
A NEW DESIGN APPROACH OF SOFTWARE ARCHITECTURE FOR AN

AUTONOMOUS OBSERVATION SATELLITE

Jkrorne Gout, Sara Fleury

LAAS-CNRS
7 Av. du Colont.1 Roche - 31077 Toulouse Cedex 4 - France

Jerorne.Gout@laas.fr Sara.Fleury@laas.fr

Hervk Schindler

Matra Marconi Space

31 Av des Cosrnonautes - 31402 Toulouse Cedex 4 - France
Herve.Schir~dlt~rOtls.mms.fr

Abstract

'Tllrl 11 tw gcncration of satellit,es are complex au-
t oliolnolis systems t,hat present similarities with au-
tonorno~ls r o h t s . This paper analyses a design ap-
p~.o;lcl~ and tools t,aken from robotic research. It fo-
cuses on t,ho knowledge representations handled by the
ciifft~rnt archit,ccture components and on the proble~ns
;irisi~ig i'roni tho int,cgrat,ion of the decision capacit,ies
(i~lcremcnt,al reactive planner). Formal models of ac-
t io l~s and tasks from which local representations of a
1-;rricd lliit,ure are automatically derived, ensure the
c,o~isistcr~cy of the data.

Tlic, approiich has been evaluated using a real system
s~wc,ific.;~t,io~i and a co~nplet~e architectural instance has
bw11 i~riplenir:nt,cd frorn the low level real-time control
rout inch to the hight level missions.

1 Introduction

' I l l (> nelv gcr~cratiori of satellites have to fit constraint,^

r hat have irnporta~it repercussions on the design phi-
losophy: lighter satellit,es, reduction of the design pro-
cws d u ~ x t i o n , use of "standard" components, simpli-
fication of thcl on-site rriairitenance (in p a r t k d a r the
11t>;1vy cwriti.ol froni t,he cent,ral ground station), and so
0 1 1 . T h ~ w constrairits lead to satellite designs which
~ri,iri;~gc> I ~ o t l ~ ~ w ~ c t i v e and decision cepacities on-board
t I I V systerri, that is a u t o n o n ~ o u s satellites.

In this paper, we propose an approach along with
tools to dcsign software architectures which are in-
spired 1)y work in autonomous robot. To illustrate
dlid (l e l ~ l ~ ~ i ~ t ~ i l t ~ the relcvarlce of thls approach, we
li,tvc> ronsidercd, in collaboration with Matra Marconi
S~).I(t\ the cxarnple of an autonomous observation

'Y'l~is collabol-ation has been supported by t h e R6gion
?\l~(li-I'.r.bnbes (France) within the project SyDRE Systhnrs
Dist~.iI)u~:s Reactifs Ernbarques (On-Board Reactive Dis-

-

I'ioc I 11th Intcrnatmnal S>mpos~um on Artificial Intell~gencc.
liobot~c\ ,rnd Autornat~on In Space. 1-3 lunc 1999 (I'SA CP-440

satellite.
The main objective of these new satellites is to allow

direct access t o end-users using the World Wide Web
through ground stations situated all around the world.
Thus, unlike SPOT satellites for instance, it must offer
high level interactions (e.g., "Take a photo of Noord-
wijk between 9AM and lOAM local time") and must
be able t,o integrate all the client requests.

Consequently, the system must be able to man-
age the planning of the actions required t o accom-
plish the missions (maneuvers, irnage processing, da ta
down-loadings, . . .) and their rxecut ion control, in-
cluding failure recovery and redundancy management,
071- board.

In order to integrate all these capacities we propose
a generic software architecture structured in two main
hierarchic levels (section 2). A lower functional level
which embeds all the basic capabilities of the system
(device control, servo-control, monitoring, etc) is con-
trolled by a n upper decision levrl tha t plans and con-
trols the execution of the operations required to ac-
complish a mission.

