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Abstract 

I n  fhzv paper u e  conszder the problem of localzzzng a mo- 
b ~ l e  robot on uneven terrazn The localzzatzon problem zs 
tltcoinposed znto two stages, attztude estzmatzon followed 
by  posztzo7~ estzmatzon The znnovatzon of our method zs 
the use of a smoother, zn the attztude estzmatzon loop that 
outpt rfornls other Kalman filter based technzques an estz- 
mute accuracy The smoother explozts the speczal nature of 
the data fused, hzgh frequency znertzal sensor (gyroscope) 
data and low frequency absolute orzentatzon data (from a 
ioinpass or  sun sensor) Two Iialman filters form the 
smoother Durzng each tzme znterual one of them prop- 
uyatts the a t t~ tude  estzmate forward zn tzme untzl zt zs up- 
dated by an absolute orzentatzon sensor A t  thzs tlme, the 
second filtt I propagates the recently renewed estzmate back 
111 tztnt The srnoothei optzmally explozts the lzmzted ob- 
sc.rzinbzlzty of the system by combznzng the outcome of the 
two  filters Thc system model uses gyro modelzng whzch 
/ d i e s  on ~ntegratzng the kznematzc equatzons to propagate 
the attztude estzmates and obvzates the need for complex 
d y ~ ~ a i n ~  modelzng The Indzrect (error state) form of the 
halinan f i l t c i  1s developed for both parts of the smoother 
Thc proposed approach zs zndependent of the robot struc- 
t r ~ r c  clnd the  morphology of the ground I t  can easzly b p  

trnilsfered to another robot whzch has an equzualent set of 
s f  nsors Quat~rnzons are used for the 30 attztude rep- 
~esmta t zon ,  maznly for practzcal reasons dzscussed zn the 
paper The p~oposed znnouatzue algorzthm zs tested zn szm- 
nlatloiz and the o~ierull zmprouement zn posztzon estzmatzon 
1 5  dcmonstrattd 

1 Introduction 

Put 11re missions t,o Mars will demand long traverses (sev- 
eral km) of rovers to sites of scientific interest. In order to 
nl~t~onomously perform their scientific tasks, these rovers 
n r ~ d  t,o know their position precisely. The focus of our 
rcscarch e h r t  is to localize an experimental rover capa- 
hle of navigating in a 3D environment. Specifically, we 
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are motivated by the problem of localizing the next gen- 
eration of robot rovers [lo] on the surface of Mars. Lo- 
calization is the problem of determining the position of a 
mobile with respect t o  a global or local frame of reference 
in the presence of sensor noise, uncertainties and poten- 
tial failures. The basic idea behind many mobile robot 
localization techniques is to  combine sensor data  with a 
priori knowledge about the specifications of these sensors, 
the structure of the mobile platform, and the environment 
the vehicle travels in. For example, it is often assumed 
that a detailed map of the area is known. In this case, 
the problem of identifying the position of the robot is the 
problem of finding an area within the map such that the 
expected sensor values are a t  all times in accordance with 
the actual readings. 

The assumptions made hereafter are that 1)No  prior 
maps of the environment are available and 2) Global Po- 
sitioning System (GPS) signals are not detectable on the 
surface of Mars. In this case absolute positioning is not 
feasible. The robot is not capable of determining its po- 
sition directly by sensing its surroundings (absolute local- 
ization). Instead, relative positioning techniques have to  
be involved. The rover must track its position starting 
from the landing site through every point of its trajectory. 

Many current localization effort,s have focused on sup- 
porting high quality position tracking. Different sensing 
devices and odometric techniques have been exploited for 
this purpose. The common characteristic of these ap- 
proaches is that they rely on the integration of some ki- 
netic quantity. The main drawbacks of any form of odom- 
etry are: 1) Every sensor monibring the motion of the 
vehicle has a certain type and level of noise contaminat- 
ing its signal. Integration of the noisy components causes 
gradual error accumulation and makes the estimates un- 
trustworthy. 2) The kinematic model of the vehicle is 
never accurate. For example, we do not know with in- 
finite precision the distance between the wheel axes of the 
vehicle. 3) The sensor models also suffer from inaccuracies 
and can become very complicated. For example, the use 
of complicated models to  describe the gyroscope drift. 4) 
The motion of the vehicle involves external sources of error 
that are not observable by the sensors used. For example, 
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slippage in t,he direction of motion or in the perpendic- 
ular direction is many times not detected by the motion 
sc,nsors. Externally provided or extracted information is 
nmssnry from t,ime to time if we wish to keep the error 
bounded. This group of approaches is also referred to as 
.Ltlead-reckoning". 

