
VALIDATING THE DS1 REMOTE AGENT EXPERIMENT
P. Pandurang Nayakt Douglas E. ~ernardy Gregory Doraid

Edward B. Gamble Jr.y Bob Kanefskyt James ~urienll William Millart

Nicola ~ u s c e t tola5 Kanna Rajant Nicolas Rouquet te7

Benjamin D. Smithy William ~ a ~ l o r s Yu-wen Tung(

Abstract
This paper describes the validation of the Re-
mote Agent Experiment. A primary goal
of this experiment was to provide an on-
board demonstration of spacecraft autonomy.
This demonstration included both nominal op-
erations with goal-oriented commanding and
closed-loop plan execution, and fault protection
capabilities with failure diagnosis and recov-
ery, on-board replanning following unrecover-
able failures, arid system-level fault protection.
Other equally important goals of the experi-
ment wen. to decrease the risk of deploying Re-
mote Agent,s on future missions and to familiar-
ize t,he spacecraft engineering community with
the Remote Agent approach. These goals were
achieved by successfully integrating the Remote
Agent with the Deep Space 1 flight software,
developing a layered testing approach, and tak-
ing various steps to gain the confidence of tlie
spacecraft team. In this paper we describe how
we achieved our goals, and discuss the actual
on-board demo~istmtion in May, 1999, when
t,he R.emote Agent t>ook control of Deep Space
I .

May, 1999, represents a milestone in the history of the
development of spacecraft autonomy. In two separate
experinierits, tlie Remote Agent, an A1 software sys-
tem, was given control of an operational spacecraft and
demonstrated the ability to respond to high level goals
by generating and executing plans on-board the space-
craft, all the time under the watchful eye of model-based
fault diagnosis and recovery software.

IRIACS, NASA Ames Research Center, MS 269-2, Mof-
fett Field, CA 94035.
Corresponding author: 1layakt3ptolemy.arc.nasa.gov

$~ecorn Technologies, NASA Ames Research Center, MS
269-2, Moffett Field, CA 94035.

f ~ a e l u m Research, NASA Ames Research Center, MS
269-2, Moffett Field, CA 94035.

(~ e t Propulsion Laboratory, California Institute of Tech-
r~ology, 4800 Oak Grove Drive, Pasadena, CA 91109.

[N A S A Ames Research Center, MS 269-2, Moffett Field,
C A 94035.

Current spacecraft control technology relies heavily on
a relatively large and highly skilled mission operations
team that generates detailed time-ordered sequences of
commands or macros to step the spacecraft through each
desired activity. Each sequence is carefully constructed
in such a way as to ensure that all known operational
constraints are satisfied. The autonomy of the spacecraft
is limited.

The Remote Agent (RA) approach to spacecraft com-
manding and control puts more "smarts" on the space-
craft. In the RA approach, the operational rules and con-
straints are encoded in the flight software and the soft-
ware may be considered to be an autonomous "remote
agent" of the spacecraft operators in the sense that the
operators rely or1 t,he agent to achieve particular goals.
The operators do not know the exact conditions on the
spacecraft,, so they do riot tell the agent exactly what to
do at each instant of time. They do, however, tell the
agent exactly which goals to achieve in a specified period
of time.

Three separate Artificial Int,elligence technologies are
integrat,ed to form the RA: an on-board planner-
scheduler, a robust multi-threaded executive, and Liv-
ingstone, a model-based fault diagnosis and recovery sys-
tem [5; 41. This RA approach was flown on the New Mil-
lennium Program's Deep Space One (DSI) mission as an
experiment. The New hlillennium Program is designed
t,o validat,e high-payoff, cutting-edge technologies to en-
able those technologies to become more broadly available
for use on other NASA programs.

The DS1 Rmiote Agent Experi~ne~lt (RAX) had mul-
tiple objectives 121. A primary objective of the ex-
periment was to provide an on-board demonstratio11 of
spacecraft autonomy. This demonstration included both
nomirial operations with goal-oriented commanding and
closed-loop plan execution, and fault protection capabili-
t,ies with failure diagnosis and recovery, on-board replan-
ning following urlrecoverable failures, and system-level
fault protection. These capabilit,ies were demonstrated
using in-flight scenarios that included ground command-
ing and siniulated failures.

Other equally important, and complementary, goals of
the experiment were to decrease the risk (both real arid
perceived) in deploying RAs on future missions and to fa-
miliarize the spacecraft engineering community with the
RA approacli to spacecraft coninlarid and control. These
goals were achieved by a three-pronged approach. First,
a successful on-board demonstrat,ion required integration

- - --

I'rcx, I 11th Internat~onal Sympos~um on Art~ficlal Intelhgence.
 robot^^\ 'uid Automat~on In Space, 1-3 lune 1999 (LSA SP-440)

Figure 1: Remote Agent architecture

of t,hr' RA with the spacecraft flight softwarc. This in-
tttgration provided valuable information on required in-
tc,rfaces and performance ~haract~eristics, and alleviates
the risk of carrying out s w h integration on future mis-
sions. It also served to familiarize systems engineers and
flight software engineers with the integration of RAs with
traditional flight software. Second, a perceived risk of
dt:ploying RAs is related to its ability to synthesize new
untested sequences in response to unexpected situations.
\Ye addressed t,his risk by demonstrating a layered test,-
i ~ i g methodology that serves to build confidence in the
squenc:rs synthesized by the RA in a variety of nomi-
nal and off-no~ninal situat,ions. Third, the experiment
was operat,rd with close cooperation between R.A team
r~lcrnbers and DS1 ground operators. This served to fa-
miliarize the ground operations community with benefits
and costs of operat,ing a spacecraft, equipped with an RA.

Thc. RAX was successfully executed on-board DS1
during thr. ~vcck of l l a y 17-21, 1999. There were a fcw
surprises along the way, which are discussed in a 1at)c.r
st3ctio11. Thcw surprises pointed out some areas for in]-
provenicwt for fut,ure deployments of the ren~ot,e agcmt,.
They also gavt, thc team an opportunity to show off a
11111nbc.r of l)c~icfits that t h~ t,r:chnology provides in terms
of robust execut,ion despite unexpected events, the abil-
i ty to query the syst,em to understarid its state, as well
as the abilit,y t,o rapidly creat,e and execute new mission
profiles.

Thcb rtmainder of the paper is organized as follows:
Sections 2 a ~ d 3 t1escril)e the RA and the RAX scenarios;
Section 4 d(?scriI)cs RAX flight preparations for flight;
S t d o n 5 discusses the flight experiment itself, including
surprises and thci responses to these surprises; finally.
Sr\ct,iou G sun~niarizes the paper.