We consider the elaboration of a real-time, rnodu-
lar and controllable functional lcvel, using tools such
as the Generator of Modules Grnohl, a mastered op-
eration and we therefor focus 011 the decisional level.
Indeed, if the organization of this level is also well de-
fined and if different tools exist to implement, its com-
ponents, t,he actual realization of such complex sys-
tems still raises important difficulties, the major ones
being:

0 t he knowledge representatiorls: the different com-
ponents of the architecture have to handle and to
share da ta of a varied nature (static models, dy-
namic state vectors, ~iurrierical/syr~~bolical da ta ,

tribut,ed Systems)

')

etc). 'I'o avoid redundancies and to ensure the 2.1 The Decision Level
consistency of the system we propose a unified
knowledge representation associated with an au-
tomatic synthesis of the local models (section 3) .

0 t he m a s t e r of a lgori thm complexi ty which requires
automatic synthesis based on validated models
and the use of generic tools and control algorithms
(section 4.2).
t he mtegra t ion of a reactive temporal p lanner in
the decision level raises problems related to i n -
r remen ta l p lanning and to the synchronization
between the future plan (elaborated from a pre-
dicted state and models of actions) and the on-
going execution (section 4.3).

A cornplvte integration based on a simulated satel-
lite will illustrate our approach (section 5).

2 Software Architecture Overview
In order to reconcile both decision and real-time capac-
ities on board an autonomous robot, a generic software
architecture composed of 2 hierarchic levels has been
developed [I] :

At the lower level a reactive distributed fun,ctional
level embeds all the operational functions (control
of devices, processing, . . .).
At the upper level, the decisional level decides
which actions are to be executed according to the
mission and the state of the system and controls
their execution at the lower level.

O P E R A T O R

mlsslon I I, reports

CONTROLLER

DECISION
LEVEL

F U N C l
LEVEL

tasks

PLANNER

plan of
act~onsl 1 reports act'0ns

PHYSICAL 3
SYSTEM 5

Figurv 1: X generic architecture instantiated for an
autonomous observation satellite. The functional level
cwibetls about 20 modules generated by GenolCI.

The decisional part is responsible for mission manage-
ment and for the control of the on-board system: it
has to interpret the mission, to plan the adequate se-
quence of actions according to the current state of the
system and to control on-board execution. It is com-
posed of three entities: a supervisor, a planner and
an execution controller. The planner is used as a re-
source by the supervisor which actually interacts with
the next level, controls the execution of the plan and
reacts to incoming events. An instance of this level
will be presented in the following sections.

2.2 The Functional Level

The actions are executed at the functional level which
embeds all the operation functions like the control of
the various hardware devices (magneto-meters, earth
sensors, gyroscope, gps, reaction wheels, ...), and also
processing like orbit prediction or image processing.
This level is organised as a network of modules: the
functions are embedded in independent modules that
have the responsibility of physical or logical resources.

The modules are capable of performing a number
of specific services by processing inputs from, or act-
ing on, physical robot devices and/or other modules.
The services are parameterised and activated asyn-
chronously through a non-blocking clientlserver proto-
col: a relevant request, that may include input param-
eters, applies to every service of each module. Thus
requests start processings. The end of the service is
marked by a reply returned to the client that includes
an execut ion report and possibly data results.

For this application we have developed about 20
modules: one basic module for each hardware device
(sensors, actuators, payloads, communication), one for
the orbit prediction'computation, and several to esti-
mate and to servo-control the attitude using the pre-
vious basic ones (Figure 1).

Every module at the functional level is an instance
of a generic model. They are automatically generated
using the generator of modules GenoSI which simplifies
the design process and ensures a correct implementa-
tion (see [2]).

3 Knowledge Representations

A unified and consistent knowledge representation is
fundamental to design and implement complex high
level software architectures. Only a unified and for-
malized knowledge representation:

0 ensures the consistency of the local representation
of the different architectural components;

0 allows the use of generic, and thus validated, ar-
chitectural components;
allows automatic code synthesis.

