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ABSTRACT 

This paper describes the Automated Scheduling and 
Planning Environment (ASPEN). ASPEN encodes 
complex spacecraft knowledge of operability constraints, 
flight rules, spacecraft hardware, science experiments and 
operations procedures to allow for automated generation 
of low level spacecraft sequences. Using a technique 
called iterative repair, ASPEN classifies constraint 
violations (i.e , conflicts) and attempts to repair each by 
performing a planning or scheduling operation. It must 
reason about which conflict to resolve first and what 
repair method to try for the given conflict. ASPEN is 
currently being utilized in the development of automated 
plannerlscheduler systems for several spacecraft, 
including the UFO-1 naval communications satellite and 
the Citizen Explorer (CXl) satellite, as well as for 
planetary rover operations and antenna ground systems 
automation. This paper focuses on the algorithm and 
search strategies employed by ASPEN to resolve 
spacecraft operations constraints, as well as the data 
structures for representing these constraints. 

1. INTRODUCTION 

Planning and scheduling technology offers considerable 
promise in automating spacecraft operations. Planning 
and scheduling spacecraft operations involves generating 
a sequence of low-level spacecraft commands from a set 
of high-level science and engineering goals (see [Chien et 
al., 1998bl for an overview). We discuss ASPEN and its 
use of an iterative repair algorithm for planning and 
scheduling as well as for replanning and rescheduling. 

ASPEN is a reconfigurable planning and scheduling 
software framework [Fukunaga et al., 19971. Spacecraft 
knowledge is encoded in ASPEN under seven core model 
classes: activities, parameters, parameter dependencies, 
temporal constraints, reservations, resources and state 
variables. An activity is an occurrence over a time 
interval that in some way affects the spacecraft. It can 
represent anything from a high-level goal or request to a 
low-level event or command. Activities are the central 

structures in ASPEN, and also the most complicated. A 
more detailed definition is given in a later section. 
Together, these constructs can be used to define 
spacecraft components, procedures, rules and constraints 
in order to allow manual or automatic generation of valid 
sequences of activities, also called plans or schedules. 

Once the types of activities are defined, specific instances 
can be created from the types. Multiple activity instances 
created from the same type might have different 
parameter values, including the start time. Many camera 
imaging activities, for example, can be created from the 
same type but with different image targets and at different 
start times. The sequence of activity instances is what 
defines the plan. 

The job of a plannerlscheduler, whether manual or 
automated, is to accept high-level goals and generate a set 
of low-level activities that satisfy the goals and do not 
violate any of the spacecraft flight rules or constraints. 
ASPEN provides a Graphical User Interface (GUI) for 
manual generation and/or manipulation of activity 
sequences. However, the automated plannerlscheduler 
will be the focus of the remainder of this paper. 

In ASPEN, the main algorithm for automated planning 
and scheduling is based on a technique called iterative 
repair [Zweben et al., 19941. During iterative repair, the 
conflicts in the schedule are detected and addressed one at 
a time until no conflicts exist, or a user-defined time limit 
has been exceeded. A conflict is a violation of a 
reservation, parameter dependency or temporal constraint. 
Conflicts can be repaired by means of several predefined 
methods. The repair methods are: moving an activity, 
adding a new instance of an activity, deleting an activity, 
detailing an activity, abstracting an activity, making a 
reservation of an activity, canceling a reservation, 
connecting a temporal constraint, disconnecting a 
constraint, and changing a parameter value. The repair 
algorithm may use any of these methods in an attempt to 
resolve a conflict. How the algorithm works is largely 
dependent on the type of conflict being resolved. 
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Specifically. we haven taken a most-committed, local, 
heuristic, iterative repair approach. This approach has 
many desirable properties for spacecraft operations 
planning. First, using a repair algorithm allows automated 
planning to be utilized at any time and on any given 
initial plan. The initial plan may be as incomplete as a set 
of goals, or it may be a previously produced plan with 
only a few flaws. Repairing an existing plan enables fast 
replanning when necessary from manual plan 
modifications or from unexpected differences detected 
during execution. Second, heuristics allow the search to 
be pruned, ruling out less promising planning choices. In 
addition, heuristics may also suggest particular choices 
that may lead to a solution in less time, or to a higher 
quality solution. Third, a local iterative algorithm does 
not incur the overhead of maintaining intermediate plans 
or past repair attempts. This allows the planner to quickly 
try many plan modifications for repairing the conflicts. 
However, unlike systematic search algorithms, it cannot 
be guaranteed that our iterative repair algorithm will 
explore all possible combinations of plan modifications or 
that it will not retry unhelpful modifications. In our 
experience, these guarantees are not worth the required 
overhead. Finally, by committing to values for 
parameters, such as activity start times and resource 
usages, the effects of a resource usage and the 
corresponding resource profiles can be efficiently 
computed. Least-commitment techniques retain plan 
flexibility, but can be computationally expensive for large 
applications. Further discussions on this topic can be 
found in [Chien et al., 1998bl. 