Global (absolute) orientation measurements can drasti- 
(.;illy increase the accuracy of the position tracking esti- 
111atc and reduce the rate of growth of the associated un- 
(-c,rt,ainty. In the case of a rover such as Rocky 7, its atti- 
1 ~ ~ t l t b  can be estimated (relative) in real time by integrating 
t I I P  rotational velocity of the vehicle as this is measured by 
:I gyroscopes on-board. The problem with this approach 
IS t,hat. while the robot is in motion, the rates of roll, pitch 
ant1 yaw available from gyroscopes are subject to drift and 
noise. The orientation estimates drift away from their real 
values and t,hus they become un-trustworthy. Even small 
c,rrors in the orientation fast produce large errors in posi- 
~ K I I I .  As explained in later sections, the absolute (global) 
orientation of the vehicle can be measured but only inter- 
~l~it , tently.  The focus of this research effort is to provide 
I Ile best att,it,ude and position estimates when the absolute 
orientation mc:asurements are not available continuously. 

111 this paper we address the problem of 3D localization 
t'or mobile robots in the absence of absolute positioning in- 
fi~rmation. We concentrate on bounding the attit'ude un- 
~.c,rtainty through periodic use of absolute attitude mea- 
surements. As a consequence the position estimate de- 
grades slowly compared to the case when no absolute ori- 
c>r~t.ation information is available. The attitude estimate 
relics on the gyros when the vehicle is in motion while a 
t,ri-axial acceleronleter is used as an absolute orientation 
nleasuring device (roll and pitch) in conjunction with a 
sur~ sensor (yaw) when the vehicle is a t  stop. At the end 
of each interval of motion a smoother is used which propa- 
gates t,he new absolute orientation information backwards 
using thc previously acquired gyro information. This low- 
rrs the uncertainty of the attitude estimate throughout the 
interval of smoothing; that is when the vehicle was in mo- 
I i o n .  Both thr, forward and backward estimators are Indi- 
rect ( ~ r r o r  st,ate) Kalman filters and gyro modeling is used 
i nst,ead of a dynamic model of the robot. Smoothing is be- 
ing applied hcre to the mobile robot localization problem 
t'or thc first time. The proposed smoother based localiza- 
t ~ o n  algoritlml subject to the aforementioned ~onst~raints,  
generalizes across different mobile robot platforms with 
varying kinemat>ics and dynamics. 

111 the next section we survey previous work in robot lo- 
(-ali~at~ion. Section 3 examines the dependence of the po- 
sit,ion estimate on the attitude estimate. We discuss the 
V ~ L S ~ O U S  attitude measuring devices used, t,he rationale be- 
h i ~ ~ d  dynamic model replacement and the Indirect Kalman 
filt>er and a basic gyro model. Section 4 contains a deriva- 
tion of the error state equations for the 3-D case using 
unit quaternions. The linear time-variant equations of the 
system rnodel and the non-linear equations of the observa- 
tion model are derived. An Indirect Kalman filter based 

on these models is developed. The improvement due to 
the smoother is demonstrated. Section 5 shows how the 
position is updated using the improved attitude estimates 
and section 6 summarizes the contributions of this work 
and discusses future avenues of research. 

2 Previous Work 

In order to deal with systematic errors in indoor applica- 
tions, a calibration technique called t,he UMBmark test is 
given in [3]. [4] discusses a techniqur called gyrodometry, 
which uses odometry data  most of 'the time, while substi- 
tuting gyro data  only during brief instances (e.g. when the 
vehicle goes over a bump) during which gyro and odom- 
etry data differ drastically. This way the system is kept 
largely free of the drift associated with the gyroscope. A 
complementary Kalman filter [6] is used in [9] to estimate 
the robot's attitude from the accelerometer signal during 
low frequency motion and the gyro signal during high fre- 
quency motion. The attitude information is then used to 
calculate a position increment. In [I] the authors use a low 
cost INS system ( 3  gyroscopes, and a triaxial accelerom- 
eter) and 2 tilt sensors. Their approach is to incorporate 
in the system a priorz information about the error charac- 
teristics of the inertial sensors and to use this directly in 
an Extended Kalman Filter (EKF) t,o estimate position. 

