
A system integrating high and low level planning with a 3D-visualizer

Alberto Finzi, Fiora Pirri, Marco Schaerf
Dipartimento di Informatica e Sistemistica

via Salaria 113, 00198 Roma, ITALy
e-mail{f inzi ,pirri , schaerf}@dis . uniromal . it

Abstract

One of the most difficult problem in the designing of plan-
ning systems concerns the integration of several reasoning
components like sensing, perception and high level planning
together with robotics modeling techniques. In this paper
we present a simulation system for a robotic arm operating
on a platform of the ISS (JERICO domain). We have de-
fined a hierarchy of planners at the task, global and local
level that suitably interact to account for different levels of
control of the execution of the tasks. The task planner, re-
alized in GOLOG, utilizes a KB in the Situation Calculus to
find the sequence of abstract actions necessary to reach the
goal. The global and local planners expand each abstract
action into a more refined sequence computing a path in
the workspace (global planner) and then in the configura-
tion space (local planner). We illustrate the 3-dimensional
graphical interface and the robot simulation module and
how it interacts with the planning system.

1 Introduction

One of the most difficult prbblem in designing a plan-
ning systems concerns the integration of several reason-
ing components like perception, scheduling, execution
monitoring and planning together with manipulation
planning, motion planning and sensing. As McDer-
mott and Hendler have remarked in their introductory
paper of the AI-journal special issue on planning [I],
scaling a planning domain usually yields a set of prob-
lems that involve a lot of reasoning techniques from
other fields. In this paper we present a proposal for
decomposing a manipulation planning problem into a
hierarchy of planners and integrate them with a 3D-
visualizer. The idea of adopting a hierarchy of models
has been also investigated by Cameron [5]. The nov-
elty of our approach relies on the fact that we use a
symbolic model of the domain for the task/high level
planner as opposed t o the geometrical model of the
workspace used for the low level planners. The ad-
vantage of a hierarchy of planners is manifold. Here
we quote only two aspects: computational complexity
and modularity. For the first aspect consider that the
domain independent planning problem is in general un-
decidable; however under certain restrictions like when
there are no function symbols and only finitely many

constant symbols then planning is decidable and its
computational complexity varies from constant time
to EXPACE-complete [6]. On the other hand plan-
ning a manipulation path t o bring the movable objects
to their specified goal location is PSPACE-hard 121).
Now, for planning, most of the complexity is to be
found in the way preconditions for actions are formally
represented while for manipulation - and in general
motion - planning it is to be found in the geometri-
cal representation of the workspace and in its dimen-
sion. Keeping the geometrical model of the workspace
separated from the symbolic model of the domain is
thus necessary to avoid an increase in complexity on
both the planners. Another advantage of the hierar-
chy is modularity. Local planners depend on a partic-
ular robot, on its linkages, joints, degree of freedom,
while global and task planners can be both formulated
independently from the specific structure of the ma-
nipulator. Therefore, under a suitable decomposition,
the same task and global planners can be adapted to
several manipulators.

The paper is organized as follows. In the next sec-
tion we introduce some preliminaries just to specify the
notation. Then we present the hierarchical planner de-
composed into task, global and local planners and we
discuss some example in the literature that use an anal-
ogous hierarchy. In Section 4 we introduce the sym-
bolic model formalized in the Situation Calculus and
the way primitive and complex actions are managed
via the axiomatization and the programming language
GOLOG. In Section 5 we discuss the geometrical model
of the workspace in which all objects are assumed to
be convex. We then introduce the global planner and
its interaction with both the task and the local plan-
ner. In Section 6 we introduce the local level problem,
the module taking care of the robot kinematics in the
configuration space together with the graphic module
that simulates the robot executing the complex tasks
required to achieve a goal. Finally we address some
further issues that we have not included in this presen-
tation.

- - -

I'roc. I ' i t ih International Symposium on Artificial Intelligence.
Rohotics and Automation in Space, 1-3 June 1999 (ESA SP-440)

2 Preliminaries

In most part of the paper we refer to the Situation
Calculus [16, 81, a first order language with sorts. The
three disjoint sorts are: action for actions, situation for
situations and object for everything else depending on
the domain of application. We refer the reader to the
literature, e.g. [17], for a detailed presentation of the
alphabet of L,,t,,l, and for the metalanguage adopted
to denote terms and formulae of the language. The
alphabet includes relations and functions called Flu-
ents. because their truth value depends on the history
of actions performed by an agent: a history, like

is designated by a situation s . A situa-
tion s is the last argument of Fluents, e.g
Handle(payload5, do(pickUp(payload5, So)), where
s = do(pzckUp(payload5, So). The Situation Calculus
is a powerful basic axiomatization for representing
dynamic domains. We define a basic theory of actions
to be a set of axioms describing the preconditions for
each action that can be deal$ with by an agent,via
the Action Precondition Axioms, the effect of each
action via the Successor State Axioms and the initial
situation that we call Ds,, in which no action, relative
to the current task, has been executed.