The full paper will describe the ASPEN search structure 
in greater detail. We will describe the constraints that can 
be modeled in ASPEN, as well as the conflicts for each 
type of constraint violation. We will also describe how 
the search can be influenced using heuristics. Finally, we 
will discuss current, future and related work. 

2. MODEL COMPONENTS AND CONSTRAINTS 

Spacecraft models are developed in the ASPEN Modeling 
Language (AML) [B. Smith et al., 1998; Sherwood et a]., 
19981. These models are parsed into data structures that 
provide efficient reasoning capabilities for planning and 
scheduling. There are seven basic components to an 
ASPEN model: activities, parameters, parameter 
dependencies, temporal constraints, resources, state 
variables, and reservations. Together, they describe what 
the spacecraft can and cannot do during operations. 

A parameter is simply a variable with a restricted 
domain. One parameter, for example, can be the range of 
integers between ten and twenty. Other parameter types 

include floating point numbers, booleans and strings. A 
parameter dependency is a functional relationship 
between two parameters. An activity end time, for 
example, is a function (the sum) of the start time and the 
duration. A more complicated dependency might compute 
the duration of a spacecraft slew from the initial and final 
orientation. 

In the model, relative ordering constraints can be 
specified for pairs of activities. A temporal constraint is a 
relationship between the start or end time of one activity 
with the start or end time of another activity (see Figure 
1). One might specify, for example, that an instrument 
warming activity must end before the start of an activity 
that uses the instrument. Minimum and maximum 
separation distances can be specified in a temporal 
constraint. The warming activity for example, might be 
required to end at least one second but at most five 
minutes before using the instrument. Temporal 
constraints can be combined with conjunctive or 
disjunctive operators to form more complicated 
expressions. 

Figure 1 : A temporal constraint with a required 
separation of at least 1 second and at most 5 minutes. 

A resource represents the profile of a physical resource or 
system variable over time (see Figure 2), as well as the 
upper and lower bounds of the profile. In ASPEN, a 
resource can either be depletable or non-depletable. A 
depletable resource is used by a reservation and remains 
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Figure 2: Timelines for activities, a depletable resource 
(energy), a non-depletable resource (power), and a state 
variable (device). 



used even after the end of the activity making the 
reservation. Examples of depletable resources on 
spacecraft include memory, fuel and energy. A non- 
depletable resource is used only for the duration of the 
activity making the reservation. Power is an example of a 
non-depletable resource. A resources can be assigned a 
capacity, restricting its value at any given time. A state 
variable represents the value of a discrete system variable 
over time. The set of possible states and the set of 
allowable transitions between states are both defined with 
the state variable. An example of a state variable is an 
instrument switch that may be either ON, WARMING, or 
OFF. This state variable may be restricted to transitions 
from OFF to WARMING and not directly to ON. 
Reservations are requirements of activities on resources 
or state variables. For example, an activity can have a 
reservation for ten watts of power. Some reservations are 
modeled as instantaneous effects (e.g., reservations that 
change the state on a state variable). The user can specify 
whether this effect occurs at the start or end of the 
activity. 

