
AUTONOMY ARCHITECTURES FOR A CONSTELLATION OF SPACECRAFT

Anthony Barrett

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, MIS 126-347, Pasadena, CA 91 109-8099

phone: +I 818 393-5372, fax: + 1 81 8 393-5244, e-mail: anthony.barrett@jpl.nasa.gov

ABSTRACT
In addition to needing remote planning and execution for

This paper describes three autonomy architectures for a isolated spacecraft, a trend toward multiple-spacecraft
system that continuously plans to control a fleet of missions points to the need for remote distributed planning
spacecraft using collective mission goals instead of goals and execution. The past few years have seen missions with
or command sequences for each spacecraft. A fleet of self- growing numbers of probes. Pathfinder has its rover
commanding spacecraft would autonomously coordinate (Sojourner), Cassini has its lander (Huygens), Cluster I1
itself to satisfy high level science and engineering goals in has 4 spacecraft for multi-point magnetosphere plasma
a changing partially-understood environment - making
feasible the operation of tens or even a hundred spacecraft
(such as for interferometer or magnetospheric constellation
missions).

1. INTRODUCTION

Until the past 5 years, missions typically involved fairly
large expensive spacecraft. Such missions have primarily
favored using older proven technologies over more
recently developed ones, and humans controlled spacecraft
by manually generating detailed command sequences with
low-level tools and then transmitting the sequences for
subsequent execution on a spacecraft controller.

This approach toward controlling a spacecraft has worked
spectacularly on previous NASA missions, but it has
limitations deriving from communications restrictions -
scheduling time to communicate with a particular
spacecraft involves competing with other projects due to
the limited number of deep space network antennae. This
implies that a spacecraft can spend a long time just waiting
whenever a command sequence fails. This is one reason
why the New Millennium program has an objective to
migrate parts of mission control tasks onboard a spacecraft
to reduce wait time by making spacecraft more robust
[Muscettola et al. 971. The migrated software is called a
"remote agent" and can be partitioned into 4 components:

a mission manager to generate the high level goals,
a plannerlscheduler to turn goals into activities while
reasoning about future expected situations,
an executive/diagnostician to initiate and maintain
activities while interpreting sensed events through
reasoning about past and present situations, and
a conventional reactive controller to interface with the
spacecraft to implement an activity's primitive actions.

measurements. This trend is expected to continue to
progressively larger fleets. For example, one proposed
interferometer mission [MettlerLkMilman 961 would have
18 spacecraft flying in formation in order to detect earth-
sized planets orbiting other stars. Another proposed
mission involves 5 to 500 spacecraft in Earth orbit to
measure global phenomena within the magnetosphere.

To describe the 4 software components of autonomous
spacecraft and constellations, the next section describes a
masterlslave approach toward autonomously controlling
constellations. While being a conceptually simple
extension to single-spacecraft autonomy, this approach has
several problems that motivate the next section on
teamwork. Teamwork replaces masters and slaves with
leaders and followers, where a follower has the autonomy
to look after its teammates. The fourth section discusses
ways to expand teamwork to let each spacecraft function
both as a leader and a follower, and the last section
concludes by discussing hybrids of the three architectures.

2. MASTERISLAVE COORDINATION

The easiest way to adapt autonomous spacecraft research
to controlling constellations involves treating the constell-
ation as a single spacecraft. Here one spacecraft directly
controls the others as if they were connected. The
controlling "master" spacecraft performs all autonomy
reasoning while the slaves only transmit sensor values to
the master and forward control signals received from the
master to their appropriate local devices (fig. 1). The
executiveldiagnostician starts actions and the master's
reactive controller manages actions either locally or
remotely through a slave.