E x a m p l e 1 Consider the following fluents:

inContainer(p, n , s) :
payload p is in nest n in situation s
locked(n, s) : nest n is locked in s
posititm(pos, s) :
end-effector is in position pos in s
holding(ob3, s) :
end-effector is holding the obj in s
posPlat(pos, s) : position of the mobile platform

And the following primitive actions:

goto(pos) : move to the pos position - -

lock the nest

unlock the nest
extract the object (if it exists)
contained in nest
insert the object (if the arms is
holding something) in nest
move the mobile platform
to the specified orientation 0

An initial situation So can be defined in this way:

locked(nest1, So)
73p(holding(p, So))

Actions precondition axioms for each primitive action
have the form:

Poss(lock(nest), s) z
position(handle(nest), s) A -dx(holding(x, s))A
~ locked(nes t , s)

Successor State Axioms for each fluent have the form:

locked(nest, do(a, s)) - a = lock(nest)V
locked(nest, s) A a # vnlock(nest)

Complex actions can be dealt with via the program-
ming language GOLOG [15] (alGOL in LOGic), whose
declarative semantics is given in the Situation Calculus.
GOLOG is a logic-programming language which, in ad-
dition to the primitive actions axiomatized as specified
above, allows the definition of complex actions using
programming constructs which are like those known
from conventional programming languages like condi-
tionals, iteration, procedures.

What is special about GOLOG is that the meaning
of these constructs is completely defined by sentences
in the Situation Calculus. For this purpose, a macro
Do(p, s , s') is introduced whose intuitive meaning is
that executing the program p in situation s leads to
situation s'. Here we provide some sample definition
needed for Do. See [15] for the complete list.

Do(A, s , s') = Poss(A, s) A s' = do(A, s) , where A is
a primitive action.
Do(if q t h e n pl else p2 endif, s , s ') - -

Do([(cp?; p1)l(-P?; PZ)], s , s')
Here cp is a formula of the Situation Calculus with

all situation arguments suppressed.
For specific sections of the paper we assume the

reader familiar with basic robotics terminology, we re-
fer to [lo] for a full introduction. We recall that a
Configuration is a mathematical specification of the
position and orientation of every body composing a
robot, relative to a coordinate system. The configura-
tion space C is the set of all configurations of a robot.
The configuration space has dimension m , where m is
the number of the degree of freedom (dofs). The num-
ber of dofs of a robot arm is equal to its number of
joints. We denote by' Cob] the configuration space of
the object Obj.

3 The Hierarchy

Consider a manipulator, a 6 or 7 degree of freedom
robot arm working on a platform where there are pay-
loads installed in nests and locked. An action like
pickUp(payload5) can be considered a primitive one, at
the level of abstraction a t which we are used to think
about simple actions. On the other hand, pi'cking up
the payload may require a huge amount of simpler ac-
tions like verifyinn whether the payload is really reach- - - - -
able, where it is, and thus moving t o the payload posi-
tion - avoiding all the obstacles - unlocking the handle
of the nest where the payload is installed, rotating the
end-effector once or twice so as to rotate the payload
for detaching it from the nest and finally pulling the
payload out of the nest.

Now, we are still missing something: each of the
more detailed actions in which pickup has been decom-
posed actually refers only t o the end effector. In fact,

we have to consider the whole arm, which is a collec-
tion of bodies, connected by joints, having constraints.
These constraints have to be satisfied in the space of
all the configurations that the robot arm can assume,
while passzuely following the end-effector. What we
have just described is the simplest and natural hier-
archy that a manipulation planning problem requires.
The hierarchy we are proposing decomposes the plan-
ning problem into different abstraction levels allowing
to manage challenging domains both from a concep-
tual (logical) point of view and from the geometrical
and dynamical ones. Examples of three layered archi-
tectures can be found in [13], where successful mobots,
developed with the P-SA approach, are described. In-
teresting examples are RHINO [18] and S a p h i r a [14].
The upper level of these systems requires a Task Plan-