Examples of absolute localization include [13] in which 
the localization algorithm is formalized as a tracking prob- 
lem, employing an EKF to match beacon observations to 
a map in order to maintain an estimate of the position of 
the mobile robot; 121 in which the authors use an EKF to - - 
fuse odometry and angular measurements of known land- 
marks and [22] in which a Bayesian approach is used to 
learn useful landmarks for localization. 

Most of the above approaches limit themselves' to the 
case of planar motion. In addition, their accuracy de- 
pends heavily on the presence of some form of an abso- 
lute positioning system. We consider motion on uneven 
terrain (3D localization) and propose an estimation al- 
gorithm that is capable of incorporating absolute position 
measurements but is also able to provide reliable estimates 
in the absence of externally provided positioning informa- 
tion. Our method performs attitude estimation using an 
Indirect Kalman filter that operates on the error state. 

3 Localization and Attitude Estimation 

In this section we examine the relation between the at- 
titude estimate and the position estimate. We use an ex- 
perimental Mars rover prototype (Rocky 7 [lo]) as the 
motivating example throughout this paper. The assump- 
tion is that the robot has wheel encoders, 3 gyros, 3 ac- 
celerometers and a sun sensor. Since there is no device 
measuring the absolute position of the rover (there is no 
GPS on Mars), the position can only be estimated through 
the integration of the accelerometer signal which has bias 
and noise. Consider also, that the propagation of the po- 



sitior~ relies upon the at t i tude estimate. S n d l  errors in 
orient.at,ion fast become large errors in position. Formally 
>peaking, the position is not observable and thus the un- 
cc>rt,aiiity of its estimate will grow unbounded. The most 
pron~ising ;-ourse of action with this set of sensors is to 
t'oc-us on gaining a very precise at t i tude estimate. As a 
r c ~ r ~ l t  the position uncertainty will grow a t  a slower rate: 

1 rhe accelerometer measures both the vehicle's accel- 
?ratio11 and the projection of the gravitational accel- 
r r a t ~ o n  on the accelerometer local frame. The  relation 
I wtween these is described by: 

- 
wl~cw ji is the vehicle's (non-gravitational) acceler- 
ation. Z,,, is the measurement from the 3-axis ac- 
I-elero~nrt~er and g' is the gravitational acceleration. 
l'recisc. knowledge of the orientation matrix A(q) is 

+ 
~nandat~ory to extract j accurately. 

+ 
2.  'I'tie rrc,xt step - requires integration of p to derive the 

~~osi i~ior i .  fi is local (i.e. expressed in a coordinate 
I'rame attached to the robot) and in order t,o calcu- 
I ; L ~ c  t,hc position in global ~oord ina t~es  the attitude 
~nformat~ion is once again required: 

3.1 Attitude Measuring Devices 

I l r r .  on t~onrtl gyroscopes can be used to calculate the 
r t  t i t  udt. of 1 hr, ~eh ic l e  by integrating their signal On the 
)the1 hand the ,1111 sen5or directly measures the values 

of thr  t a o  c-omponents of a two-dimensional vcxtor This 
\ c c tor is t hc prolection of the unit vector towards the sun 
O I I  t11~. 51111 belibor plane Another sensory mput of the 
Y ; ~ I I I ~  nature, is required in order to satisfy attitude observ- 
; ~ l ) i l i t ? ;  requirements. While the acceleronleter is mainly 
11sc~1 t o a d v i t l ~ c ~ ~  t.he position estimate (Equations 1 , 2 )  it, 
(,an also t ) f ,  used in an alternative way. An accelerometer 
, . ; i l l  [treasure t,klr, local gravitational acceleration, a three- 
~linrer~siorial vf>ctor p;wallel tlo the local vertical. This pro- 
\ idw ; l ~ ~ o t l i c ~  orient,ation fix independent from the sun 
;11i11 I lius iiralws (,he vehicle's at t i tude observable. When 
1 I 1 c 3  vetric.lc, is stopped the accelerometer measures only the 
gr;rvit~xtior~;tl acceleration namely Z,,, = -4(q)y'. The roll 
;111d ])itch of t,he vehicle can thus be precisely calculated. 
' 1 ' 1 1 ~  sun sc11si)r provides t,he yaw measurement and thus 
t I I P  11rat.rix . I ( ( / )  is observable and precisely known when 
at  stop. 