Activity hierarchies can be specified in the model using 
decompositions (see Figure 3). A decomposition is a set 
of sub-activities along with temporal constraints between 
them. In this way, one can define a high-level activity that 
decomposes into a set of lower-level activities that may 
be required to occur in some relative order. These 
activities in turn may have their own decompositions. In 
addition, an activity may have multiple decompositions to 
choose from. Thus, allowing an activity to be expanded in 
different ways. 

Figure 3: An activity hierarchy. 

An activity has a set of parameters, parameter 
dependencies, temporal constraints, reservations and 
decompositions. All activities have at least three 
parameters: a start time, an end time and a duration. There 
is also at least one parameter dependency, relating these 
three parameters. In addition, all activities have at least 
one temporal constraint that prevents the activity from 
occurring outside of the planning horizon. Any additional 
components are optional. 

3. CONFLICTS 

A complete plan may not always be consistent with the 
constraints in the model. A conflict is a violation of one 
of the model constraints. We define ten basic types of 
conflicts in ASPEN: 

Abstract activity conflicts 
Unassigned parameter conflicts 
Violated parameter dependency conflicts 
Unassigned temporal constraint conflicts 
Violated temporal constraint conflicts 
Unassigned reservation conflicts 
Depletable resource conflicts 
Non-depletable resource conflicts 
State requirement conflicts 
State transition conflicts. 

Each conflict provides information about what objects are 
involved and how to repair the conflict. 

An abstract activity conflict is simply an activity that has 
not yet been decomposed into its sub-activities. All 
activities must be expanded to their most detailed level. If 
an activity has more than one decomposition, the 
planning algorithm must decide which decomposition to 
use when detailing the activity. Detailing an activity 
involves creating instances of the activities specified in 
the decomposition. In addition, all temporal constraints 
and parameter dependencies must be connected among 
the new sub-activities and the parent activity. 

An unassignedparameter conflict is a parameter that does 
not have a unit value. A parameter can be a range or a set 
of values. However, this is a conflict in the plan until a 
value, chosen from the range or set, has been assigned to 
the parameter. 

A violated parameter dependency conjlict is a violation of 
a functional relationship between two parameters. In other 
words, the value of a parameter is not equal to the result 
of a function that constrains that parameter value. For 
example, a parameter p may be required to be the square 
of another parameter q. If q is assigned to 5 and p is 
assigned any value other than 25, this will be a parameter 
dependency conflict. This conflict can be resolved by 
assigning a different value to either p or q. 

An unassigned temporal constraint conflict occurs when a 
temporal constraint exists for an activity, but an activity 
instance has not been selected to satisfy the constraint 
(see Figure 4). A temporal constraint is defined in one 
activity type A and specifies the requirement for another 
activity B within some temporal relationship. When an 
instance of A is created, the temporal constraint is created 
and is not initially assigned an instance of B. The conflict 



Figure 4: An unassigned temporal constraint conflict 
requiring an activity of type B. Any of b l ,  b2 or b3 
can be use. or a new instance of type B can be added. 

computes all activity instances that can repair this conflict 
(basically, all instances of type B). 

A violated temporal constraint conjlict occurs when a 
temporal constraint has been assigned, but the 
relationship (specified in the model) does not hold for the 
two participating activities (see Figure 5). For example, 
consider an activity instance A that must end before the 
start of activity instance B by at least 10 seconds but at 
most 1 minute. If A ends at time t ,  then there is a conflict 
if B does not start between time t+10 and t+60. The 
conflict keeps track of the contributing activities, which 
in this example includes activities A and B. In addition, 
the conflict computes the start time intervals for moving 
an activity that would repair the conflict. Continuing with 
the example, the repair interval for B would be from t+10 
to t+60. Activity A could also be moved to a different 
repair interval. 

the reservation (i.e., propagating the effects of the 
reservation on the timeline). 

The most complicated types of conflicts are violated 
timeline conflicts. A conflict can occur on a depletable 
resource, a non-depletable resource, or a state variable. 
For state variables, there are two types of conflicts: state 
usage and state transition conflicts. 