However if all the components of the architecture
(i.e., the supervisor, the execution controller and the
planner for the proposed architecture) i n fine reason
on, or handle, the same low level functional operators
of the functional level, they do not consider the same
properties of these operators.

Whereas the activities of the functional level are
essentially characterized by numerical processing, the
decisional level needs an abstract and symbolical rep-
resentation (effects, conditions, resources used) to or-
ganize their execution.

Moreover, each component of this decision level re-
quires specific knowledge:

for planning purposes the planner needs to know
their effects, their (pre-)conditions, their dura-
tion, their resource consumption, using or pro-
duction, etc.;

0 the supervisor that supervises the correct execu-
tion of the plan of actions and implements the
failure recovery needs to know all potential mal-
functions of every action.
and finally the execution controller needs to know
how to control (start, stop or parameterize) these
actions at the lower level.

From these considerations we have elaborated act ion
models that can be seen as an abstraction of module
requests. Thus these actions modelise the low level
operators and fill the gap between the functional and
the decisional levels.

The hight level missions will be realized by combin-
ing these basic actions into tasks. The tasks are se-
quences of actions that allow us to predefine complex
operators. They fill the gap between the hight level
rriissions arid t,he on-board capacities (the actions).

The actions represent the basic platform-dependent
capacities of the system (control of hardwa.re devices,
servo-control, moriit,oring, filtering, etc), whereas the
t,asks represent complex application-depend functional
capacities.

Action and task representations must be formal to
allow aut,omatic synthesis and reasoning both for the
plannirig arid the supervising processes.

3.1 Action Representation

Thc decisional level has to decide which of the opera-
tional functioris (ie, of the requests) are to be executed
at t,he lower level. However, it can not reason directly
011 the request descriptions provided by GenoM. These
descriptions are only functional and do not integrate
information related to their conditions or effects on the
state vector of the agent. Moreover this data cannot
be added to t,he module description as they depend
on the application context (eg: according to t,he situa-
tion, satellite maneuvers can be allowed or not during
image acquisitions).

Thus, from a bottom-up view point, the requests
have been enriched with the actions: actions are exten-
sions of module requests with semantic information.

The description of an action is basically composed
of two parts :

0 structural and functional information (name, re-
quests involved, all possible termination status,
. . .) to control the execution of the action when
required;

0 resource and logical information (effects on the
resources, conditions and effects on agent state)
which allow reasoning about the usage and conse-
quences of the action.

Actions are defined as a list of (a t t r i b u t e :
value) couples containing executive service name
(serv ice) , the non-nominal possible termina-
tions (end-slots) , resource usage/production and
consumption (uses , consumes, e f f e c t s) ; the
conditions and effects specifications (a s se r t i ons ,
e f f e c t s) .

The following example is the action CAMERA that al-
lows to take an image:

act ion CAMERA
service
concurrence
end-slots
uses
consumes

produces
assertions
effects

>;

: take-image;
: interrupt;
: cam-hard-failed, cam-soft-failed;
: camera(1);
: power(20)Qstart,
mmu(100)Qstart;

: image(1)Qok;
: on-zone() = ?zone in [start,okl;
: image(?zone) = taken Qok;

The actions are characterized by the following prop-
erties:

An action starts on the controllable2 event
s t a r t / - .

0 The end of an action is associated with the termi-
nal contingent event3 -/end.
The terminal event is always associated with a re-
port that characterizes how the action has ended
(the default report is ok).
An action may be interrupted by the controllable
event k i l l / - .

0 An action may produce intermediate contin-
gent events. The default intermediate event
- / s t a r t e d confirms its starting.

Act ions are the smalles t en t i t y handled at the up-
per levels o f the architecture. The decisional level can

2This event is controllable from the decisional level view
point. The controllable events are not,rd evt/-.

3This event is contingent from the decisional level view point.
The contingent events are noted -/evt.

act on t,he system only using the controllable events
s t a r t / - and k i l l / - , and the evolution of the system
is perceptible (measurable) only through the incom-
ing (:ontingent event - / s t a r t e d and -/end (associated
with t,hrir terminal reports). The state vector of the
system is the integration of all these events.