This ~nr~t,lrotf Sails when t,he rover is in motion. The grav- 
i t ? ;  vec.tor is t,l~c,n "contjaminatedV by the non-gravitational 
;~~.c.c~lwat,io~i of t,llc> vehicle (Equation 1) .  The gravity vec- 
I or c.ould hi, extracted while the vehicle is moving if an in- 
I ~ I ~ ~ ) ( ~ I I & ~ I I ~  ~ ~ ~ ( ~ ; ~ s r i r r ~ n l e n t  of its own acceleration was avail- 
irblc. Rt.sc~rrc.l~ efforts [23, 91 have tried to address t,liis 

problem using additional information from odometry. We 
believe that  these approaches are sufficient for indoor ap- 
plications and can deal with cases of motion over small ob- 
jects but are not accurate enough for general outdoor en- 
vironments mainly because of the limited accuracy of the 
estimates of the non-gravitational acceleration. A more 
thorough consideration of the problem would require dy- 
namic modeling of the vehicle. An estimator tha t  incorpo- 
rates a dynamic model of the vehicle [21] could estimate 
its non-gravitational accelerations. 

3.2 Dynamic Model Replacement 

In our approach we avoid dynamic modeling and restrict 
ourselves to use the accelerometer only when the 
rover i s  at stop. The  reasons for avoiding dynamic mod- 
eling are: 1. generality, 2. practical estimator size, 3.  re- 
ported poor payoffs [ll] due to  dynamic modeling, and 4. 
complexity. Due to  space constraints, we do not discuss 
these furt,her, the interested reader is referred to  [18, 191 
for f ~ r t ~ h e r  details. 

3.3 The Indirect-feedback Kalman Filter 

As mentioned before, Kalman filtering has been widely 
used for localization purposes. The  kinds that  usually ap- 
pear in mobile robot applications are the linear Kalman 
filter and the Extended Kalman filter (EKF) forms of the 
full s tate Iialrnan filter. In this work we choose to use 
the error-state form of both the linear Kalman filter and 
EKF.  In the error-state (indirect) formulation, the errors 
in orientation are among the  estimated variables, and each 
measurement presented to  the filter is the difference be- 
t,weeri the INS and the external source da ta  (i.e from ab- 
solute orientation sensors). In the following section we 
derive the equations needed for such a formulation. The  
primary reasons to  pick this formulation are 1. No explicit 
modeling of the vehicle dynamics is needed, 2. The filter 
runs at, a relatively low frequency, and 3. In case the filter 
fails, ii~tegrat~ed estimates of the INS da ta  continue to be 
available. 

In the feedback form of the Indirect-feedback Kalman 
filt>er the updated error estimate is actually fed back to 
the INS to correct its "new" start,ing point, i.e. the state 
tha t  the integration for the new time step will s tart  from. 
The rationale behind the  Indirect Kalman filter as well as 
the feedback form are discussed in further detail in [18, 191. 

3.4 Gyro Modeling 

A great difficultmy in all at t i tude est,imation approaches 
that  use gyros, is the low frequency noise component, also 
referred to  as bias or drift tha t  violates the white noise 
assumption required for standard Iialman filtering. This 
problem has attracted the intercst of inany researchers 
since the early days of the space, program [15]. Inclu- 
sion of t,he gyro noise model in a Kalman filter by suit- 
ably augmenting the state vector has the potential t,o pro- 



vide estimates of the sensor bias when the observability 
requirement is satisfied. Early implementations of gyro 
noise models in Kalman filters can be found in [16]. 

. in  estimate of the attitude would imply the derivation of 
t,he dynamics of the robot, which we wish to avoid for the 
wasons listed in the previous section. In order to do so we 
r ~ l a t e  the gyro output signal to the bias and the angular 
velocit,y of the vehicle using the simple and realistic model 
(81. In this model the angular velocity about a particular 
axis w = 0 is related to the gyro output w, according to 
the equation: 

Q=w,+b+n, (3) 

where b is the drift-rate bias and n, is the drift-rate noise. 
n,. is assumed to be a Gaussian white-noise process with 
imvariance N, The drift-rate bias b is not a static quantity 
1,111 is driven by a second Gaussian white-noise process, 
the gyro drift-rate ramp noise n,. Thus b = n, with 
I-ovariance Nu . T ~ P  two noise processes are assumed to 
he uncorrelated. 