When a resource value at a particular time exceeds the 
minimum or maximum bounds of the resource, a conflict 
is generated. The contributing activities are the activities 
with reservations that use the resource during the time of 
the conflict (see Figures 6 and 7). For non-depletables, 
these are the reservations that overlap, exceeding the 
resource bounds. For depletables, these are all 
reservations on the timeline that occur at or before the 
conflict. If the value is above the resource maximum (i.e., 
overuse), then contributors are only those activities with 
reservations that reserve a positive value. Those with 
negative values are contributors when the resource value 
is below the minimum (i.e., underuse). The conflict also 
knows which activity types would repair the conflict if a 

Figure 6: Time intervals that resolve a non-depletable 
resource conflict by a) moving a positive contributor or 
b) adding a negative contributor. 

Figure 5: A violated temporal 
constraint conflict. 

An unassigned reservation conflict is a reservation in an 
activity that has not been assigned to a resource or state 
variable of the required type. Resource and state variable 
types are defined in the model, and the plan can have 
multiple instances of the same type (e.g., multiple power 
sources). The plan keeps a timeline for each instance 
representing the value of the resource or state variable 
value. An unassigned reservation conflict is repaired by 

Figure 7: Time intervals that resolve a depletable 
resource conflict by a) moving a positivecontributor or 

selecting a resource or state variable instance and making b) adding a negative contributor. - 



new instance were created. This includes activity types 
with negative usage for overuse conflicts and types with 
positive usage for underuse conflicts. The conflict also 
computes the start times indicating where to move or add 
activities in order to repair the conflict (see Figures 6 and 
7). For moving existing activities, repair start times are all 
times except during the conflict. For adding new 
activities, repair start times are just the opposite-times 
during the conflict. 

A state variable can have a conflict in two ways: when a 
reservation requires a state that is not available for the 
duration of the reservation (i.e., state requirement 
conflict), or when a reservation makes a transition that is 
not allowed by the state variable (i.e., state transition 
conflict). The contributors of a state usage conflict 
include the activity that changes the state (called a 
changer) and all activities that use a state (called users) 
that is different from the state during the time of the 
conflict (see Figure 8). In order to fix this conflict, the 
users might be moved anywhere but over the state in 
conflict. Otherwise, if we decide to move the changer, it 
must be moved to a time later than the state in conflict or 
earlier than the previous state so that this changer no 
longer affects the state required by the conflicting users. 
For state transition conflicts, the contributor is only the 
activity that changes the state (i.e., makes the illegal 
transition). Again, the changer must be moved to a time 
later than the state in conflict or earlier than the previous 
state. As with resource conflicts, new activities can be 
created to repair state variable conflicts, For a state usage 
conflict, we can add activities that can change to the 
desired state. These activities must be added at a time 
before the conflicting user, but after the conflicting 
changer. For state transition conflicts, we can add 

Figure 8: Time intervals that resolve a state variable 
usage conflict by a) moving UseOnl b) moving 
Turnoff2 or c) adding TurnOn; and time intervals that 
resolve a state variable transition conflict by d) moving 
TurnOnl e) moving TurnOffl or f) adding Warm. 

activities that can change to a state that makes a legal 
transition. These activities must be added between the two 
conflicting changers. 

4. ITERATIVE REPAIR SEARCH 

ASPEN organizes its search around several types of 
constraints that must hold over valid plans. ASPEN then 
has organized around each constraint type, a classification 
of the ways in which the constraint may be violated. 
These violations are called conflicts. Organized around 
each conflict type, there is a set of repair methods. The 
search space consists of all possible repair methods 
applied to all possible conflicts in all possible orders. We 
describe one tractable approach to searching this space. 

