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ABSTRACT 

We describe an artificial high-level vision agent for the 
symbolic and graphic interpretation of data coming 
from a video camera that acquires the image sequences 
of the SPIDER robot arm of the EUROPA system 
during its operations. The agent generates the perception 
grounded predicates obtained by image sequences and it 
provides a 3D estimation of the arm movements, thus 
allowing the scientist user of SPIDER to receive 
meaningful feedback of his operations on the arm 
during a scientific experiment. 

1 .  INTRODUCTION 

We describe an artificial high-level vision agent for the 
interpretation of data coming from a video camera that 
acquires the image sequences of the SPIDER robot arm 
of the EUROPA system [7,11,15] during its operations 
(see Fig. 1). 

The described software module is related to the 
interpretation of sensory data in the framework of an 
AS1 project aiming at the application of A1 techniques 
to the design and realization of an effective and flexible 
system for the supervision of the SPIDER arm. The arm 
will work on board of the International Space Station 
(I=) P I .  

The framework project is an Italian three years research 
project [I ,6,17] sponsored by the Italian Space Agency 
(ASI) involving A1 researchers from the Universities of 
Rome, Turin, Genoa, Palermo, Parma, from the IP-CNR 
of Rome and from the IRST of Trento. 

The main aim of the vision agent is the advancement of 
the state of art in the field of artificial vision for spatial 
robotics by introducing and integrating artificial vision 

techniques that offer a unique opportunity for providing 
the SPIDER arm operations with effective greater 
degrees of autonomy [2,3]. 

Fig. I .  The SPIDER arm of the EUROPA system. 

The valuable capabilities of the vision agent are: 
to individuate and segment the SPIDER arm also in 
contrasted and irregular backgrounds; 
to perform a 3D estimation of the position of the 
arm by camera images; 
to interpret complex movements of the arm 
acquired by a camera in terms of symbolic 
descriptions. 

The implemented computer vision agent is based on 
three main components: 
(0 the perception component; 
(ii) the scene description component; 
(iii) the visualization component. 

I ' ro~ 1'1fth lnternat~onal Symposium on Art~fic~al Intell~gence, 
Rohot~cs and Automat~on In Space, 1-3 Tune 1999 (ESA SP-440) 



In the following, Sect. 2 describes the perception 
component of the system, i.e., how the system perform 
the low-level image processing in order to individuate 
and segment the SPIDER arm. Sect. 3 describes the 
scene description component, in which the acquired 
image is interpreted both in terms of 3D parameters and 
in terms of generated symbolic assertions. Sect. 4 
describes the visualization component, in which the user 
may interact with the agent components, and Sect. 5 
describes the implementation details of the system. 
Finally, Sect. 6 outlines some conclusions and future 
developments. 

2. THE PERCEPTION COMPONENT 

The perception component of the agent processes the 
image data coming from a video camera that acquires 
the operations of the SPIDER arm. 

The main task of this component is to estimate the 
positions of the arm in the acquired image. It should be 
noted that the estimation, which is generated solely by 
the visual data, may be useful also for fault 
identifications of the position sensors placed on the 
joints of the arm. 

The images acquired by the camera are processed by the 
contour module that extracts the arm contours by a 
suitable algorithm based on snakes [5,9,12]. 

The snake is a deformable curve that moves in the 
image under the influence of forces related to the local 
distribution of the gray levels. When the snake reaches 
an object contour, it is adapted to its shape. In this way 
it is possible to extract the object shape of the image 
view. 

The snake as an open or closed contour is described in a 
parametric form by: 

where x(s), y(s) are x,y co-ordinates along the contour 
and s is the normalized arc length: 

The snake model adopted is based on circles and 
squares, in order to better extract the arm components 
(see Fig. 2). The snake model defines the energy of a 
contour, named the snake energy, E ,,,,, to be: 

The energy integral is a functional since its independent 
variable is a function. 

The internal energy, E,,, is formed from a Tikhonov 
stabilizer and is defined: 

where I I is the Euclidean norm. 