2 Remote Agent Architecture
1 ' 1 1 ~ H A architecture and it,s relation to flight software
is shown in Figure 1. Viewed as a black-box, RA issues
cmr~rnwntls to real-time execution flight software (FSU')
to ~riodify spacecraft state, and receives state informa-
tion through a set of ~nor~ i to r s (MON) that filt,er da ta
strcarns into a set of abstract properties. The ItA itself
is con~prised of four components: a Mission Manager
(1\111), a P l a r ~ ~ ~ e r / S r h e d ~ ~ l e r (PS) [3], a Smart Executivt,
(EXEC) 161. and a Mode Identification and R.cconfigl~-
ration rr~odule (RlIR) [8].

AIM formulates near-term planning problems based on
il long-range mission profile reprt:sentir~g the goals of the

mission. MM extracts goals for the ntxt scheduling hori-
zon, combines them with a projected spacecraft state
provided by EXEC, and formulates a planning problem
for PS. This dccornposition int,o long-range mission plan-
ning and shorter-ter~n detailed planning enables RA to
undertake an extended mission with ~ninirnal human in-
tervention.

P S takes as input a plan request from MM and pro-
duces a flexible, concurrent tcmporal plan for execut,ion
by EXEC. P S constructs plans using domain constraints
and heuristics in its knowledge base; planning experts
participate in the planning process by requesting new
goals or answering queries posed hy PS.

EXEC executes a plan by decomposing the high-level
plan activities into primitives, sending out commands,
and nlonitoring progress based on tlircct feedback from
the command recipient or on inferences drawn by MIR.
If some task cannot be achieved, EXEC may atternpt an
alternate niet,hod or may request a rtwwery from hlIR.
If the EXEC is unable to execute or rcpair the current
plan, it clearily aborts the plan ant1 attempts to bring
the spacecraft into a safe state while requesting a new
plan from Mhl.

hlIR is responsible for mode identification (MI) and
rnodc reconfiguration (hZR). MI observes EXEC issuing
commands, receives events from MON, and uses model-
I~ased inference to deduce the state of t,he spacecraft and
provide feedback to EXEC. MR servm as a recovery ex-
pert, taking as input a set of EXEC' constraints to be
cst,aI)lished or maintained, and uses declarative models
it shares with MI to recornrnend a sir@ recovery action
t,o EXEC.

All corn~nunication bet,ween RtZX and the flight soft-
ware was rrietliated by the RAX manager, a software task
I)chnging to DS1 flight software. The RAX manager
was also rr~sponsible for starting tht) RAX Lisp task at
the, start of the experiment. 1Vhe1i RAX is terminated.
~ i t , h ~ r norrnally or by ground cont,rolltm, the RAX nian-
ager irnrncdiately stops any furthcr cmr~munication be-
twee11 RAX and the flight software, ~ L I I ~ then stops the
R.4X Lisp t,ask. The abilit,y t,o tightly control RAX activ-
it,y through the RAX rnariager was :in importarit factor
in convinc.irig the DS1 project that gronrid cont,rollcrs
c:ould msily recover control of the spacw:raft frorn RAX.

3 Remote Agent Experiment scenarios
Tht' dcsign of thc R.1X scenarios was drive11 by the
~it:cti to dernorist,ratc t,he R A S validation objectives. The
RXX scenarios were originally dr3signrd in mid-1997, and
were largely urichangcd until early 1999. However, in rc-
sponse to new operat,ioris ~ons t~ra in t s levird by DS1 and
an unexpectc:d anomaly during the c~sperirnent, we were
forced t,o significantly redesign the scwiarios. Our ability
to quickly redesign the RAX scenarios provides objective
evidence of t,he flexibility of the RAX technology. In this
section we describe the validation ot)j(~ctives and t,hc var-
ious RAX scwmrios.

3.1 RAX validation objectives
The DSI project rcquired formal vnl~d,ttion objectives
from each of the 12 technologies being validated on DS1.
The valitlat~on objectives for RAX wele broken down
into specific objt,ctives for each of the three engines as
follows