The iterative repair algorithm searches the space of 
possible schedules in ASPEN by making decisions at 
certain choice points, and modifying the schedule based 
on these decisions. The choice points are: 

Selecting a conflict 
Selecting a repair method 
Selecting an activity for the chosen repair method 
Selecting a start time for the chosen activity 
Selecting a duration for the chosen activity 
Selecting timelines for reservations 
Selecting a decomposition for detailing 
Selecting parameters to change 
Selecting values for parameters 

Given a schedule with a set of conflicts of all types, the 
first step in the iterative repair algorithm is to select one 
of the conflicts to be attacked. Next, a method is selected 
for repairing the conflict. We define the possible repair 
methods as: 

Moving an existing activity to a new location 
Creating a new activity and insert at a location 
Deleting an existing activity 
Connecting a temporal constraint between two 
activities 
Disconnecting a temporal constraint between two 
activities 
Detailing an activity 
Abstracting an activity 
Making reservations of an activity 
Canceling reservations of an activity 
Grounding a parameter in an activity 
Applying a dependency function between two 
parameters 

As described in the previous section, the type of conflict 
will determine the set of possible repair methods for any 
given conflict. If it was decided to try to move or delete 
an activity, the algorithm must decide which activity to 
move or delete. The type of conflict and the location of 
the conflict will determine the set of possible activities 



that, if moved 01. deleted, may resolve the conflict. In 
addition, a new start time and duration must be assigned 
to the activity. If it was decided to try to add a new 
activity, the activity type must be chosen from the list of 
possible types determined by the conflict. For abstract 
activity conflicts, the repair algorithm will most likely 
choose to detail the activity. If it has multiple 
decompositions, one of them must be chosen. Deciding to 
abstract an activity requires choosing which activity to 
abstract. When making a reservation in an attempt to 
resolve a conflict, a resource or state variable must be 
chosen for the set of possible resources or state variables. 
Also, if the reservation has an unspecified value, one 
must be chosen for it. Canceling reservations only 
requires choosing which reservation to cancel. If the 
repair algorithm has decided to connect a temporal 
constraint, the specific activity for the constraint must be 
selected. When disconnecting, only the constraint to be 
disconnected must be chosen. Finally, changing a 
parameter value requires choosing a new value for the 
parameter. After all decisions are made and the repair 
method is performed, the effects are propagated and the 
new conflicts are computed. This process repeats until no 
conflicts exist or a time limit has been exceeded. 

5. SEARCH HEURISTICS 

All throughout the iterative repair algorithm, many 
decisions must be made. In other words, there are many 
ways in which a conflict may be resolved. Some ways 
ultimately work better than others do. For example, 
deleting an activity may resolve a resource conflict 
caused by that activity. However, that activity may have 
been required by other activities. Or, if the activity was a 
high-level goal, the user might prefer to have as many 
goals satisfied as possible. Another typical example 
involves choosing a location to move an activity. Many 
locations may resolve the conflict being addressed, but 
many locations may also create addition conflicts. In 
order to guide the search toward more fruitful decisions, 
the user can define a set of search heuristics. 

In ASPEN, a heuristic is a function that orders and prunes 
a list of choices for a particular decision in the search. 
Heuristics can be defined at each of the choice points in 
the algorithm. For example, one heuristic might sort the 
list of conflicts, indicating which conflicts to address first. 
In addition, each heuristic can use the knowledge of all 
previous decisions made. For example, the heuristic for 
deciding which method to use to resolve the conflict can 
(and should) be dependant on which conflict was chosen. 
Each heuristic can be assigned a confidence level that 
indicates how often the heuristic should be used. When 

the heuristic is not used, other heuristics can be specified, 
otherwise the decision will be made randomly. 

ASPEN currently has some built-in domain-independent 
heuristics that can be used for repairing conflicts. First, a 
heuristic exists for sorting conflicts by their type. This 
heuristic prefers conflicts that require new activities (i.e., 
planning type conflicts) and then considers conflicts on 
timelines (i.e., scheduling type conflicts). This heuristic 
seems to work well and therefor has a high level of 
confidence for most of our models. 