E x a m p l e 2 Consider the domain JERICO (Joint Eu-
ropean In-Orbit Calibration and Operation) defined for
the Russian segment of the International Space Sta-
tion, see Figure 1. Given an initial configuration of
the payloads, locked in their nests, and an initial con-
figuration of the exchange terminal and the pointing
platform, the agent - the robotic arm - has to re-
orient the pointing platform and move the payloads
from their nests to other nests by turning the nest-
handle to unlock the payload, transferring them to the
required nest, eventually using the exchange terminal,
turning the payload to insert it in the nest and finally
locking the handle. Observe that to remove or install a
payload into a nest the agent has to ungrasp the handle
and regrasp it such that it can be rotated.

lltbr bur t l ~ t . Iuwer levels are usually reactively man-
I I'tiis i~ possible br iauje the robots cor~sidertd
;ire. 111volvt~1 i l l tasks in which low It.vel t ~ e h a v ~ o r c;in

tfri\.c,~i on-lrnz. 111 general, however, for rnanipul,i-
11011 ~) l , lnn in~ , where rotlots arms are iiivolvcti. off-lint.
~)l . innir~g ; i t t.ach level is required.

Task level \Vt. consider an nutononlous agent ~) o t t ' ~ ~ -
r ~ ; i l l ; i t) lc , to :ic.hievc. any cornplex task like tl(*livt+~ig
Iiot coffw in ;III office. cooking pasta ancl scrvlnt; i t .

lnoving any number of blocks on a table so as to form
any sophisticated shape [17]. All these con~plex tasks
are potentially achievable as far as we are concerned
with a symbolic model of the world, taking care of the
causal laws governing preconditions and postconditions
o f each primitive action, together with a suitable solu-
tion to the frame problem [16]. A solution to the frame
problem specifies what in the domain has been changed
and what remains unchanged after the execution of an
x t i o n . Tasks and goals a t this level are formalized us-
ing a domain theory and a basic theory of actions (see
Section 2 above) that provides, for each primitive ac-
tion that can be executed, i.e. whose preconditions are
satisfied, a full description and formal characterization.
Complex actions can be obtained by composing prim-
itive actions in the programming lznguage GOLOG.

At the Task level the preconditions to any control
action already en-globe a solution to the problems of
controlling the real forces applied to the end effector,
of finding a free space for the path needed to execute
the action, and of a transfer path for correctly manipu-
lating the objects. In other words any action executed
a t the task level can be executed because all the space
problems have already been solved. As the formaliza-
tion relies on this assumption, a t the task level each
primitive action can be considered as an idealized rep-
resentation of the physical world and the agent as a
free-flying object.

The role of the task planner is t o give the agent the
postulates to reason about the domain and to coordi-
nate her actions in an intelligent behaviour so as to
achieve the required goals.

Figure 1: Jerico domain

The Task planner provides us with very interesting
off-line plans that can also take into account sensing
and perception.

Globa l level In Latombe [12] a manipulation path is
defined as an alternating sequence of t ransi t and trans-
fer paths that connect an initial configuration q , , , , ~ to
a goal configuration q,,,,. A transzt path is an arm's
motion that does not move any object. A t rans fer path
defines an arm's motion tha t does move an object. In
our hierarchical model, actions are executed only at
the task and global level, therefore transit and trans-
fer paths are defined a t the global level. The global
level is formalized within a geometrical model of the
agent workspace in which both the agent and objects
are assumed to be convex. Objects in the workspace,
including the robot end effector are represented within
particular bounding volumes called cylspheres [9], that
is, cylinders with semi-spheres of the same ray of the
cylinder added on top, see Figure 2.
The global level takes care of computing a manipula-
tion path - free from collision - for the end effector from
an initial situation Si to a final situation SiOa, that
satisfies the postconditions of a given task action a . In
other words, given a task level action a , the global level
expands such a single action into a sequence of manipu-
lation actions [m a l , . . .ma,] that satisfy the geometri-
cal constraints of the workspace, that is, avoids the ob-
stacles and correctly manipulate the movable objects.

Figure 2: A cylsphere bounding the end effector

The role of the global level is to ensure that all the
preconditions required to execute action a - within the
workspace - are satisfied. Our strategy uses Latombe
idea [ll] consisting in representing the end effector as
having a dynamic shape that changes together with the
objects it is manipulating; see Figure 3.

Figure 3: The end effector shape depends on the object
is manipulating.