4 3-D Att i tude Estimation 

The proposed method in the 3D case is summarized in 
Figure 1.  It should be noted that only the forward fil- 
1c.r estimate is available in real-time. The smoother runs 
off-line (during the tirnes that the robot is halted). This 
ii~chnique is ~ m t  limited to robots used for Mars explo- 
rat ion. I t  car1 be applied to any other autonomous vehicle 
ecluipped with an equivalent set of sensors. The mixing of 
high frequency inertial sensors with low frequency absolute 
(position or orientation) sensors is becoming conlmon in 
n~obile robotics. Robots equipped with GPS or landmark 
tracking devices, usually carry additional sensors that can 
b c  used for localization when the GPS signal degrades or 
I h p  landmarks are occluded. Our framework could be used 
t o  cornbine the data from such sensor sets as well. 

4.1 Att i tude kinematics 

\ \~c  use quatt:rnior~s to parameterize the robot's at,titude 
fur three practical reasons. First, the prediction equations 
arc) heated linearly, secondly the representation is free of 
singularit,ies and finally the attitude matrix is algebraic in 
I he quaterniol~ components, thus eliminating the need for 
I r;~risceridental functions. The reader is referred to [5] for 
;I rwiew on qmternions. 

I hr, j~hyslcd counterparts of quaternions are the rota- 
I lo~ial axls 11 ad the rotational angle B that are used In 
1 1 1 < 1  Luler t h ~ o r e m  regarding finite rotations By taking 
I he vc,ctor part of a quatermon and normalizing it ,  we can 
hnd the rotational axls, and from the last parameter we 
( x i  obtam the angle of rotation [7] Following the notation 
111 [12] a u n ~ t  quatermon is defined as 

\\here the first three elements of the quaternion can be 

Figure 1: Algorithm Flow Chart: While the robot is in motion 

the forward Kalman filter uses gyro da ta  to produce (in real-time) 

a first approximation of the att i tude estimate. When the covariance 

of this estimate excseds a preset threshold the robot is stopped. An 

absolute orientation measurement is made using the sun sensor and 

the three-axis accelerometer. A backward estimate is computed (off- 

line) and its results are combined (off-line) with the estimate from 

the forward filter using a smoother. Finally, the position is estimated 

(off-line) using the (smoothed) att i tude estimate for each instant of 

the trajectory. 

writt,en in a compact form as: 

The attitude matrix is obtained from the quaternion ac- 
cording to the relation: 

where 
0 q3 -Y2 

(7) 
42 -41 0 

is a 3 x 3 skew symmetric matrix generated by the 3 x 1 
vector q'. The matrix A(q)  transforms representations of 
vectors in the reference coordinate system to representa- 
tions in the body fixed coordinate system. The rate of 
change of the attitude matrix with time is given by: 



where the corresponding rate for the quaternion is: 

with 
0  w 3  - w z  w 1  

( ' 0 )  

- w 1  - w 2  - w 3  0 

At this point we present an approximate body-referenced 
representation of the error state vector and covariance ma- 
tris.  The error state includes the bias error and the quater- 
nion error. The bias error is defined as the difference be- 
tweer~ the true and estimated bias. - - -. 

Ab = b t rue  - bi (11) 

The quaternion error is not the arithmetic difference be- 
t,ween the true and estimated but it is expressed as the 
quaternion which must be composed with the estimated 
quaternion in order to obtain the true quaternion. 