There is also a heuristic for selecting the repair method 
for a given conflict type. This heuristic prefers moving 
activities for repairing most types of conflicts. If move is 
not selected, the next preferred method is adding new 
activities. Finally, a small percentage of the time, it will 
choose to delete an activity. Obviously, these methods are 
only chosen for those conflicts for which they make sense 
(e.g., timeline conflicts). Some conflicts have only two 
possible repair methods, one of which is to delete, 
therefor making the decision much easier (e.g., undetailed 
activity conflicts can only be resolved by detailing or 
deleting the activity). 

Another significant heuristic available in ASPEN is a 
heuristic for selecting start time intervals for activities 
being moved or created. This heuristic first tries selecting 
start time intervals that not only resolve the current 
conflict but also do not create any new conflicts'. If there 
are no such start times, the heuristic may try selecting 
times that create only a few conflicts. If this list is also 
empty, then it may select start times that simply resolve 
the current conflict. Sometimes, however, it may decide 
to return an empty list, indicating that this particular 
activity should not be moved or added. 

A few other heuristics are currently being used in some of 
the domains modeled in ASPEN. All of them, however, 
are relatively simple and work well for the wide range of 
ASPEN models. 

6. RELATED WORK 

This work builds on considerable previous work in 
iterative repair problem solving. The high-speed local 
search techniques used in ASPEN are an evolution of 
those developed for the DCAPS system [Chien et al., 

' In general, ASPEN provides functions for querying the 
current plan about operations that can be performed or 
values that can be assigned without creating new 
violations. These algorithms are interesting in their own 
right, and will be discussed in future work. 



1998al that has proven robust in actual applications. In 
terms of related work, iterative algorithms have been 
applied to a wide range of computer science problems 
such as traveling salesman [Lin & Kernighan, 19731 as 
well as Artificial Intelligence Planning [Chien & DeJong, 
1994; Hammond, 1989; Simmons, 1988; Sussman, 19731. 
Iterative repair algorithms have also been used for a 
number of scheduling systems. The GERRYIGPSS 
system [Zweben et al., 1994; Deale et al., 19941 uses 
iterative repair with a global evaluation function and 
simulated annealing to schedule space shuttle ground 
processing activities. The Operations Mission Planner 
(OMP) [Biefeld & Cooper, 19911 system used iterative 
repair in combination with a historical model of the 
scheduler actions (called chronologies) to avoid cycling 
and getting caught in local minima. Work by [Johnston 
d Minton, 19941 shows how the min-conflicts heuristic 
can be used not only for scheduling but also for a wide 
range of constraint satisfaction problems. The OPIS 
system [S. Smith, 19941 can also be viewed as performing 
iterative repair. However, OPIS is more informed in the 
application of its repair methods in that it applies a set of 
analysis measures to classify the bottleneck before 
selecting a repair method. With iterative repair and local 
search techniques, we are exploring approaches 
complementary to backtracking refinement search 
approach used in the New Millennium Deep Space One 
Remote Agent Experiment Planner [Muscettola et al.. 
19971. 

7 .  CONCLUSIONS AND FUTURE WORK 

Planning and scheduling technology offers considerable 
promise in automating spacecraft operations. Planning 
and scheduling spacecraft operations involves generating 
a sequence of low-level spacecraft commands from a set 
of high-level science and engineering goals. We have 
extended and implemented a technique called iterative 
repair for automatically resolving conflicts in a 
planlschedule. In addition, we have isolated a set of 
conflict types that identify plan violations as well as 
suggest ways in which to repair the violation. 

Current and future work includes integrating repair 
planning with execution [Chien et al., 19991. Here, the 
idea is to cont~nuously replan around updated information 
coming from execution monitoring. As an embedded 
system, ASPEN would enable fast response to unforeseen 
events (e.g., faults or science opportunities) with little or 
no human interaction. In addition, we are also working on 
a framework for plan optimization. In this case, the 
objective is to find plans with high quality in addition to 
being conflict-free. We take an approach that parallels 
iteratwe repalr called iterative optimization. Here, we 

classify a set of user preferences for certain plan 
characteristics. These preferences are used to calculate a 
score for the plan. The iterative optimization algorithm 
makes plan modifications suggested by the preferences in 
order to increase the overall score. 
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