From the textual description of an action a graph-
ical representation can be derived (Figure 2). This
representation will be used to define tasks.

ACTION
Resources
Conditions other-1

Effects
other-N

IDLE INIT : RUNNING I IDLE

Figure 2: G'rapt~ic 11nd synthetic uiew of action. The
trrrre I-UTLS from left to right. T h e incoming black ur-
TWIS (or slots) rr:ceiue the s t a r t / - (o n the left) and
t h ~ k i l l / - (o n the top) events. The outgoing ones
c:rpv-t the w e n t s produced b y the action during i ts ex-
P I . I I ~ O T L (o n the bot tom) or at its end (o n the right).
Tlw r.nd slots o n the right are ezclusive and allow ex-
presston of corlditional tasks according to t e r m i ~ ~ a t i o n
I ' ? ~ O T ' ~ S .

3.2 Task Representation

'Thv task model is defined as a complex combination of
ar t ions, expressing control and ordering information of
iictio~ls. Formally, a task can be defined as { { A i) , R) ,
{A,} being a set of actions and R being a partial order
I-rlatiori bet,wee~i these actions.

Tlit, tasks are designed by the operator using an
in tu i t i~c graphical tool called TaskBuilder. Within
this environment,, the actions are composed using their
graphical representation: "contingent" slots (ie, inter-
rllt&~te or terminal slots) are linked to L'controllable"
o n t ~ (ir , Sti~rt or kill slots). In such a way, one car1 ex-
press part of known plans or skeletons (partial graphs)
of actions t,hat represent complex satellite processes,
includir~g failure detections and recovery actions (us-
ing the difft:rent termination slots).

Figure 3 presents a simple example of a task with
three different actions. The nominal process of this

task involves two actions: CAMERA to t,ake an image
and D O W N L O A D t o down-load it to a ground station. In
case of camera failure the CHECK-UP action is invoked.

Figure 3: A n example of task composed of three ac-
t ions. According t o the report of the CAMERA action,
the sys tem down-loads the image or checks the equip-
m e n t .

3.3 Automatic synthesis of the models

The action arid task formal modc.1~ have been de-
signed t,o unify the representations handled in the
architecture. From the action and task descriptions
TaskBuilder a u t o m a t i c a ~ ~ y produce.^ (Figure 4) :

0 the upper execution controller procedures that al-
low execution of the different itctions by sending
the adequate module requests;

0 the planning operators for tht) planner that are
elaborated from both the resource and logical in-
formation on the actions i n v o l ~ t ~ d in t,he task, and
the partial order relation betwcmi these actions;

0 the supervision procedures elaborated from the
relations between the all the evmts arid their ter-
mination or intermediate reports.

Because of the limitations of planning algorithm (2.e.
no handling of conditional plans) the planning oper-
ators derived from the complete task model, contain
only t,he subset of nominal actions and their relations.
The supervision procedures integrate the complete de-
scription including nominal arid rlon-nominal events
and actions. The contingent events that are not ex-
plicitly considered in the task description, implicitly
aim to a failure state and a survival mode of the satel-
lite if they occur during the task execution.

4 Decision Level Integration

4.1 The execution controller

The execution controller, or executive, interfaces the
functional and the decision levels. It is a purely reac-
tive system without reasoning. It controls the module
requests according to the "controllable" eventas coming
from the supervisor, and returns "contingent" events
from the execution reports. An action can involve
several module requests coordinated by the executive.

PLANNER

MISSIONS tasks

MANAGER
OPERATORS

a GENERIC TASKS
TASKS

V, MANAGER 6 (actions)

Acbon
Descriptions

TaskBuilder
(tasks editing)

Modules NNCTIONAI
LEVEL

F1g11ri' 4: 0 1 ~ ~ ~ ~ 1) i e ~ i of the origin and the distribution
o/ the kriowledge representations (i n bold) a,nd the dy-
n (m i ~ u l l ? j ~ ~ r h u n y e data (i n italics) i n the architec-
t r l f v ~ .