I'S'.: \.;rlitlation o1,jei.tivc.s w i w to: (a) generate plans
011-l)o;irtl; (I)) ri'jrct low-priority, unachievable goals;
(c .) rcy)lnl~ following a failure; (d) generate back-to-back
l)l;rr~s: mrd ((1) cmable niodificat,ion of nlissior~ goals fro111
grurl~~cl. EXEC'S validation objectives werr to: (a) pro-
\.itl~. ;I loiv-l11v(11 imnma~lding int,erface; (b) initiate on-
I)o;rrtl p l m ~ ~ i ~ ~ g : (c) execute plans gerierat,ed both on-
I)o;r~d il11(1 on t h~ ground; (d) recog~iizt? and respond to
1)1i111 f ' i t i l ~ ~ ~ . ~ : and (c) inaint ,a i~~ requirtd properties in t,he
f;\w of fitilurcs. AlIR's validation ol)jcctives were to: (a)
cwifi~m (x ~ c u t , i v (~ coninland e ~ ~ c u t i o ~ ~ ; (b) dcnionstrate
~~~o, i t~l - l ) i l sc t l  fitilurc detection, isolation, ant1 recovery: 
; i ~ r t i  (c)  clc~rnonstrat~c al)ilit,y to updat,e hlIR stat? via 
91.01111d (~l-)ll11111111cIs. 

3.2 Original RAX scenarios 
T11(~ original R.41 scenarios consisted of a 12 hour sce- 
~ritrio anti ii G day sce~iario. Thc 12 hour scenario was 
t ic~s~gnc~l its a co~~fidence builder for the DSl  project. It 
i~ivol\.td 11rit11r.r orl-board planning nor thrusting with 
t 1iv Ion I'ropulsio~i Syst,rrn (IPS). Rather, t,he plan was 
to l)e goncrat,cd on the ground, uplinked to the space- 
c~i t f t ,  anti excacutcd by EXEC and hlIR. The sccrlario 
inclliclc~l in~ag i r~g  ast,eroids wit,h the h'lICAS ca~nera  to  
sul)port opt,ic.;rl nirvigation. a simulated sensor failure* 
scw~ario, i t ~ ~ d  ( I (wo~~st , ra t ion of low-level coni~nantlirig to  
flip ;I switch. T11c planning of opt,ical navigation irnag- 
ing provided the p l a ~ ~ n e r  the oppor t ,~n~i ty  to reject low- 
l)riorit,y, un;~li ievablc goals since the opt,ical navigation 
\vi~iclon-s had  tirnc o111y to iinagi~ a suI)set of t , l ~ ( ~  a~t~eroi t l  
p);lls. 

'I'hc, Ci day swnario was to bc run followi~~g successfi~l 
(.o~lll)l(%ion of tlw 12 11o11r sctwario. Tht. G day scenario 
ini~lritl(d bot.h 011-hoard planning and operating tlw IPS, 
; l i l t 1  was i,hv full-up t,cst of R.4. Thc sccnario wirs dividetl 
into 2 horizons. At thc start  of the scmario. P S  grmrlr- 
i ~ t t ~ l  a plan for thv first horizon which inclutled AIICAS 
imlging for optical nav iga t io~~  ant1 IPS tlirustilig. Exe- 
c ~ t ~ o n  of t hr. first plan also inch~ded a ground c m l m a ~ ~ d  
to ~ ~ ~ o d i f : \ .  t l ~ c  goals for t,he s e c ~ n d  horizon. At thc end 
of tllc opt,ical ~~avigat, ion window P S  p lmr~ed  to swit,cll 
off the. hII(I.4S camera. Howcvcr, a st,uck on failure iri- 
, j r ~ t  ion i r~  the canlcra swit,ch prevcntd  R-4 from turning 
off thc c;tnlera. leading to a plan failure. This led to  a 
riq)l;tri. which produced a second plan witah the camera 
I ~ c i ~ l g  kft. on. The second plan also included an activ- 
ity to product a plan for the second horizon (t,he third 
p l m  in the sccmario), which was to b~ ~xecl l ted  back-to- 
1)ac.k wit,li thc, second plan. While the second plan was 
I)t4ng ~ x c ~ u t , o d ,  the swit,cll failurr injection was undonc 
;rnd ground infornled hlIR that. t,he switch is now fixed. 
FI'l~(. execution of the t,hird plan irlcluded IPS t,hrust,ing, 
optical navigitt,ion i~naging, arid two simulated failures, 
a iwnnlunicat io~~ failure on the 1553 bus, arid a thruster 
valve stuck c:losed f. ' I  w e .  

'Togct hvr, t,hese t,wo scenarios dernonstrat,e all R AX 
validation objc~ctives. 

3.3 2 day RAX scenario 
Tht. 12 hour and G day scenarios were used for all RAX 
intc~gration and testing until the beginning of March, 
1999. At that point, we were informed by the DS1 

' All failure scenarios were simulat,ed failures, t,hough they 
apprarcd to he real t,o R.AX. 

project that they did not want us to switch off the MI- 
CAS carnera due t o  concerns about thermal effects. Fur- 
tlierrriore. we were required to  provide only about 12 
hours of IPS thrust,ing, to ensurcl t,hat DS1 would be 
or1 track for it,s asteroid encounter. in July, 1999. These 
changes meant that  the 6 day scenario had to  be changed 
a t  this lat,e date; since it, switched off the camera 3 tinies 
(not including the failed attempt during the failure in- 
jcction) arid thrusted for a total of at)out 4 days. We 
responded 1)y developing a 2 day scenario. The 2 day 
scenario was si~riilar t,o a compressid G day scenario, ex- 
cept t,hat the simulated RlICAS swit,ch failure was active 
for the whole duration of the scenario. This prevented 
RA from ever switching off the camera. Furthermore, the 
2 t h y  swnario had only about 12 Irours of IPS thrusting. 
Our ability to quickly develop a nrw scenario in response 
to thesc. new constrai~its was vie\vcd very favorably by 
the DSI project,. 

3.4 6 hour RAX scenario 
An anoinaly was encount,ered whilc executing the 2 day 
sctmario on-board DS1 which led to  early termination of 
the 2 day scenario (see Section 6 ) .  At this time, approx- 
i~nately 70%> of the RAX validat , io~~ objectives had been 
achieved. To achieve the reniaining 30% of the objec- 
tives, we quickly put together a G hour scenario which 
incl~ided IPS thrust,ing, three failure scenarios, and back- 
t,o-back p l a m i n g  This sce~lario was executed on the 
spacecraft a 1it)tle over 2 days later. thus completing R A S  
v;tlitlat,ion. The remarkable thing ;rt)out this scenario was 
not just that  we could quickly design and t,est it a t  such 
short not,iw, but rat,hrr that the DS1 project had already 
gained enough rorlfidence in the, R A  that  they allowed 
011-board c>xtw~tion of t,his nrw scxmnrio within days of 
t~onccpt,icm! 

4 Preparing the Re~not~c Agent 
Experiment for flight 

\Vc t,ook a nurn1)er of steps to  prq)nrr  R.4X for flight. In 
this scctio~l we highlight some of tlw key steps, includ- 
ing preparing the Lisp for flight, testing RA4X, software 
changc control, special considerat ions i~lvolved in testing 