The 3 modules above the reactive controller essentially
follow the standard belief-desire-intention (BDI)
framework [Rao&Georgeff 951. The mission manager
takes a set of beliefs and generates de.sire.s (goals) for the

- - -- -- -
I'roc I ~ t t h lntcrnational Sympos~um on Art~f ic~al Intell~gence,
I < o b o t ~ ~ \ and Automat~on In Space. 1-3 lune 1999 (CSA SP-440)

Slaves Master

affectors

State
Activities

Executive/Diagnostician

FIG.: 1 Architecture for MasterlSlave Coordination

plannerlscheduler, which translates them into intentions
(plans) for execution. Gat describes 3T [Gat 971, another
architecture with three layers to deliberate, sequence, and
control. While deliberation combines mission manage-
ment and planning, the other two layers match the
executive and the reactive controller. EVAR [Schoppers
951 illustrates another case where the executive subsumes
both the planner and mission manager. In general, we can
describe most autonomous agent research as variants on
the BDI model with different approaches toward
implementing the modules and their interactions.

At the lowest level the executiveldiagnostician (or just
"executive") takes an activity sequence, incrementally
feeds activities to the reactive controller and monitors
results to update the system's state - a model of the
constellation and its environment. Since performing an
activity might have unintended situation dependant results,
blindly feeding primitive activities to the reactive
controller is unreliable. The issue here is that the
Executive must rapidly diagnose and respond to detected
contingencies.

EVAR [Schoppers 951 resolved the problem by compiling
large sequences into universal plans - a clever encoding of
statelresponse rules that enumerates all states and their
appropriate responses. Unfortunately this approach only
works in restricted domains where we can make a practical
representation that implicitly enumerates all states.

Another approach involves robustly implementing each
activity as a reactive action procedure (RAP) - an
encoding of statelresponse rules for anticipated states
[Firby 871. Here activities fail when the current state falls
outside the anticipated set, and failure forces the executive
to abort the sequence and inform the planner. The issue
now involves how many actions to feed the executive at a
time.

For instance, one system uses variable size planning
windows to generate sequences where one activity is to
plan for the next window [Pell et al. 971, and another

system runs the planner continuously and feeds individual
activities to the executive as they become executable
[Ambrose-Ingerson&Steel 881. While these examples
show that the planner's continual operation is optional, all
systems must continually run the executive to actively
monitor and diagnose the reactive controllers. This
involves using a production system to appropriately apply
statelresponse rules to affect the system state or reactive
controller.

2.2. PLANNEWSCHEDULER

While the executive reasons about current and past
activities, the plannerlscheduler (or just "planner") reasons
about future command sequences. Given the heavy use of
time and metric resources in spacecraft planning domains,
we use a heuristic iterative-repair strategy [Rabideau 991
towards building and maintaining command sequences.
This approach takes a complete plan at some level of
abstraction and manipulates its actions to repair problems
detected by envisioning how the plan would execute on the
spacecraft. One type of problem involves multiple
simultaneous actions with conflicting resource needs. For
example, simultaneously activating too many sensors
might cause a bus fault by drawing too much power.
Repairing this problem would involve either deleting or
moving sensor activation activities in the plan.

At any given moment the mission manager can suggest
tasks for the plannerlscheduler to add to the constellation's
future behavior. Since these tasks are often abstract and
might conflict with other established tasks the scheduler
continuously debugs its tasks and sends actions to the
executive (fig. 2). The planner essentially maintains a set
of tasks that are abstract in the far future and become
progressively more detailed as their execution times
approach. For example, a suggested task to take a picture
of a target might involve slewing and possibly calibrating
the camera prior to acquiring the image. This task is
detailed as its execution time approaches. By continuously
detailing the earliest tasks, the planner assures that it
always has actions to send to the executive.

Abstract tasks from Mission Manager

Actions sent to ExecutivelDiagnostician

FIG.: 2 Continually updating the spacecraft acitivities

As time progresses, activities move from the future plan
through current execution into the past. During this
process an activity's expected outcomes get replaced with

its sensed outcomes, and the constellation's actual state
will drift from the expected state and cause future
expectations to drift as well. The planner repairs the tasks
whenever this drift causes a conflict.