I'he c w t 11t1r.c ma~ntains a state vector of the func-
t~ondl level m d nlariages the conflicts between module
~ccluest s.

Thc~ cwcutlve is written with PRS and its proce-
<l~lri,s 11d~c bccm entirely produced by the couple of
51 >tcnls TaskBuilder and GenoM (Figure 4).

4.2 The Supervisor

-45 presented 111 section 2, the supervisor is actually
thc conductor of the decisional level. It is in relation
ultll

tlw users, through mission requests;
the planner, t,hrough planning requests and tlie
returned solution plans;

0 t h execution controller, through action events.

Tlw supervision system is divided into two differ-
(mt subsystenls (Figure 1). The upper one deals wit,ll
tlicl clients' requests. It receives mission obscrvations,
prowssos the111 taking into account client priority and
Hight over target area. According to these data tlie
supcwision sends a planning request to the planner.
This part is applicat,ion dependent as it contains all
the application specificities due t,o the interface be-
t M.(:oI~ users and the autonomous satellite.

Tlic lower subsystem is in charge of the c~xecution
nrid thr' supervision of the pla,n produced by the plan-
I I (T . Ulilike the. upper one, this subsysterrl is generic.
Following t,he dynamic t,ask plan and the task niodrls
pr.otilict~1 by TaskBuilder, it st,arts actions by send-
ing the adeqnatc everit,s t,o t,he executive and integrates
rc~turried fectdbacks to makc the plan progress and to
cmtrol its c.xccut,ion.

The plan rnaintairied by the supervisor is composed
of the. 3 following part,s:

Static description of task produced from the for-
mal model by TaskBuilder.

0 Numerical temporal data: the planner returns a
temporal window for each event corresponding to
an action event contained in the newly inserted
tasks of the plan

0 Symbolic temporal relations between events of dif-
ferent tasks.

The two last parts of the plan are dynamically pro-
duced by the planner in response to planning requests.

The supervision of the plan is achieved by analysing
received feedbacks from the executive. According to
the execution report of the actions, the plan progresses
following nominal or non-nominal branches of the com-
plete static description. A fatal error occurs when
there are no action operations (starting or interrup-
tion) associated with a received c3xecution report. The
satellite switches automatically to a survival mode,
closing all client connections and waiting for the main-
tainer's intervention.

Our supervision system is irnplemented using a tool
called P R S (for Procedural Reasoning System) ([3,4]).

4.3 Planner

The asynchronous arrival of nunierous client requests,
their strong temporal constraints (ie, the communi-
cation or image acquisition temporal windows), the
inaccuracy of t,he orbit prediction in long term, the
ilnportant resource constraints (eg, shared hardware
devices, images storage capacities before their down-
load, limited energy capacities between two battery
rechargings with the solar panels, etc) call for an effi-
cient incremental temporal planner.

This incremental planning has been elaborated upon
I m T , a temporal planner developed in our research

group (PI).
A temporal planner. IXmT is a general and open
planner (see [6] for an adapted planner). Its formalism
is based on a reified temporal logic that defines sev-
eral temporal predicates on both state and resource at-
tributes. State attributes are handled with the event
predicate to express a change in the world, whereas
the persistence can be expressrd by the hold pred-
icate. Concerning resource management, one can ex-
press resource usage during a determined time interval
(use predicate) or resource production (produce) and
consurnption (consume). I m T ' s algorithms are sound
and co~nplete. Until now ImT has not been integrated
witah a supervisor as an increment,al reactive planner.

An incremental planner. The incremental plan-
ner, based on an I.WT's kernel, has to maintain a
global historical plan of all missions sent by the clients,
updating it for each new request.

Thus, the planner is a plan scrver running concur-
rently to thr supervisor: the supervisor sends a plan-

ning request to the planner and get back a new tem-
poral plan. This dynamic link between the supervisor
and planner builds the planning problem online, using
the planning operators synthesized by TaskBuilder
from the task descriptions.