The advantage of this representation is that since the 
incremental quaternion corresponds very closely to a small 
rotation, the fourth component will be close to unity and 
thus the attitude information of interest is contained in 
the three vector component Gq'where 

Starting from equations: 

- 
where Qt rue  is the true rate of change of the attitude and 

+ 

B i  is estimated from the measurements provided by the 
gyros, it can be shown [18] that 

where w', is the output of the gyros. Using the infinites- 
imal angle assumption in Equation 5, Gq'can be written as 
6j'= i66. Thus Equation 16 can be rewritten as: 

Differentiating Equation 11 and assuming btrue = Gw 
+ 

and bi = 0 ,  the bias error dynamic equation is = 6, 
which when combined with Equation 17 yields the error 
state e q ~ a t ~ i o n :  

In a more compact form Equation 18 is: 

4.2 Discrete system: Indirect forward 
Kalman filter equations 

4.2.1 Propagation 

At this point we define qklk (gklk) as the quaternion (bias) 
estimate a t  t i ~ e  tk  based on data  up to and including 
z ( tk ) ,  qklk-1 (bk lk- l )  the quaternion (bias) estimate at  
time time tk-1 propagated to t k ,  right before the mea- 
surement update at  t k .  The estimated angular velocity is 
defined (before and after the update) as: 

Following [24], the full estimated quaternion is propa- 
gated over the interval Atk = tk  - tk- 1 as follows: 

where the average angular velocity for this interval is 
approximately 

The bias est&nate is constant over the propagation inter- - 
val b k l k P l  = bk-llk-l. The propagation equation for the 
error state covariance is 

If the average angular velocity Gaug is constant over the 
interval A t k ,  with magnitude waUg then the discrete sys- 
tem transition matrix @(k, k - 1) can be easily calculated 
from Equation 18 ([18, 201). 

4.2.2 Update 

When the rover stops, an absolute orientation measure- 
ment is available from the sun sensor and the accelerome- 
ter. This is used to update the estimated error state and 
the covariance [14]. The Kalman gain matrix is given by: 

The updated covariance and error state equations are: 

where Az(tk) is the measurement residual. The propa- 
gated error Axk/k- l  is zero because we have implemented 



t Ile feedback formulation of the Indirect Kalman filter Ev- 
i ~ y  tune we have a measurement the update is lncluded in 
t l ~ c  full state and thus the next estimate of the error state 
A r h / h -  1 1s assumed to  be zero This update 1s 

4.2.3 Observation model 

IIuc to space l~rnltatlons we omit the equations for the ob- 
wrvation model. For a detailed derivation the interested 
wader is referred to  [18, 201. 

4.3 Backward filter 

111 the flow chart shown in Figure 1 we see that the 
rohot stops every time the uncertainty grows over a preset 
I l~resholtl. Then the backward filter is engaged and the 
last attit,ude estimate is propagated back in time. This 
last est,irnate is very precise because it is heavily based 
O I I  the absolutr orlentatlon measurements acqulred when 
the robot stopped While the backward filter 1s close to 
1 t 5  ztartlng p o ~ n t  lt is able to provlde estimates of hlgher 
( orlfidence than those of the forward filter In order to de- 
I I ve the equations for the backward Indirect Kalman filter 
n o  >tart from the equations of the system for the forward 
c < iW 

By defining r = T - t , where r is the backward time vari- 
;hie and T = tk  - t k - M  is the time interval of smoothing, 
the backward system equation can be derived from: 

blakmg the appropriate substitutions we get the follow- 
Ing equation for the quaternion estimate propagation: 

I'he bias propagatlon remains the same as before slnce 
t he cllrrction of propagation does not affect an assumed 
constant vanable The backward propagatlon equatlon 
l o 1  t he  ( ovarlanc-e 1s now 

No 1ir.u absolute measurements are collected during the 
t~ackward propagation of the filter and thus, the update 
qua t ions  and the observation model for the backward fil- 
ter are not considered 

Figure 2: This is the  usual outcome dut- to the bias estimation. 

The forward filter estimate drifts to the right because it has under- 

estimated the gyro bias. The backward filter overestimates and thus 

drifts to the left (in the opposite direction). The smoothed estimate 

outperforms both filters minimizing the  average estimation error. 