2.3. MISSION MANAGER

This module facilitates high-level spacecraft commanding
by maintaining beliefs involving the high-level mission
profile. This profile contains a high level behavioral
description for the spacecraft. This description can take
many forms from a simple set of temporally constrained
goals to an elaborate production system that asserts goals
upon detecting user specified scientific opportunities by
analyzing parts of the constellation & environment model.

For instance, the spacecraft would have periodic goals to
transmit data to Earth. These goals would be temporally
constrained in order to synchronize with a ground station.
They also have to be high level to determine how to
communicate based on the specific state of the spacecraft
prior to preparing for a downlink. As another example, the
mission manager might apply a feature detection algorithm
on a previously captured picture and generate observation
goals based on the results.

While a spacecraft can operate entirely autonomously with
a mission profile. Humans analyzing the science results
will tend to suggest changes to mission goals for answering
questions arising from their analysis. We can even vary
the constellation's level of autonomy by varying the
abstractness of the mission profile. When using primitive
action sequences, the profile can short-circuit the planner
to allow absolute commanding. Adding abstract tasks to
the profile lets the spacecraft adapt its behavior to its local
environment, and adding data analysis for rule based
autonomous goal generation makes a spacecraft detect and
respond to scientific opportunities.

3. TEAMWORK

While the masterlslave approach benefits from conceptual
simplicity, it relies on an assumption that the master space-
craft's reactive controller can continuously monitor the
slaves' hardware, and this relies on high-bandwidth highly-
reliable communications. Since unintended results occur
fairly rarely, one way to relax the bandwidth requirements
involves putting reactive controllers on the slaves and only
monitoring unexpected events. Unfortunately, this disables
the ability to monitor for unexpected events between
spacecraft and leads to a host of coordination problems
among the slaves [Tambe 971. Also, failures in the
communications system can result in losing slaves.

We can apply teamwork models [Tambe 97, Stone&
Veloso 981 to reduce the communications problem by
giving the slaves their own executives (fig. 3). This
replaces the masterlslaves relationship with one between a

Followers Leader

FIG.: 3 Architecture for Teamwork

team leader and its followers. Here each follower can
monitor its own performance and selectiveiy transmit
results to the leader. Partitioning the system's state into
local spacecraft states and shared team-states facilitates
this selective transmission. While the spacecraft keep their
local states private, they communicate to keep team-states
consistent across teams in the constellation.

3.1. REPRESENTING TEAM PLANS

Instead of sending separate actions to each follower for
execution, the leader broadcasts the entire reactive team
plan' to all followers. This lets each follower actively
monitor its own progress and passively track its
teammates' activities. This passive monitoring process
maintains robustness while reducing communications.

In addition to regular activities found in the masterlslave
approach, reactive team plans also include team activities.
These define coordination points where the team
synchronizes before and after executing the team activity.
For instance, a 3 spacecraft interferometer has a combiner
spacecraft to generate pictures by processing light reflected
from two collector spacecraft. A reactive team plan to
control the constellation might have 3 team activities (fig.
4) to coordinate the 3 spacecraft while making an
observation, and each activity has 2 or 3 sub-activities
defining how the constellation behaves during the joint
activities. As illustrated, team activities have brackets and
those suffixed with an asterisk only apply to subsets of the
team. In this case the subset denotes the combiner
spacecraft. The activities in this plan subsequently make
the constellation attain a rough formation, dress up the
formation for finer tolerances to make a measurement, and
transmit the results to Earth.

While this interferometer's impoverished number of
spacecraft do not sufficiently motivate the need for
teamwork, other interferometer mission proposals describe
over a dozen, or even a hundred, collectors to support the
combiner. To support teamwork for these larger missions,

I Given our heavy use of Tambe's formalism, we adopt his
terminology and call a sequence a reactive team plan.

Starlight Path

- -12cm

make-he-adjustment
[fnnge-detection]'

FIG.: 4 Structure of a reactive team plan for a 3
spacecraft interferometer

we must alter the executives' underlying architectures to
manage each spacecraft team's associated team-state. We
illuminate these changes by describing the machinery
underlying team activity execution.