A reactive planner. Another problem to integrate
the planner/supervisor couple is related to the syn-
chronisation of the plans. In order to predict the fu-
ture state of the system, the planner maintains a global
plan elaborated from the task and action models that
will quickly diverge from the real executed plan with-
out synchronisation. Thus, several synchronisation op-
erators have been added allowing the supervisor to up-
date the planner plan:

the planner gets the real execution date of all
events as they occur,

0 the resource and logic states predicted by the
plannrr are updated by the supervisor according
to the real feedback of the actions,

0 the planner can retract tasks from its plan in case
of failures or mission abortion.

In return, the planner informs the supervisor about
a new plan insertion resulting from a new planning
request. A translation between the planning represen-
tation and the supervision one is necessary, including
completion of a nominal plan by failure recovery ac-
tions. Therefore, the supervisor plan model is dynam-
ically updated.

Finally, the planning time process must be bounded
to ensure the global system dynamics.

5 Application to an Autonomous
Satellite

The presented methodology and tools to design the
software architecture of autonomous systems have
been evaluated on a future autonomous observation
satellite project.

To run the whole system, we have implemented a
simulator to emulate the physical system: the earth
rotation, the orbital motion of the satellite (including
noises), the energy consumption of the hardware de-
vices, the occurrence of failures, and so on.

An example of a user mission is presented bellow. It
corresponds to an image acquisition request with pa-
rameters including: the target area (Toulouse), some
constraints for the image acquisition (local time in-
terval, maximum inclination, type of camera . . .) and
on-board image processing, the client identification (in
particular to know where to down-load the image) and
t,he request priority (in case of resource saturation).

r (IMAGE-RUST (ZONE TOULOUSE 43.62 1.45 30
12:OO 13:OO)

(IMAGE HIGH NONE NONE (. .))
878 12))

Once selected by the supervisor, this client request
is translated to a planning request and sent to the
planner.

This mission uses the task take-image which con-
tains 4 main steps involving 8 basic actions:

1. satellite orientation (SLEW action)
2. image acquisition (CAMERA, ZONE-IN and ZONE-OUT

actions)
3. data processing (IMAGEPROC action)
4. processed image down-loading to the client's

ground station (DOWNLOAD, ZONE-IN and ZONE-OUT
actions).

ZONE-IN and ZONE-OUT are monitoring actions that
allow detection of the entrance or the exit of the satel-
lite over a given area (for photographic or for com-
munication purpose): a contingent event is returned
to the decisional level once the monitored condition is
satisfied.

Note that a single action may involve several mod-
ule requests a t the functional level. For instance, the
SLEW action requires several sensors and actuators to
estimate and control the attitude of the satellite.

The average time taken by the planner to find the
solution plan is about 2 seconds4. The resultant plan
is presented in figure 5. In this example the request
has been integrated in a plan that already contained
2 previous user requests. Only three planning opera-
tors have been used here (the two first operations of
the take-image task have been gathered) TAKE-IMAGE,
DSP, DOWNLOAD.

/ END OF P U N > I

Figure 5: A n example of temporal plan. The opera-
tors (listed on the left) of three different tasks (R ~ s T ~ ,
RQST2, RqST3) are intertwined. The arrows represent
their precedence constraints.

4Let us recall t h a t the t ime allocated to the planner to find
out a solution is bounded. T h e request is put back to the mission
queue if no solution is found.

The planner translates the plan as a chronology of
events for the supervisor. The following PRS facts give
an illustration of tha t data. The first group shows sym-
bolic temporal constraints between events belonging t o
different tasks.