PS, and t,hc operat,ional readiness t,c.sts. A comprehen- 
sive discussion of our integration ~ ~ ~ e t h o d o l o g y ,  a central 
elcrrlent in preparing RAX for flight. is beyond the scope 
of this payer. Sufice it t,o say t h t  developers acted as 
front-line test,ers during our various integration efforts, 
and hen(:(. idcnt,ified and resolved a signific:ant nu~nber  
of bugs (often unreporkd in our fornlal problem report- 
irig syst,tm). .4s a result,, for~nal trsting on high fidelity 
platforms found few bugs, sirlce niost of the problems on 
t,hcse platforms had been discovered and resolved during 
integrat,ion. 

4.1 Preparing Lisp for Flight 
Onc important, aspect of the R A S  preparation for flight 
was thc preparation of Lisp for flight. The  RAX soft- 
ware developnlcnt and runtime c~lvironment was based 
on CornrnonLisp, in particular thc Harlequin Lispworks 
product. [I .  The  use of Lisp was appropriate given the 
background of the R.AX developers, the early inheritance 
of code libraries, and the hardwarc independence of the 
high-lcvel software interfaces between RAX and the rest 



of flight software. However, with the choice of Lisp came 
some unique challenges. These challenges fell into two 
rather broad categories: resource constraints and flight 
software interfaces. 

Like all spacecraft, DS1 placed constraints on compu- 
tational and telecommunication bandwidth (both uplink 
and downlink) resources. For computational resource, 
DSI has a total of 128 MB RAM, 16 MB EEPROM, 
and a 20 MHz RAD6k. During the RAX experiment 
time, the uplink and downlink data  rates were about 1 
kbps and 4 kbps, respectively. Based on early estimates, 
RAX was allocated 32 MB of RAM, 16 MB of file space 
and up t o  45% of the CPU. At the time of this alloca- 
tion it was not clear if RAX could meet these resource 
const,raints. 

To fit within the 32 MB memory allocation and the 
CPU fraction constraints, the RAX team thoroughly an- 
alyzed their code for memory and performance inefficien- 
cies and employed a "tree-shaking/transductionn process 
to  the Lisp image. The analysis is, of course, common 
for any high performance software. However, transduc- 
tion is Lisp-specific and arises from the tight coupling of 
the Lisp runtime and development environments. Trans- 
tiuct,ion removes the unneeded parts of the development 
mvironrnent, e.g., the compiler, debugger, windowing 
system. The result is a significantly snlaller image, both 
in terms of file system and runtime memory. During 
R A X  testing, peak memory usage was measured a t  about 
29 MB, which was more than was actually observed in 
flight. 

To reducc: the uplink time and the spacecraft file sys- 
tem usage, we employed a custom Lisp image t,hat sup- 
ported ground-based compression and spacecraft-based 
ticcornpression. Upon completion of the transduction 
l)rocess the R,4X Lisp image was compressed by a factor 
of abut 3 to 4.7 MB and uplinked to  the spacecraft. 011- 

1)oard drcoinpression was initiated a t  the start  of each 
IIAX run; wit,h th r  file being inflated directly inlo t,hr 
3 2  MB RAX memory space. Use of this cust,om compres- 
sion drastically reduced the file uplink time and kept thr. 
I IAX file space usage within the agreed upon limits. 

Besides the resource constraints, we also dealt, with a 
c.ornplicated flight software interface. The flight software 
was written in the 'C' programming language and ran on 
the I'xWorks operating system. Lisp and 'C' interacted 
through Lisp's foreign function interface. This interface 
was the source of many early problems, prirrlarily caused 
by discrepa~~cies between data structure alignrnent,s as- 
sumed by the Lisp arid 'C' compilers. These problerns 
wcw quickly discovered and resolved with the help of a n  
mtensivc test suite that tested a large number of fimc- 
tion pafitnleter variations. 

Another problem arose in preparing the Lisp multi- 
thrratiing spst,rm for flight. Originally, the Lisp thread 
scheduler rr:lied on a high frequency external, periodic 
wakrnp call, issued a t  interrupt level. However, this went 
against, the design principles of the DS1 flight software. 
Hcnct., we had to significantly change Lisp's approach to 
thread preemption to  use a lower frequency wakeup call 
implemented with flight software timing services. 

Most of the late integration problems with RAX Lisp 
arose because of the VxWorks port. As RAX moved 
from t,estbed to testbed, ever closer to  the final space- 
craft configuration, low-level Lisp problems arose. The 
prohlerns were consistently of two types: a function as- 

Nav images 

IPS thrust 

Slews 

Fault conditions 8 times 

Goals 

Figure 2: Baseline Variations 

sumed by Lisp to  be present was not present or a func- 
tion was present but did not perform as expected by 
Lisp. The first type of problem was resolved by con- 
sistent application of a detailed RAX and FSW build 
process. The second type of problern was addressed on 
a case-by-case basis. Solutions to  these problenls were 
made difficult due to  the reduced debugging visibility as 
testbeds assumed the spacecraft configuration. We ben- 
efited from the dedicated efforts of hot11 Harlequin and 
the DS1 FSW team. 

4.2 Testing the Remote Agent 
Autonornous systems, such as the R A ,  need to  respond 
robustly in a wide range of situations. In order to ver- 
ify that they respond correctly in a11 sit,uations would 
require a huge number of test cases. To make matters 
worse, the tests should ideally be run on high-fidelity 
testbeds, which are heavily oversut)scribed, difficult to 
configure correctly, and cannot run faster than real time, 
e.g., we could run only 10 tests in four weeks on one of 
DSl's high-fidelity testbeds. To address these problems, 
we en~ployed a "baseline testing" approach to  reduce 
the number of tests, and exploited several lower-fidelity 
testbeds to  increase the number of tests we could run [7]. 