3.2. EXECUTING TEAM ACTIVITIES

A team of spacecraft contains a leader and one or more
followers that jointly intend to accomplish some task by
executing a team activity. Teams dynamically form when
team activity execution starts and dissolve upon comple-
tion. When a team performs a task, it shares a team-state.
This state contains facts like a list of teammates, their roles
in performing the joint task, and other information to
coordinate team activity.

Depending on the action, execution can manipulate the
reactive controller and alter the local and team-state
information. Since team-states are replicated across all
teammates, a spacecraft must broadcast all team-state
changes to maintain consistency. The standard protocol
for changing a team-state is a 3-step process where one
spacecraft broadcasts the change, all teammates broadcast

syntax, techniques for building and managing hierarchical
plans, like those described earlier, also apply to generating
reactive team plans. As such planning does not change
much when moving from master/slave plans to reactive
team plans. Just like in master/slave coordination, there is
a spectrum of ways to generate plans and feed them to the
executives. At one extreme the lead spacecraft can
generate a whole plan and then feed the resultant sequence
to its executives, and at the other extreme it repairs the plan
incrementally and maintains a copy in the shared team-
state.

The real difference between the two approaches involves
limiting the knowledge to plan from. Where the master
knew everything about the constellation, the team leader
only knows a subset of everything. The issue now
becomes a matter of what status information to put in the
subset and how fresh to keep it. While increasing the
information and its freshness improves the leader's results,
it also increases the communication overhead as the
constellation's status changes.

A second issue involves whether the information belongs
in the team-state, and whether it should be transmitted
privately to the leader. While putting information in the
team-state increases the followers' abilities to keep track of
each other, it also increases the communications overhead.
Where changing the team-state involves a broadcast
followed by waiting for multiple acknowledgements,
changing the leader's local state involves one transmission
followed by waiting for the leader's acknowledgement.

One planning approach has the leader managing the team
plan and follower roles in the team-state, but lets the
followers privately transmit state updates to the leader.
Here the leader changes the team plan and roles based on
pmjecting its expected results given the privately received
status information.

acknowledgements in turn, and all teammates update their Another approach still has the leader managing the team
copies upon hearing everyone else. If a teammate does not plan's activities with heuristically assigned roles in the
respond before a time-out interval, the original spacecraft team-state, but followers keep status information local and
rebroadcasts the change. submit change requests as they perform their roles in the

While only transmitting team-state changes reduce
communications, the number of broadcasts still implies
bandwidth problems as the spacecraft population increases.
Stopping spacecraft from broadcasting a change when
teammates can infer it from observation further reduces
communications [HubertkDurfee 95, Tambe 971. For
Instance, the combiner in our interferometer example docs
not have to signal the end of a formation activity. Thc
mere act of slewing to downlink the results tells the

cvolving team plan [FujitaLkLesser 961. While we can
assign and reassign roles at random, a better approach
involves auctioning off the unassigned roles to the
teammates. The teammates bid on these roles based on
local information as well as currently assigned roles, and
the leader can either change the plan or assign roles based
on these bids.

4. PEER-TO-PEER COORDINATION

collectors that the formation activity is over. The approach to alter communication overhead by
distributing execution monitoring across the constellation

3.3. GENERATING AND REPAIRING TEAM PLANS can extend to also distributing the planning process. This
addresses the possibility where the lead spacecraft is

Although reactive team plans might look like an extension
disabled. For interferometers this is not an issue because

on standard hierarchical plans by virtue of the bracket

losing the combiner spacecraft ends the mission anyway,
but missions like a 50 satellite constellation are function-
ally redundant and should not end when any one spacecraft
is disabled.

One way to increase robustness involves giving the other
spacecraft backup planners and mission managers (fig. 5).
While this lets the next spacecraft in a designated chain of
command replace a disabled leader, these extra modules
are underutilized. Instead of transmitting data to a central
spacecraft for planning, we can use the extra planners to
move parts of the planning process closer to the data. This
makes the spacecraft symmetric and coordination becomes
a collaborative effort among peers.