(EPP 1 (EVENT TI END CAMERA I) 1 (EVENT TI END DRBCP.OUT 1))
(EPP 1 (EVENT TI END CAMERA 1) 2 (EVENT TI START SLEY 1))
(EPP 1 (EVENT TI EN0 DRBCPLIN 1) 1 (EVENT TI START DRBCP.DUT 1))

The next 3 facts express the temporal window of
cach event of the plan.

r (ETY 1 (EVENT TI START DRBCP-IN 1) 300 3889 642)
(E N 1 (EVENT TI START ORBCP-OUT 1) 3600 4189 -1)
(ETU 1 (EVENT TI START SLEW 1) 0 3689 236)

Arid finally, t o complete this da ta dynamically pro-
duced by the planner, the supervisor uses PRS pro-
ccdures, synthesized by TaskBui lder from the static
tiescription of the tasks (pair of condition/action-like
rules).

(ETP (.(EVENT TI END CAMERA 1) ok .)(EVENT TI KILL ORICP-OUT 1))
(ETP ((EVENT TI END ORBCP-OUT 1) inter .)(EVENT TI START DSP 1))
(ETP (.(EVENT TI END DSP 1) ok .) (END))

Figure 6 is a screen copy of a n experiment session.
One can distinguish the supervisor (top left), the exe-
cution controller (top right), the user console (bottom
Icft), the planner (bottom right) and the simulator in
the center showing the satellite and the current area
being flown over.

Figure 6: A snapshot of the experiment running

6 Conclusion

The objective of this study is t o analyze and demon-
strate concepts and tools taken from research in
robotics to design the new generation of autonomous
satellites. Formal hierarchic models of knowledge rep-
rcwntations (z.e. action and task) have been pro-
posed and allowed to:

automatically produce the derived instances han-
dled by the different architecture components,
ensure the consistency between model instances.

Concerning the deliberative processes, we have im-
plemented the integration of planning within the dy-
namic loop of execution/supervision. This includes a n
incremental planning based on I m T and a n extension
of the planning capabilities (necessity t o extend the
task insertion control).

Actions and tasks describe both nominal and non-
nominal situations tha t are managed by the supervisor
according t o the feedback received from the functional
level.

The executive and the lower part of the supervisor
are generic and handle models automatically synthe-
sized by GenoM and TaskBui lder . This simple the
integration procedure masters the complexity of the
system.

The approach has been evaluated using a real spec-
ification, and a complete a r~h i t~ec tu ra l instance has
been implemented from the low level real-time control
routines to the highest level missions.

References
R. Alami, R. Chatila, S. Fleury, M . Ghallab, and F. In-
grand. An architecture for autonomy. Special Issue
of the International Journal of Robotics Research on
Integrated Architectures for Robot Control and Pro-
gramming, 17(4):315-337, April 1998. Rapport LAAS
N97352, Septembre 1997, 46p.

S. Fleury, M. Herrb, and R. Chatila. Genom: A tool for
the specification and the implementation of operating
modules in a distributed robot architecture. In Inter-
national Conference o n Intelligent Robots and Sys tems
(IROS197) , Grenoble, France, 1997.

F. Ingrand, M . Georgeff, and A . Rao. An architecture
for real-time reasoning and system control. I E E E Ex -
pert, Knowledge-Based Diagnosis i n Process Engineer-
ing, 7(6):p. 33-44, December 1992.

F. Ingrand, R. Chatila, R. Alami, and F. Robert.
Prs: A high level supervision and control language
for autonomous mobile robots. In I E E E In t . Conf .
o n Robotics and Au toma t ion (ICRA '96) , Minneapolis
(USA), June 1996.

M. Ghallab and H. Philippe. X compiler for real-time
Knowledge-based Systems. In International Work-
shop o n Artificial Intelligence for Industrial Applica-
t ions, Hitachi Ci ty , Japan, May 1988.

P. Dago. Extent ion d'algorzthmes dans le cadre
des problbmes de satisfaction de contraintes value'es:
applicatzon a l 'ordonnancement de syst6mes satelli-
taires. PhD thesis, Ecole National SupCrieure de
11A6ronautique et de l'Espace, France, 1997.

0 eli~niriate the description redundancies,