The baseline scenarios we used were the 12 hour and 
6 day scenarios discussed above. \Ye tested a number 
of ~~orriirial and off-nominal variatims around t,liese sce- 
narios. The variations comprised variations in spacecraft 
behavior that we might see during exrcution and changes 
to the baseline scenario that might he made prior to  ex- 
ccution. This included variations to the goals in the 
mission profile, variations in when faults might occur, 
and variations in the FSW responses (see Figure 2). 

The test,s were distributed among the low, medium, 
and high fidelity platforms. The t,wo low-fidelity plat- 
fornls were the "babybed" and "radbed". The babybed 
had a non-radiation hardened PowcrPC CPU and ran 
with sirnulators written by the RAX team. The radbed 
was id~nt ical  to  the babybed, except t,hat it had a flight 
RAD6000 CPU. The medium fidelity platform was the 
"papabed", which had a flight CPU, bus, and memory 
arid official DS1 simulators. The highest-fidelity plat- 
forms, the "hotbench" arid "testbed", had flight comput- 
rrs and werc connrcted t,o flight hardware (flight spares) 



Papahcd I I 

Availability Speed 

1 for DS1 1: l  

Platform 
Spacecraft- 

DS1 Testbed 
Hotbench 
Papabed 
Radbed 
PowerPC 

Figure 3: Pyramid Testing Approach 

Table 1: DS1 Testbeds 

Fidelity 

High 
~ i g h  
Med 
Low 
Lowest 

where feasible (see Table I ) .  
Thc architecture of RA allowed us to run certain tests 

on lower-fidelity testbeds and be confident that their re- 
sults would hold on higher-fidelity testbeds. Specifically, 
thc R.4 cornnlands and monitors thr. spacecraft through 
wdl-defined ir~t~erfaces with the FSW. Those interfaces 
wcre t,he same on all platforms, as were t,he range of 
possible responses. Only tlie fidelity of the responses 
improved with platform fidelity. This allowed us to ex- 
ercist a wide range of nominal and off-nominal behav- 
iors on the babybeds and radbed, test the most likely 
off-nominal scenarios on the papabed, and test only the 
~lorriinal scenarios and certain performance and ti~riing 
relat,ed test.s on hotbench and testbed. This "pyramid" 
approach to testing is summarized in Figure 3. 

'I'hc remainder of this section describes the tests on 
eac.11 of tlie t,estbeds, and discusses the effectiveness of 
our testing approach given the benefit of hindsight. 

Babybed and radbed testing 
Each of the RA modules devised a test suite of nominal 
and off-nominal scenarios that isolated and exercised key 
t~ehaviors in each module. This involved testing about 
200 variations of the initial state and goals of the plan- 
Iler, while exercising MIR in hundreds of the likeliest 
failure contexts. The PS and MIR tests were used for 
t,rsting EXEC, and the system-level interaction of all 
modules was exercised by a suite of twent,y additional 
sc:marios. These tests were run rapidly on the babybeds 
arid radlxd, with sirnulat,ors that permitted faster than 
rcal-t,inie execution and exploited R.A1s abilit,y to "warp" 
over long periods of idle t i~ne.  Even with this increased 
speed, running a scenario was a time-consuming and 
error-prone process. To alleviate this, we designed an 

I CPU 
Rad6000 
Rad6000 
Rad6000 
Rad6000 
Rad6000 
PowerPC 

automated testing tool that accepted an encoded sce- 
nario description as input, controlled the simulator and 
ground tools to execute the scenario, stopped the test 
when appr~priat~e by monitoring the telemetry stream, 
and stored all logs and downlinked files for later exami- 
nation. This rapid data collection led to  a total running 
time of about one week for all tests, since tests could be 
scheduled overnight and required no monitoring. Ana- 
lyzing the results of the tests, however, was still a time 
consuming process. These tests were run after each ma- 
jor RAX software release. We identified (and resolved) 
over 800 bugs in six months. 

Hardware 
F?ight 

Flight spares + DS1 sims 

Papabed testing 
Once we delivered a "frozen" version of RA, we ran six 
off-nominal system test scenarios on the papabed. These 
corresponded to the most likely arid highest-impact sce- 
narios. No bugs were detected in these scenarios, proba- 
bly because R,4 responses to off-nominal situations were 
well tested on the babybed. 

Right spares + DS1 sims 
DS1 simulators only 
RAX simulators only 
RAX simulators only 

Hotbench and testbed testing 
The hotbench and testbed was 1c.served for testing the 
norninal scenarios, and for testing a handful of require- 
ments for spacecraft health and safety. RAX was de- 
signed with a "safety nrt" that allowed it to  be com- 
pletely disabled with a single command sent either by the 
ground or by on-board FSW fault protection. Hence, the 
only ways in which RAX could affect spacecraft health 
and safety was by consuming excessive resources (mem- 
ory, downlink bandwidth, and CPU) or by issuing im- 
proper commands. We tested the resource consumption 
cases by causing RAX to execute a Lisp script that con- 
sumed those resources. We guarded against improper 
comrr~ands by having subsystem engineers review the ex- 
ecution traces of the nominal scenarios, and doing auto- 
mated flight rule checking. The nonlinal scenarios were 
run in conditions that were as close to flight-like as pos- 
sible. 

1 for DS1 
1 for DSl 
1forRAX 
2 for RAX 

4.3 Software change control 

1:l  
1: l  
1:l 
7:l  

As the date of tlie flight experiment drew closer, our 
perspective on testing changed. Throughout 1998 the 
main goal of testing was to discover bugs in order to fix 
them in the code. Starting in Jarluary 1999 the discovery 
of a bug did not automatically imply a code change to fix 
it. Instead, every new problem was reported to a Change 
Control Board (CCB) composed by senior RAX project 
~rlenhers. Every bug and proposcd fix was presented in 
detail, including the specific lines of code that needed to 
change. After carefully weighing the pros and cons of 