We formalize the geometrical model also in the Sit-
uation Calculus.

Example 3 Suppose the task level has delivered a se-
quence of actions [a l , . . . , a,] and its present situa-
tion is s. Suppose also that a t situation s the ac-
tion a = pickUp(payload5) has to be executed, the
task level queries the global level to verify whether
the geometrical preconditions for a to be executed are
satisfied. The current situation s is transformed into
the global initial situation Sz, which is the start sit-
uation for the global planner. A sequence of actions
[mal, . . . , mak] is then computed by the global plan-
ner and are such that the situation sg reached by the
execution of these actions satisfies the postconditions
of pickUp(payload5).

Local level The local planning step manages the
whole structure of the arm, namely its end-effector, el-
bow, joints etc. The local planner makes a constrained
search in order to achieve a safe path for each joint.
The movements to which the arm is committed are
strictly dependent on local information.

Planning a t this level can be done in several ways.
A variable that influences the local planner architec-
ture is the grid step used in the global planning phase.
In particular, if this step is small then a ONE-SHOT
planner it is needed [ll] that reaches directly a final
position for the robot avoiding collisions. Otherwise, if
the step is large, a more powerful planner [3,5] is neces-
sary that produces intermediate configurations for the
arm.

Our local planner belongs to the category of ONE-
SHOT planners that are based on inverse kinematics
algorithms. These algorithms iteratively calculate a
final configuration starting from an initial one and a
final position for the end-effector. The module that
calculates the inverse kinematics is the same used by
the simulator.

Discussion Our architecture is close to the idea de-
scribed in [5], although our Task level is far differ-
ent from the one proposed by Cameron as we use a
symbolic model formalized in the Situation Calculus.
Cameron' s view is to split between tactical knowledge
(Task and Global levels) and geometric (Global and
Local levels). We agree that the Cameron's structure
has several advantages: the decomposition came natu-
ral in solving the manipulation and planning problem,
the planner is easier to understand and to modify and
eventually to adapt to a new domain or to upgrade it.
Our system has developed the Task layer, that in the
Cameron system is considered as a marginal aspect of
the architecture, and its connection with the Global
level (consistency between the two representation and
communication between the two modules). In addi-
tion our Global Planner is developed as an interface
between the logical representation and the geometri-
cal one. Our representation of the word is mixed: the
metrical representation is connected to a Knowledge
Base that allows, when necessary, to perform some
spatial reasoning. At the local level the system pro-
posed by Cameron uses an approach based upon virtual
forces whilst we have used a kinematic approach. The
Global-Local interaction therefore is similar to the one
described in [3] where Local planning consists in spe-
cial inverse kinematic algorithm and Global planning
is developed using RPP.

4 The Task planner

At the task level, we define a basic theory of actions
representing the virtual attitude of the agent to reason
about the domain. A sequence [al , . . . , a,] of actions
that the agent executes a t this level leads the agent into
a situation s. Ln s the domain has been transformed by
the actions executed by the agent. The transformation
is witnessed by the truth values of the fluents. When
the language is suitably restricted, the set of fluents
(FI (s), . . . , F,,(s)) which are entailed by the basic ac-

tion theory, at situation s , is a state that will be used
to interact with the global and local levels.

Following Green [7], given a set of conditions on the
domain that has to be satisfied and which we call a
Goal, a plan is any sequence of actions [a l , . . . ,a,],
whose preconditions are satisfied and are such that in
the situation s = [al , . . . ,a,] the Goal is verified. For-
mally, if D is a basic theory of actions, as we defined in
the preliminaries, and Goal is a set of conditions, we
require that:

In the Situation Calculus, since the preconditions for
each action are suitably axiomatized the above defini-
tion implies that s is a plan whenever 3sGoal(s) is a
theorem of the basic theory of actions. In particular,
given an initial domain specification Ds,, if VSo is a
complete theory about the initial situation, it is always
possible to determine whether there exists a situation
s = [al , . . . , a,] in which the Goal is satisfied and such
a situation, if it exists, can be constructively given via
any sound and complete deductive method.

The axiomatization of the situation calculus ensures
that the search space is a tree rooted in So. Starting
from the initial situation, the Task Planner searches for
a sequence of actions that leads to a situation where the
goal is satisfied. The search is driven by an heuristic
that can be well defined using the expressiveness of the
language: the heuristic is described in the Situation
Calculus as well, using the fluents introduced for the
basic theory of action, that express both the knowledge
and the meta-knowledge.