The first order continuity term, weighted by a($, makes 
the contours behave elastically, whilst the second order 
curvature term, weighted by b(s), makes it resistant to 
bending. For example, setting b(s) = 0 at points, allows 
the snake to become second-order discontinuous at 
point and develop a corner. 

The image functional determines the features which will 
have a low image energy and hence the features that 
attract the contours. In general this functional made up 
of three terms: 

where w denotes a weighting constant. Each of w and E 
correspond to lines, edges and termination respectively. 

The snake used in this framework has only edge 
functional which attracts the snake to point at high 
gradient: 

Fig. 2. Contour module extraction by the snake technique. 

This is the image functional proposed by Kass [12]. It is 
a scale based edge operator that increases the locus of 



attraction of energy minimum. Go is a Gaussian of 
standard deviation sigma which controls the smoothing 
process prior to edge operator. Minima of E,,,, lies on 
zero-crossing of G, * d ~ ( x , ~ )  which defines edges in 
Marr-Hildreth [9,10] theory. 

Scale space filtering is employed, which allows the 
snake to come into equilibrium on a heavily filtered 
image, and then the level of filtering is reduced, 
increasing the locus of attraction of a minimum. 

The implemented snake allows to extract the arm shape 
in a simple way and in short time. Fig. 2 shows the 
results of the contour module. 

From the extracted arm snake it is possible to estimate 
the position of the links of the arm in the image plane, 
i.e., without the depth information, which is recovered 
by the scene description component. 

Let us consider a generic link i of the arm at time t; the 
link is characterized by its 3D coordinates: 

A generic posture of the SPIDER arm at time t is 
characterized by the vector x(t) which individuates the 
seven links of the arm: 

The snake information allows us to estimate the first 
coordinates of each link, i.e., their projection in the 
image plane: 

3. THE SCENE DESCRIPTION COMPONENT 

The scene description component receives as input the 
data coming from the perception component and it 
generates a symbolic description of the arm operations. 
This component is based on a self-organizing neural 
network with a suitable explicit representation of time 
sequences 14,141. 

Each unit of the ARSOM is an autoregressive (AR) 
filter, able to classify and recognize variable inputs. The 
map auto-organizes during an unsupervised learning 
phase. Each unit of the map characterize a sequence of 
movements of the SPIDER arm. 

Let us consider a generic movement associated with the 
SPIDER arm. The movement is characterized by a 
sequence of n postures: 

~ ( t ) ,  x(t - I ) ,  . . . , x(t - (n  - 1 ) )  

The AR model associated with this movement is: 

x ( t + l )  = A 0 x ( t ) + A l x ( t -  I ) + . . .  

. . + A , - , x ( t - ( n - l ) ) + e ( t )  

The order of the model is n,  the A O , A , ; . . , A n - ,  
matrices are the weights of the model, and e(t)is the 
error matrix. Let us denote B the global matrix related 
to the weight matrices: 

T 
B = [ A ~ , A ~ , . . . , A , - ~ ]  

and with X(t) the global matrix related to the postures. 
We may write the previous equation in a more compact 
form: 

x(t + 1 )  = x T ( t ) ~  + e( t )  

The optimal weights matrices are found by minimizing 
the error matrix e( f )  We have adopted the alms iterative 
method, that is: 

where h,, is the neighborhood kernel: 

In this equation, r is a suitable parameter and N ,  is the 
learning window. 

Fig.3. Error diagram vs training epochs. 



The neural network, after a careful training phase, is 
able to classify the temporal sequences of movements of 
the arm into meaningfil prototypical predicates. 

Fig. 3 shows the diagram of the error of the neural 
network during the training phase. It should be noted 
that, after a few hundred learning steps, the error of the 
network is near zero value. 

When the estimation of the coordinates of the link in the 
image plane are presented to the network: 

x' ( t ) ,  x' ( t  - I ) ,  . . . x' ( t  - ( n  - 1)) 

the network is able to predict the full vector x(t+ l ) ,  
i.e.. the vector with all the three coordinates of the 
posture of the arm links. 