making the change, the board voted on whether or not 
to allow the fix. Closer to flight, DS1 instituted its own 
CCB to review RAX changes. 



As t inle progressed, the CCB became incrcasi~~gly con- 
wr\.;itivr, arid the bias against code n~odifications signif- 
i c x ~ ~ t l \ -  ir~crt~ast!d. This is demonstrat,ed by the fbllowir~g 
figurcs. In t,ot;d, 66 change requests were sub~nit , ted t o  
t 1 1 ~  n.\S CCI3. Of t,htse, 18 were rejected amounting 
I O  ;I 27% rrcjcction rate. The rejection rate steadily in- 
cmwwd ;is t i ~ n c  passed: 8 of the last 20 and 6 of the last 
10 s u l ) m i t t d  c h n g e s  were rejected. 

7'110 reason for this ir~crease in conservat,isn~ is easily 
t q l x i n c d .  I:vc.ry Ijug fix rnodifies a syst,ern tha t  has al- 
~xwtly gone t,hrtrugh several rounds of t,ost,ing. To ensure. 
that, t.11~ bug fix has no nnexpected repercussior~s, t h  
rnotlified system would need to  undergo thorough test,- 
iug. This is time consunling, especially on the higher 
tidelity t,t.stt)eds. so tha t  full revalidation became increas- 
ingly irif(vtsihlc as we approached flight,. Therefore, the  
('CB faced a c l t w  choice between flying a rriodificd RAX 
.i\-it,h lit,tlc err11)irical evidence of its overall s o u n d ~ ~ e s s  or 
flying t,hr. urlrnodified code and trying to  prevent the  bug 
fro111 txirig exercised in flight by appropriately restrict,- 
ing t h t ~  scw~ario and other input parameters. Often, the 
ansn-(,I. was to forc>go the change. 

- 4  Testing the PS module 
tliscwsscd above.. the PS   nodule had iindergonc ex- 

t cwsivcx tc.st,ing t,hrougho~it 1998 using variations of the 1 2  
Iro~n. ;md 6 day scenarios. To generate t,hcse variations, 
n-o startcd by identifying t,he parameters that  define a 
~rc~riario. 'I'pst cases were generated using tho "Latin 
scl~~;rrr~s" nlr~t,hod [I] t,hat ensured every pair of pararrw 
r o l .  valric~ oc.cwrcbtl i ~ i  some test case. This apprmch wiis 
\-PI.\. df(.c.tivt' ill finding bugs, and resi~lt~ed in a majorit,y 
I )f t i l t >  2 11 I 3  prol)lcrri reports filed in that  period. 

HOW~IYY. as a.c> o n t t ~ e d  1999, ncw prohlerns were dis- 
cx)vcwti in PS  outsitlc of the  forrrlal test,ing process. This 
rtwilt,r~ci ill 22 ( h r ~ g e  reqliests sub~nit,t,ed t,o t,he RAX 
('CB. a littlc o v ( ~  9% of thc total P S  problern reports. 
Tllc~ vast 111 i~ j0 r i t~  of these problems consisted of P S  op- 
( ' r i t t i~~f i  ( . o r r (~ t , ly  I)ut being unahle to find a plan within 
t l ~ ~  allocated t i ~ w  limit sincx its search mas "t , l~rasl~- 
illg". T h r w  prohl(w~s were particularly serious sinct. 
t 11c.y cvrd(l cwiily arise in off-no~ninal ~ i tua t~ ions  d l i r i ~ ~ g  
flight. < 3 

Tlrcw w t ~ e  sevrral reasons for this s i t u a t i o ~ ~ :  

I .  ' l ' t~c  rang^^ of some parameters turned out to I)? 
clifftwnt than those assumed by P S  testing, e.g.. 
PS tcsting assunled turn durations u-crc, a t  most 20 
mini l tc~~.  ~vliilt. actual turns c o d d  t,akc over an  how.  
This c ~ c ~ i t c d  stress sit,uations not rm~sidered by PS 
twt,ing. 

2 I ' I ~ I I I I I I I I ~  proi)lcrns becanlc morc challer~gir~g wlicw 
uv trarlsitioncti from the 6 day scenario to the 'L 
d;y. scenario The temporal con~pression lcd to  the 
tf l iapptmar~cr of slack tinw between activit1r.s. 111 
the 6 day sccnario PS  could exploit this slack t o  
ac-hicve snt)goals without backtracking. In thc 2 day 
wenario t)arktracking became necessary, re~vealirrg 
adtl~tlonal brittleness in the P S  chronological hack- 
ti a c k ~ n g  s c a ~ c  h. 

3 .A more funtianiental issue was the ~ ~ ~ t i e p e n d c n c e  be- 
tween the  PS test gcnt,rator a r d  the structural char- 
acteristlcs of the  domain rnodel. This I d  to the 
twt  gcwr,r;rtor rnissir~g a number of stress cases. FOI 

r~xarnplc: one problem d e p e n d d  upor1 thc: specific 
values of three continuous paranxtcw: the time t,o 
start  up the IPS engine, the time t,o the ncxt opti- 
cal navigation window, and the tlurat,ion of t,he turn 
from the  IPS att i tude to  the  first asteroid. An equa- 
t,ion relating these parameters can crisply character- 
ize the stress situations. Unfortunately, automat,- 
ically genrmted test cases t)asc.tl on covering pair- 
wise intc~ractions of parameter v;rlucs carinot reliably 
det ect such prohlerns. 

cl' . T I \ ~ I I  t h r .  latcb tlat,r a t  which thesct r l t w  p r o l h r ~ s  were 
discmwcd. it was not feasible to  n~oclify the test suite 
t,o test c,xtcntled variations around tlw nc>w baseline. In- 
stead. ~ 1 '  foc-nsed on t,hc just the 111ost crucial variat,ion: 
the t,inle a t  whi(:h rcplar~s n~ igh t  ocuir .  The objective 
was to  cmsnre that  the planner was ro1)ust to any rc- 
planning contingency. Two steps w t w  needed to  accom- 
plish this. First, the new 2 day sctwirio was designed 
t,o gu;tr.antt>e t,hitt the har~nf id  const~.aint interactions of 
thc PS domain rr~odel would be avoictcd under any hypo- 
thetical replanning contingency. Tho iden was to  ensure 
tha t  PS  conld alwavs return a ~ l a n  withi11 the given tirnc ,< 

limit,. So(-and. a new PS  test suite was carefully designed 
m c l  run t,o cnsnrr that  this was intl(~cd t,hc: cast:. 

Thr. d c + y  rr~ethodology for t,his I I P W  P S  t,est mi te  is 
ir~st,rnc.tivc>. Esha~ist,ivc generation of ;ill possiblc, plans 
was clearly impossible. Ir istrwi~ ~isirig our knowltdge of 
t , h ~  PS  rrlotlel. we ~rlar~ually identified hxindary  tim(:s 
at  which the. topology of the plans \vonld change. \Vc 
idwtifictl 25 s1ic41 1)olintlary times a 1 ~ 1  generat,cd a t,o- 
t,al of 88 t ~ s t  cases corresponding t,o plans start,ing at;  
w a r ,  or. I)t>tu-c~n t)ountlary times. This led to  the dis- 
c m w y  of two new 1)ugs. Furt,herrnorc~, analysis of t , h ~  
tvst rcsnlts s11on.cd that  P S  would fail t,o find a plan at 