Peers

FIG.: 5 Architecture for Peer-To-Peer Coordination

This architecture works particularly well with constell-
ations of satellites that loosely coordinate. For instance, a
constellation of picture taking satellites might coordinate to
partition desired targets, but each satellite runs in isolation
to take its picture. Here the mission managers coordinate
to partition the goals, and the planners and executives run
in isolation. This class of loose coordination problem is
common in the mobile robot community, and some
systems even call this module a cooperative planning (or
social) module [Miiller 961.

4.1. LEVELS OF AUTONOMY

In teamwork or a chain of command, one spacecraft plans
how to perform a task and its followers accept and execute
the results. Combining loose coordination with teamwork
facilitates letting different spacecraft act as leaders for
different tasks. Here all spacecraft know about all tasks,
and each task has a designated lead spacecraft. Research
on autonomy levels [Martin&Barber 961 generalizes this
idea. We can give each spacecraft a copy of the plan with
tasks annotated with one of 5 autonomy levels:

Observer: spacecraft does not participate,
Command-driven: spacecraft serves as a follower,
Consensus: spacecraft collaboratively plans with others,
Local: spacecraft plans to perform task alone, and
Master: spacecraft plans and serves as a leader.

As the 5 definitions imply, autonomy levels specify
whether or not a spacecraft can change a task. For instance,
a team's leader has tasks annotated with "master", and its
followers' tasks have "command-driven" annotations.
Given these annotations, a spacecraft can simultaneously
serve as a leader and a follower in two separate teams. A
spacecraft can even plan and perform tasks in isolation
while participating in teams.

While autonomy levels specify which constellation
members plan out mission manager requested tasks. These
levels are not static - a spacecraft can communicate with
the constellation to change a task's autonomy level
annotations. For instance, a mission manager might
always assign tasks to its spacecraft at the "local"
autonomy level. If a team is needed to perform the task,
the spacecraft will have to change the annotation to
"master." As Martin points out [Martin&Barber 961, this
change involves communicating to find spacecraft willing
to accept "command-driven" annotations.

Using autonomy levels, we can treat the plan and state
information as a shared database where each spacecraft has
varying capabilities to modify tasks based on their
autonomy-level annotations. Softening the distribution
requirement from full to partial plan sharing makes a
constellation operate as a team at one point and as multiple
independent spacecraft as another. The change involves
letting spacecraft keep locally planned and executed tasks
private.

4.3. COLLABORATIVE PLANNING

Unlike the other annotations where a single spacecraft
plans a task, the "consensus" annotation implies that
multiple spacecraft collaboratively plan to perform a task.
Collaborative planning involves distributing the plan
across the constellation and letting each spacecraft detect
and repair problems. The question now becomes a matter
of how to keep the plan consistent across the constellation
while all spacecraft are updating it. The main objective is
to minimize communications overhead while planning.

One approach would fragment the plan and distribute the
fragments [Corkill 791. Since the fragments are disjoint,
their union would be consistent. Each spacecraft would
expand its own fragment and communicate to detect and
resolve interactions. To detect interactions, each spacecraft
broadcasts its fragment's effects upon determining them.
When a spacecraft hears of an effect that either helps or
hinders its own fragment, it initiates a dialog with the
broadcasting spacecraft to add signaling actions to their
plans to coordinate the interaction. Thus the required
bandwidth depends the amount of interaction.

An alternative approach would give every spacecraft a
copy of the plan and have them maintain consistency by
broadcasting changes as they make them. The main

problem with this approach involves communication
overhead - the spacecraft would spend most of their time
responding to each other's updates.

These two approaches define a whole spectrum of
collaborative planners depending on the amount of shared
plan and state information. While the first case shared all
state information in the form of advertised effects the
second shared all plan information.

5. CONCLUSIONS

This paper described several autonomy architectures for an
autonomous constellation of spacecraft. Such a constell-
ation would continually plan to control its spacecraft using
collective mission goals instead of goals or command
sequences for each spacecraft. The first architecture made
use of research relating to a single autonomous spacecraft
by treated the constellation as a single master spacecraft
with virtually connected slaves.