Fig. 4. Prediction enor of the network. 

Fig. 4 shows the prediction error of the network during 
its operations. It should be noted that the error, while is 
variable. it maintains in a reasonable limit. 

Furthermore, the network is also able to perform a 
classification of the global arm movement and to 
present as output a symbolic predicate describing the 
movement itself. 

Examples of the learned predicates describing the 
operations of the arm are: S t r e t c h i n g - u p ,  
Stretching-down, Seizing, Grasping. 

The neural network approach presents the main 
advantage that it avoids an explicit description of the 
discrimination functions for the arm operations, as this 
function is learned during the training phase. 

Furthermore, the neural network is robust with respect 
to the noise, as it is able to correctly classify the arm 
operations also when the movements estimations of 
some links are missing or corrupted. 

In the operation tests performed, the network has been 
able to perform the 100% success on the classification 
task. To analyze the operation of the network, tests are 
performed on the recognition task when some links 
information is missed. Table 1 reports the obtained 
results. It should be noted that in the worst case, when 
the two links 1 and 3 are missing, the network is able to 
perform 5 1 % of success recognition. 

I Missing I Recognition I 

Table 1. Recognition % with respect to the missing links 

links I % 

4. THE VISUALIZATION COMPONENT 

0 

The scene description component receives as input the 
data coming from the perception component, in the 
same way of the scene description component, and it 
generates a graphic 3D representation of the arm 
movements. 

100 

Fig. 5. The visualization of the robot arm. 



This component provides an immediate, visual feedback 
of the arm operations that complements the symbolic 
description coming from the previous component. The 
visualization component provides also the graphic 
interface for the whole agent. 

Fig. 5 shows the results of the visualization component 
of the agent. The scientist user of the agent may view 
the arm operations from different point of views and he 
may navigate in the reconstructed environment. 

He may also supervise and intervene in all the 
processing steps occurring in the agent itself: e.g., he 
may change the parameters of the perception component 
modules or he may tune the learning phase of the neural 
network in the scene description component. 

The interface of the system presents several windows in 
order to provide the user scientist with a full control of 
the system. 

The "camera" window shows the output image 
sequences of the video camera acquiring the real robot 
arm operations along with superimposition of the snake 
representing the output of the contour extraction 
module. 

The 3D window shows the images representing the 3D 
reconstruction of the arm during its operations, and the 
"description" window shows the symbolic descriptions 
generated by the scene description component in terms 
of symbolic predicates. 

A simple user interface based on buttons allows the 
scientist to modify the inner parameters of the agent in 
order to tailor the agent processing steps. 

Fig. 6. The visualization environment of the vision agent 

5. IMPLEMENTATION DETAILS 

The described artificial vision agent has been 
implemented in C under the Linux Operating System. 
The whole system currently runs on a Pentium I1 
400MHz and on a Apple iMac 266MHz. 

The graphical interface has been realized by using the 
OpenGL [16] and the GLUT library [13]. 

6. CONCLUSIONS 

The research demonstrated how the implemented 
artificial high-level vision agent may be an effective 
tool that helps the user scientist of the SPIDER arm to 
monitor his own operations by providing high-level 
feedback descriptions of the arm movements during the 
scientific experiments. 

The described activity is aimed to the realization of a 
research product, which is innovative and 
complementary to the research activities of the ASI. It 
provides an effective scientific support with important 
effects of the development of new technologies within 
the AS1 programs related to the utilization of the 
International Space Station. 

The product of the described activity may be employed 
in all the fields in which the interactive autonomy of the 
space robotic systems is a mandatory requirement, as 
the exploration of the Moon and Mars. 

The product of the present project will also give a 
valuable contribution to the use of the expensive and 
state of the art equipment related to space robotics 
owned by the ASI. 

Of great importance are the possible industrial 
application of the product of the project. The system 
software could be employed in all the applications that 
require high automatic tasks in interactive autonomy, as 
the submarine robots and autonomous systems acting in 
nuclear plants. 
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