only a l ~ o n t  0.5%, of all possiblc start times. Although 
tht> pro1)ability of t,his failure was rxtrc~nely low, co11- 
tirlgr.nc.y procrdlirrs wcw developed to  ensure tha t  t,ht> 
c~xpc~rirrltmt cwultl 1 ~ :  successfully co~rt,i~lued even if this 
PS  failure, actually occurred. 

\\v rlstd t,lw al)ove t,cst suit,e t l c s ig~~  rncthodology only 
toward the. cml of RAS:  aftc,r the I'S nlodel a ~ d  cod(> 
had 1 ) w 1 1  frozr.~~. However, we heliclvc. tha t  t,his (cur- 
rently nl;tnri;il) a ~ ~ a l y s i s  rnethod can t ) ~  generalized and 
ext,cnded to provide an  automatic PS t,esting procedure 
throughout thrl tit~vcloprnent process for new application 
clo~nair~s. 

4.5 Operational Readiness Tests 
In atldition to tc,st,i~~g RAX, prcyxtrirlg RAX for opera- 
tioris ir~volved p r q ~ a r i n g  operat,ional ~)rocednres and st.- 
qnc~r ic~~s  for rnrlning t,he cxpr~ri~nent and idcnt i fy i~~g COII- 

t,ir~gtw:y procdurr+i. The opcrat,ior~al readiness tests 
(ORTs) wcw a "dress rohcarsal" of thr. procedures and 
c.ont,irigc~r~cic~s, and were intcndetl t,o f;m~iliitrizc the oper- 
at  ions t w n ~  with the procedure and t o idrtnt ify problem 
RrPaS. 

We pcrfornied tivo ORTs. The first ran through the 
first sewriil hours of the 12 lmnr sccwirio and was pri- 
marily intcl~tletl t,o exercise t,hc procwlures for starting 
R A X .  This involved configliring thr. spawcraft, f i l t~ys-  
t,crri, and rrlrwmry to  the  st,atc req~~irecl  to  start  RAX. 
Thr, s c ~ o r ~ d  ORT ran through the cntirc 2 day scenario. 
Thv operations t,(:;tnl monitored key c ~ ~ m t s  in t,he scc- 
rlario. wit,l~ 1m.aks in hetwccn. This proved to  bc an 



c.ffcsct,i\-c way to nlorlitor the expcrin~ent without unduly 
taxing tlir. operations team. During actual spacecraft 
oporat ions we followcd a sirrlilar approach, though the. 
R A  tclam monitored the experiment around the clock. 

U i c ~  o thw purpose of the. ORT was to exercise the 
HAS gro~lrld t,ools in an  operations environ~ncwt. Dur- 
i ~ l g  t l l ~  two ORTs, RA4X was run on the hotbench a11d 
t 1 1 ~  h t ; i  was s w t  to  works ta t io~~s  in t,lle mission c ~ m t  rol 
c.cwtc,r, sorrlr. of which wcm running the  R A S  ground 
tools. Thcl tools pcrforrrled well, although we did i d u -  
t if!. a ~~~~rr l l )c . r  of short cwmirlgs, which we proc.eedcd to 
rcw )I\-(. prior to flight. 

5 The Remote Agent Experiment in 
flight, 

to r i iasi~~iizc~ tllv time to  try t,hc ~rlorc. i~npor tant  2 day 
c ~ s p ( ~ r i ~ ~ ~ c ~ r l t .  t 11cy agrrwi t,o go ahcad wit,h tlw 2 day ex- 
I ) ~ T ~ I I I ( ' I I ~  wit bout first doing the co~lfitlt'nce bllilding 12 
11o11r ( y ) c ~ r i n w ~ l t  . This (Io(ision was strong eviclr~nc(~ that 
t11c. 1)Sl l)rojc~'t Ilird ;rlrcwly developed signifk;mt c-onfi- 
t l v r ~ c . c *  ill R.4X tl~iririg prx-flight tcsti~lg. 

( ) I I  l I o r ~ t l i i ~ . .  hliry 17th. 1999, ;it 11:O.l ill11 P D T ,  n-c, I Y -  

c . c ~ i \ c ~ t l  i i  t t~l( ' i i~i~tr>.  ~)ii(.E;~t tliixt c o n f i r ~ ~ ~ c ~ l  t,hat thc 2 diiy 
1 1 i i o  I s t  I on 1 Shortly thtwaftcr.. 
1's .;t;rrttxl ~ c , ~ ~ c w t i ~ ~ g  the‘ first p l m .  The first plan rv;is 
p , ( ' ~ ~ t ' ~ . i ~ t < ' t l  (x)rrc~~tly.  1)ut I I O ~  brfore a11 ~ ~ ~ m p e c t d  cir- 
(.11111Stiill(.(' (.r('iit(l(l ~ 0 1 1 1 ~  apprehensicm in US. 

I'S t(sl~wc>tr>, i ~ d i c a t ( d  that P S  was gm(>rat i~~p,  tlw 
I I I ~ I I I  f;)llo\vi~rg ;I t liff(w~it swrch t,raj(>rtory t . l~an what 
I\.(, 11;1(1 0 i ) s c m d  in grolmd testing. Sinct) t,hv conditions 
011 t I I P  s l~ i rc~~~ri t f ' t  wcw practically identical to  thosc on 
t I ~ t s  g1.ou11cl tcxst 11c~ls. t.lwrc was no itl)p;~rc,~lt, rvason of for 
t l ~ i \  cliscwpir~lry. Srll)scqutmtly, thrl for this dis- 
~.rc~1);11i(.y WIS t t.iicwl Imek t,o the. spacccrxft and papal)rd 
(lifl;,ring 011 t 11c (.or~tt%nts of  t11e f i l r  containing ;~stc,roicl 
go;~ls:  PS n;rs ;rrt rlnlly solving a slightly diffwcnt pro1)- 
I I i t  I s o l  I t i  g r i d !  Thus. this 1111- 

t~sj)ort c ~ l  c.j~.c.r~~l~stii~lc.t~ ~illonifd us to clrnlonst rat(, t l ~ a t  
I'S ~)~.ol)l(vii solving was roI)11st t,o last nlinuto cha~lgcs 
ilk t l l c '  pI;r~lr~irig goals, incwasing the crtrdit)ility of tlicl 
~ I I I ~ O I I O I I I ~  (i(~111o11stratio11. 

' l ' l ~ c ,  2 (lily scwlario continutd srnootllly a11d unt,\.ont- 
f'r~lly wit11 the s i~nul i~ted  AIIC.4S swit,ch failurcl, the rc- 
s1d1 i ~ i g  r(>plan. 1o11g tur11s to point t,lic> camera at t;irgct 
astcmi(Is o1)ti(.;11 ~ i i i v i g i ~ t i o ~ ~  iniaging during whi(41 no 
c.e)rlir~l~inic.;rtio~~ with DSI was possible, a ~ l d  the st,art o f  
II'S t I I I I I S ~  i ~ ~ g .  H o w c ~ ~ ,  i t r o u ~ d  7:OU ill11 OII Twsdiiy, 
1 i 1 ~  18. 19!)9. it lx\c;tnlc apparc~l t  thilt RXX had not 
( . O I ~ I I I I ; I I I ( ~ ( Y ~  tw~niniltion of IPS t,llrust,ing as expec.tctl. 
I t  ll011g11 plan cxcmtion itpp('iircd to be t)locketf, tc1~111~- 
try inclic.iitocl that  R A S  \\.;is ot,herwisc llealt,lly. Tlw 
sj)alwraft too was hc~ilt,hy and in no apparent darlger. 

The decision was ~ n a d e  t,o use EXEC's ability to  handle 
low-levcl con~mands  to  obtain   no re information regard- 
ing the problem. Once c m ~ l g h  information had been 
gathered, the decision was made t,o stop the  experiment. 
By this t i~ i lc  an  estimated 70% of the RAX validation 
objectives had already heen achieved. 
By late Twsday afternoon the callse of the proble~rl 

was idrntificd as a nlissing crit,ic:il section in the plan 
cw~c:ut,ion rode. This c r e a t d  a race condition between 
two EXEC t,hreads. If t,hc wrong thread won this race, a 
deadlock co~iditiori would occur in wllich each thread was 
wait,ing for an  event from t,he other. This is exactly what 
Ilappcned in flight, though it had not occurred even once 
in tllousantls of previous races on the  various ground 
platfornls. Thc occurrence of this problern a t  the worst, 