The utilized research describes implementations in terms
of 4 interacting modules, and the masterlslave architecture
placed all modules on the master. While the teamwork and
peer-to-peer architectures keep the 4 modules, they
progressively give the slaves more authority by replicating
more of the modules across the constellation.

While this paper described each architecture in isolation,
these architectures can coexist within a constellation. Such
a constellation would have 3 classes of spacecraft: leaders,
followers, and slaves. Where leaders have the ability to
plan and collaborate, followers can only execute plans and
watch out for each other. Both leaders and followers can
have virtually attached slave spacecraft.

ACKNOWLEDGEMENTS

This work was performed by the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space
Administration.

REFERENCES

[Ambrose-Ingerson&Steel 881 J. Ambrose-Ingerson and S.
Steel, "Integrated Planning, Execution and Monitoring,"
Proceedings of AAAI-88.

[Corkill 791 D. Corkill, "Hierarchical Planning in a
Distributed Environment," In Proceedings of IJCAI-79.

[Firby 871 R. Firby, "An Investigation into Reactive
Planning in Complex Domains." Proceedings of AAAI-87.

[Gat 971 E. Gat, "On Three-Layer Architectures," Artificial
Intelligence and Mobile Robots, D. Kortenkamp, R.
Bonnasso, and R. Murphy, eds., AAAI Press.

[HuberLkDurfee 951 M. Huber and E. Durfee, "On Acting
Together: Without Communication," AAAI Spring Symp-
osium on Representing Mental States and Mechanisms,
1995.

[Martin&Barber 961 C. Martin and K. Barber, "Multiple,
Simultaneous Autonomy Levels for Agent-based
Systems," In Proceedings of the Fourth International
Conference on Control, Automation, Robotics, and Vision.

[MettlerlkMilman 961 E. Mettler and M. Milman. "Space
Interferometer Constellation: Formation Maneuvering and
Control Architecture," In SPIE Denver '96 Symposium.

[Muller 961 J. Muller, The Design of Intelligent Agents, A
Layered Approach. Lecture Notes in Artificial Intell-
igence, Springer-Verlag, 1996.

[Muscettola et al. 971 N. Muscettola, et al. "On-Board
Planning for New Millennium Deep Space One
Autonomy," Proceedings of IEEE Aerospace Conference
1997.

[Mussliner 931 D. Musliner, CIRCA: The Cooperative
Intelligent Real-Time Control Architecture, PhD
Thesis,University of Michigan, 1993.

[Rabideau et al. 991 G. Rabideau, R. Knight, S. Chien, A.
Fukunaga, A. Govindjee, "Iterative Repair Planning for
Spacecraft Operations Using the ASPEN System," in
Proceedings of iSAIRAS-99.

[Rao&Georgeff 951 A. Rao and M. Georgef'f, "BDI
Agents: From Theory to Practice," Proceedings of ICMAS-
95.

[Pell et al. 971 B. Pell, E. Gat, R. Keesing, N. Muscettola,
B. Smith, "Plan Execution for Autonomous Spacecraft,"
Proceedings of IJCAI-97.

[Schoppers 951 M. Schoppers, "The use of dynamics in an
intelligent controller for a space faring rescue robot,"
Artificial Intelligence, 73 (1 995) 175-230.

[Simmons 881 R. Simmons, "A Theory of Debugging
Plans and Interpretations," In Proceedings AAAI-88.

[StonelkVeloso 981 P. Stone and M. Veloso, "Task
Decomposition and Dynamic Role Assignment for Real-
Time Strategic Teamwork," Submitted to ICMAS'98.

[Tambe 971 M. Tambe, "Towards Flexible Teamwork,"
Journal ofArtificia1 Intelligence Research, 7:83-124.

[FujitaLkLesser 961 S. Fujita and V. Lesser, "Centralized
Task Distribution in the Presence of Uncertainty and Time
Deadlines," In Proceedings of ICMAS-96.