4.4 Smoother 

The smoother constructs the best estimate of the state 
of the system over a time period using all the measure- 
ments in that time interval [17]. in our case, the time 
for which the robot stops to get an absolute orientation 
measurement allows for post-processing and therefore ap- 
plication of the smoother. In order to calculate the total 
(smoothed) estimate we use the following equation1: 

Each covariance matrix Pf, Pb and Pt,t,l represents the 
uncertainty of the corresponding estimate. The higher the 
uncertainty, the larger the covariance matrix. Equation 32 
weighs each of the available estimates (from the forward 
and the backward filter) according to their certainty. The 
result is the optimal estimate possible, if all the measure- 
ments of the time interval of smoothing were available a t  
once. The significant improvement In the quality of the 
3D estimate is shown in Figure 4. Different estimated 
quantities calculated in a representative trial are depicted 
in Figures 2 and 3. The overal improvement in attitude 
estimation is presented in Figure 5 

5 From Attitude Estimates to Position 
Estimates 

The accuracy of the position estimate depends heavily on 
the accuracy of the attitude estimate. Though the posi- 
tion can be calculated in real-time using the output of the 
forward Kalman filter we choose not to do that.  Instead in 
our algorithm the position estimation takes place off-line 
as described in Figure 1. After the vehicle stops to collect 

' ~ p p l y i n ~  this in 3D is somewhat involved because of the par- 
ticular form of the error quaternion used. The interested reader is 
referred to [la] for the technical details 



I"igurr 3:  For the second gyro, we show the true bias value, 

t l ~ e  forward filter's estimate, the backward filter's estimate and the 

hrnoothed est.imatr of the bias. The smoothed (total) estimate stays 

,.lose to the backward filter estimate for the second half of each 

smoothing interval while for the first part it depends on both the 

forward filter's estimate and the backward filter's estimate. This is 

rlue t o  the fact that the initial bias value for the backward filter is 

i1lor.r tr~ustrvorthy for this time interval than the initial value of the 

fi~rwi~rd filtri.. The asyrrlmetry is due to  the fact that  the backward 

filtt,~ works with an "initial" estimate which is actually computed 

,rI'ter the n~otiori. 

a n  al)solutme orientation measurement the off-line smoot'h- 
ing of the at t i tude estimation is performed. The resulting 
e~ t~ in ia t e  is accurate and is used to compute the current 
p ~ s i t ~ i o ~ i .  . i s  we mentioned before the at t i tude estimate 
i h  all input to Equations 1 and 2.  If the integration step 
I >  s l i idl ,  we c.it11 simplify this calculation as follows. First 
11ic. increase in position is calculated due to the sensed 
;~c,c,rlrrnt,io~~ and  t,he current velocity: 

this increment is then transformed to  global coordinates 
uslrig G ~ l ~ ( t i ; )  = ?A(q(tk)) 'ap(tk), before it can be 
~ ~ s e d  to computc the next position using 

1 1 1 ~  \ elorit) mcrement d u r ~ n g  every measurement cycle 
1 5  Ao( tk  ) = ' a ( t k )  A T  In global coordinates, we have 

( '  At1( th )  = fA4(q( fh ) )  Av(tk) The new velocity 1s 

l h ~ s  result has to b r  transformed to local coordinates 
1xA'ole i t  IS fed bark for the next position update. 

' 1 ' 1 1 ( ~  r.casult,iiig irr~proveinent in the estimation of the ve- 
Ilic.lr's posit,ion is shown in Figure 6. 

Figure 4: The covariance related to  qz from the forward filter, 

backward filter and smoother is shown. At all times the total covari- 

ance is lower than either of the corresponding ones calculated from 

the two filters. Its value remains bounded and varies slightly during 

the smoothing interval. 

6 Conclusion 

In this paper we decomposed the localization algorithm into 
attitude estimation and, subsequently, position estimation. A 
novel approach that incorporates a smoother was presented. 
An Indirect (error-state) Kalman filter that incorporates iner- 
tial navigation and absolute measurements was developed for 
this purpose. The dynamic model was replaced by gyro mod- 
eling which relies on the integration of the kinematic equa- 
tions. The error state equations for the three dimensional case 
were derived and used to formulate the filter's time-variant 
system model and non-linear observation model. Quaternions 
were selected for the three dimensional attitude representa- 
t,ion. Finally, the improvement due to the proposed method 
was demonstrated in simulation. 1:niformly smaller values of 
the covariance of the estimate were sust,ained throughout each 
of the trials. It should be noted that due to the lack of vehicle 
specific dynamic modeling the proposed approach is general 
and may be used on any vehicle chassis with an equivalent set 
of sensors. Future directions of research include applications 
(extensions) of this method t,o case5 where the INS sensors are 
fused with other absolute sensors t,hat measure position (e.g. 
vision cues, star sensors, beacons etc.) 
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