possible time provides strong inipetus for research on 
formal verification of flight critic.;tl systems. Once the 
proble~li was identified, a patcll was quickly gr~lerat~ed 
for possiblc uplink. 

Following the discovery of the ~)rol)lern, we generated 
a 6 hour R A S  scenario to  demonstrate the rerrlaining 
30% of the RAX validation objectives. This new sce- 
nario was tlesignrd, inlplerr~entcid. and tested, togct,her 
with the patch, on papabed overnight within about 10 
hours. Tllis rapid ttn-11 around alloived 11s to  propose a 
nclw ~xpc~rinicwt a t  t,lw DS1 1)rojrc.t meeting on b'edncs- 
day. Tlic DS1 project dccidrd to proceed with t,he new 
scenario. Hoa-rvrr, t h ~ y  decided not to  uplink the pat,ch, 
cit,irlg insufficient testing to  build adequate confidence. 
In addition. I)ased on the e x p e r i e ~ m  on various ground 
tcst,l)ttls. t,he likelik~ood of the  pro\)lcni recurring during 
thc 6 110ur t,est was dcerncd to  I ) ( >  very low. Nonethe- 
Iws. i v ~  tlevelopcd and test,ecl a cvntir~gency procwlurc. 
tliat n-o~dd cwal)l(, 11s to  achir11.c~ ltlost of our \-alidat,io11 
o l ) j ~ . t  iv1.s cvc'11 if t,llr> problc111 wcw. t,o rccur. 

1'11(, DS1 ~) ro jec t , ' dc , c i s io~~  not to uplink thc p;ltch is 
not s~~r l ) r i s ing.  \Yhat was rrnliirkal)lc was their rcwly 
;icxq)tii~icx\ of t h  ncv  R.4S sc:mitrio. This is yet rnorc, 
c ~ v i d ( w ~ c ~  that t h  DS1 projcct had clrvc~lopt~l a high Irvrl 
of cwnfid(mc.c, in R A  and it,s abilitj. to run rlew ~nission 
swnarios in response to  changed c~ircumstances. Hcrice, 
iiltllough c~arlsod by an  unfort,lul;itc circumstance, t,his 
rapid ~rlission redcsign provitieti i ~ n e s p e c t ~ d  1-alidat,ion 
for RA.  

The, 6 hour scwiiirio was act,iviltrd Friciay niorning. 
Thv scenario ran wrdl until it was t,irnc to start  up the. 
IPS. LJ~~for t l~nate ly .  a n  tlncxpect(d problcni in some s u p  
port i11g software‘ f;dt,cl t o  carifir111 a11 IPS state t r i~ r i s i t i o~~ ,  
t,llus causing R-1 to  (correctly) st,ol) comniandi~lg the IPS 
startup st~111crlc.c'. The, u~~clcdying cirusc, of this prol)leni 
\vas still rirld(>r investigat,ion as of' \lay 28, 1999. Since 
this sit,u;itio~i was out o f  scope, for R A S ,  the rrsulting 
R.4 st,atc. \vils inconsisterlt wit,h sl)xecraft  st,at,e. Fortu- 
nately, t,llc> tliscrcpancy proved t,o I)e I)enign. Hence, R.4 
was a h 1 ~  to continu(' c x e c ~ ~ t i n g  tlw rcst of t.hv scwlario 
to achicvc tllr rest of its validation objectives. 

-4s a cmlscquence of thc. t.wo fiigl~t, scenarios, R.4S 
acllievccl 100% of its validation ol),ic~ct,ives. 

6 Summary 
The p r ~ n ~ a r v  goal of R A S  mas to  cicmonstrate that Ar- 
tificial Intclligcnce techrlologies col~ld   chiev eve high-level 
autonornou~ control of a spacecraft ~ncludmg: 

0 goal-oriented commandi~lg;  



0 closed-loop planning and execution; 
0 spacecraft state inferencing and failure detection; 

closed-loop model-based failure diagnosis and recov- 
ery; 
on-board re-planning as a response to  unrecoverable 
failures; and 

system-level fault protection. 

Familiarizing the spacecraft engineering community 
with these technologies and laying the foundation for 
more extensive applications of RA were also important 
goals. These goals were achieved by the design of RA, 
its integration with the DS1 flight software on spacecraft 
testbeds, its layered testing, two operational readiness 
tests with ground control personnel, and succesful com- 
manding of the spacecraft during the week of May 17-21, 
1999. 

As a result of the Remote Agent project, we be- 
lieve that the willingness of NASA missions to  deploy 
highly-autonomous systems has increased. Moreover, 
the NASA Ames Research Center and the Jet Propulsion 
Laboratory have recognized this contribution by nomi- 
nating RA for NASA's prestigious Software of the Year 
award. 

Acknowledgments 
We gratefully acknowledge the DS1 team and Harlequin, 
without whom the Remote Agent Experiment would not 
have been possible. We would also like the thank the 
niany past contributors to  the Remote Agent adventure 
and its many supporters over the past four years. This 
paper describes work performed a t  the NASA Ames Re- 
search Center and a t  the Jet Propulsion Laboratory, Cal- 
ifornia Institute of Technology, under contract from the 
National Aeronautics and Space Administration. 

References 
[l] D. M. Cohen, S. R. Dalal, J .  Parelius, and G. C. 

Patton. The combinatorial design approach to auto- 
matic test generation. IEEE Software, pages 83-88, 
September 1996. 

121 Douglas E. Bernard et al. Design of the remote agent 
experiment for spacecraft autonomy. In Proceedings 
of the IEEE Aerospace Conference, 1998. 

[3] Nicola Muscettola. HSTS: Integrating planning and 
scheduling. In Mark Fox and Monte Zweben, editors, 
Intelligent Scheduling. Morgan Kaufmann, 1994. 

[4] Nicola Muscettola, P. Pandurang Nayak, and Brian 
C. Williams Barney Pell. Remote Agent: To boldly 
go where no A1 system has gone before. Artificial 
Intelligence, 103:5-47, 1998. 

[5] Barney Pell, Douglas E. Bernard, Steve A. Chien, 
Erann Gat, Nicola Muscettola, P. Pandurang Nayak, 
Michael D. Wagner, and Brian C. Williams. An au- 
tonomous spacecraft agent prototype. Autonomous 
Robotics, 5(1), March 1998. 

[7] Benjamin Smith, William 'Millar, Julia Dunphy, 
Yu wen Tung, P. Pandurang Nayak, Edward B. Gam- 
ble Jr., and Micah Clark. Validation and verifica- 
tion of the remote agent for spacecraft autonomy. In 
Proceedings of the 1999 IEEE Aerospace Conference, 
1999. 

[8] Brian C. Williams and P. Pandurang Nayak. A 
model-based approach to reactive self-configuring 
systems. In Proceedings of AAAI-96, pages 971-978, 
1996. 

[6] Barney Pell, Erann Gat, Ron Keesing, Nicola 
Muscettola, and Ben Smith. Robust periodic plan- 
ning and execution for autonomous spacecraft. In 
Proceedings of IJCAI-97, 1997. 


