, 0( 1 )= 15, Nt,,,,,( 1 )=32, 
Zp,,,( l)=3.29 for soft-conf=99.9%, 

Zph,,,(1)=3.72 for term-conf=99.98%, 

WCET(1)=58, D,,,( 1)=50, Dt,,,(1)=60, 

and T( 1 )=250 

Ce,,,,ted2)=230, d 2  )=50, Ntr,,,,(2)=32, 
Zpl,,(2)= 1.96 for soft-conf=95%, 

Zph,,,(2)=3.72 for term-conf=99.98%, 

WCET(2)=3 10, D,,d2)=400, 

Dt,,,(2)=420, and T(2)=500 

If these threads can be scheduled based on the 

EPA inputs to the admission test, then thread one has 

a probability of completing execution before D,,, of 

at least 99.9% expressed P(C,,, < D,,,) 2 0.999. 

Similarly, probability P(Ch,,, .- Dl,,,) 2 0.9998. 

Likewise thread two has respective deadline 

confidences P(C,,, < D,,,) 2 0.95 and P(Chigh < Dterm) 

2 0.9998. Based on sufficient, but not necessary 

schedulability tests for DM [Au93] with EPA 

execution time confidence intervals inputs rather than 

just worst-case execution time. the schedulability 

with desired confidence in deadlines can be derived 

from the execution time confidence intervals, 

shown below. 

From execution time confidence intervals and 

sufficient (but not necessary) DM schedulability 

test: 
eq I :  From probability theory for a normal 

ea 2: EPA-DM admission test: Vi: 1 5 i 5 n: 

j= 1 

I,,,,(i) is the interference time by higher priority 



threads j=l to i-1 which preempt and run up to the 

"ceiling term" number of times during the period in 

which thread i runs. 

Can thread i=l be scheduled given execution time 

confidence and desired D,,, and D ,,,, 
confidence? Yes 

using eq 1:  C ,,,,,(I) = 40 + Zphigh(l) - - (&)- 
49.86; and likewise C ,,,(1)= 48.72 , 

48.72 49.86 
using eq Z&3: (r) 2 1.0 and jbb) r 1.0 

for C,..(l)and Ch,,(I); likewise (%) 2 1 .O for 

WCET 

C,,,, Chi,, can be scheduled. (note: highestpriority 

thread hus no interference, so Ima(i) =0) 

Can thread i=2 be scheduled given execution time 

confidence and desired D,,, and D ,,,, 
confidence? Yes 

using eq 1: C(2),,,, = 230 + 3.72 

262.88; and likewise C(2),,, =,247.32 

using eq 2&3: 
clovi or high (2) + [ 'max (2) (\ Dsofi or bar# (2) Dsoft or hard (2) I 

In the worst case, given the abort policy for 

incomplete threads reaching their termination 

deadline. maximum interference occurs when all 

higher priority threads execute until they are aborted 

by the EPA 

and (-) 4- 2(%) r 1.0; 

FALSE ; WCET can not be scheduled 

C,,,, Chi,, can be scheduled. (note: thread 1 

interferes up to its termination deadline twice in this 

example) 

These formulas show that the two threads can be 

scheduled using non-WCET execution time such that 

desired performance is achieved. Note that the basic 

DM formulas show that the thread set is not 

considered schedulable if only WCET is considered. 

In this case, WCET, which is a statistical extreme, 

lead to rejection of a thread set which can be 

scheduled with 2 99.98% probability of successfully 

meeting termination deadlines. 

3.0 In-Work Implementation, 
Experimentation and Evaluation 

The mechanism is being implemented VxWorks 

with modifications to rate monotonic scheduling of 

real-time kernel threads to implement the EPA-DM 

approach. The kernel is also being modified to 

incorporate the pipeline EPA system call and signal 

interface with functionality for loading and 

controlling pipe stage modules and device interface 

modules. The RACE (Rail-Guided Air-Powered 

Control Experiment) testbed (Figure 3) has been built 

using off-the-shelf "68HC 1 1" microcontrollers for 

sensor and actuator control, with a serial interface to 

an Intel x86 computer for implementation of the 

digital control, continuous media, and "shared- 

control" pipelines. The RACE testbed experiments 

with the RTEPA mechanism on-board the RACE 

vehicle use a basic set of device commands (safe, 

pitch-motors <angle>, thrust UeftIrighP UeveP 

<duration>, read compass, read vertical range, read 

forward range). These commands can be used in 

digital control pipelines to implement ramp station 

keeping and yaw control. The ramp ranging is 

provide with continuous media video-based ranging 

from an on-board "QuickCam" output piped to 

ranging estimation and control algorithm. Likewise, 

the digital compass output is piped to a yaw 

estimation and control algorithm. 



Fipure 3: 5 DOF Robotic Testbed Digital Control Testbed (righi) 

4.0 Related Work 
A number of pipeline mechanisms for 

continuous media have been developed [Gov91], 

[Co94], [Fa194]. However, most common 

implementations include application-level processing 

with device buffers mapped from kernel space into 

user-space rather than an "in-kernel" mechanism for 

executing user code loaded into kernel space. 

Likewise, these memory-mapped implementations 

also employ user-level threads with split-level 

scheduling or bindings of user threads onto kernel 

threads. The splice mechanism is most relevant since 

it operates "in-kernel" using loadable modules or 

simple streaming as the RTEPA will, and was shown 

to have up to a 55% performance improvement 

[Fa194]. However, to our knowledge, splice does not 

provide a configuration and on-line control interface 

like the EPA. 

Many examples of periodic hard real-time digital 

control streams exist [K194], but no general 

mechanism for "reliable" real-time control of 

pipelines is known to exist. Research on process 

control requirements for digital control indicate that 

parametric control of a number of kernel pipes within 

a general operating system environment would be 

useful for sophisticated industrial applications. 

Finally, many real-time semi-autonomous and 

"shared control" projects are in progress [Bru93] 

[Fle95], including applications where occasional 

missed deadlines would not be catastrophic [Pa961 

[Bro95]. 

5.0 Conclusion 
Experiments will be implemented using both the 

RTEPA and user-level applications to compare 

performance. However, the RTEPA is not just 

expected to improve throughput compared to 

application-level processing, but is more significantly 

expected to provide reliable configuration, 

monitoring, and control of this type of efficient 

mechanism through its EPA interface to the DM 

scheduler. A fundamental aspect of the EPA 

performance control is based on the EPA-DM 

confidence interval approach for reliable execution. 

Thus, the EPA will be evaluated in terms of how well 

pipelines are able to meet expected and desired 

performance in terms of missed deadlines. Finally, 

experiments are being evaluated in terms of real-time 

parameters such as video stream dropouts, latency 

variation, overshoot and drift to evaluate the 

reliability afforded by the EPA to applications. These 

experiments will be run individually and 

simultaneously to evaluate use of the RTEPA 

mechanism for complex real-time applications 

involving multimedia and interaction between users 

for complex applications such as "shared control. 
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