Following the approach of [2] we use a domain spe-
cific knowledge t o control the search of a forward chain-
ing planner. To this end we have introduced two special
fluents: badSituation(s) [17] and sugg(a, s') that indi-
cates respectively: a situation s in which it is not useful
to search the goal and the action a that is suggested in
the situation s'. For example:

An interesting property of this planner is that it
represents a compromise between deductive planning
and planning as a search process. The Task Planner
is implemented as a GOLOG procedure that searches
for a plan in the space of situations. If a sequence
[a l , . . . ,a,] satisfies the Goal then it is accepted as
the plan.

The Knowledge Base can be easily implemented
as a PROLOG program. In the case of a complete
representation of the domain, it is possible to exploit
PROLOG as a theorem prover (in this case negation
as failure is valid), otherwise (see Open Word Golog
in [17]) it is necessary to use a theorem prover ad
hoc developed for domains written in the Situation
Calculus. The GOLOG interpreter is written in Prolog
as well [17].

Developing a Task Planner in GOLOG has sev-
eral advantages. With this language it is possible to
exploit properties like: quick prototyping, expressive-
ness of the KB, integration between knowledge and
meta-knowledge, integration between procedural and
denotational way of programming using automated
reasoning just when it is strictly necessary. These
features are very important: GOLOG is a procedural
language that can directly use the Knowledge Base to
deliberate when it is needed. In this way, during the
execution of the program, it is possible to access the
Knowledge Base testing the validity of some property,
but also to control the execution by explicit meta-level
knowledge (in our case the heuristics defined by the
fluents badSituation(s) and sugg(a, s)). Therefore
with our GOLOG planner the trade-off between ex-
pressiveness of the Knowledge Base and computational
complexity of the planning task is addressed finding
a way between writing a high level control program
(that is the classical GOLOG approach (151) and
developing a backward search planner.

badSituation(do(goto(x), do(goto(y), S) 5 The global planner and the ge-

The above statement cuts out all situations in which ometric domain
the end-effector moves toward a position and then

Objects and the end-effectors are represented by par- moves away without accomplishing any task in the sit-
ticular bounding-volumes called cylsphere [9]. A cyl- uation where she arrives. On the other hand a sugges-

tion can be defined as follows: sphere is just the 3D projection of a segment and its ge-
ometrical structure is defined by the centers of the two

s~gg(inser t (payload(~) , nest(x)), s) semi-spheres and by the ray common to the cylinder.
t goodZnCmt(payload(y), nest(x)) A basic volume of this kind is well specified using two

points and a ray. As we observed above we represent
here, goodInCont is a predicate that is true iff the the end effector as a cylsphere of varying dimension,
payload y must be in the nest z in the final configu- depending on the payload carried in the transfer part
ration. This formula suggests to insert a payload in of the manipulation.
a nest (when it is possible) that must contain that The distance between two cylsphere can be reduced
payload in a final configuration. to the distance between two segments. The distance

point-segment is defined along the perpendicular to the
line, to which the segment belongs, passing through the

point. P.

M = Pl + A t

with A = (P2 - Pl)/IIP2 - PIII the verse of the line
and P I , P2 the extreme points of the segment. Once
the parameter t is known, the distance d is:

The distance between two segments is always defined
on the perpendicular t o the line to which the segment
belongs but one has t o take care of problems like com-
planarity and parallelism. The distance between two
cylspheres is defined accordingly. In fact it results from
the distance between the segments defined by the ex-
tremes of the solids t o which the value of the rays has to
be subtracted. A function Bbox applied t o any object
in the geometrical model will give back the bounding
volume of the object as a cylsphere. The geometrical
model is also axiomatized in the Situation Calculus,
but the domain objects denotes only the reals. To cap-
ture the relations between objects we define a hierarchy
similar to the one adopted for graphical applications.
Each object is represented using two parameters: the
distance between vertices and the ray and a transfor-
mation function involving the ancestor nodes in the lii-
erarchy. A functional fluent Edge(x, y, sg) represents
the geometric transformation of x w.r.t. y in the geo-
metrical situation s9.

IlnkedlB.C.UIO.e.f.90.90.0ll
Figure 4: The object hierarchy

Movable objects are simply linked to the nests
frames, according t o the current task state. A subset
of the objects that could be considered as obstacles for
the manipulator is defined as a state, that is, a t a given
situation s each object is described in terms of the coor-
dinates of its cylsphere; see Figure 4). The exploration
starts from the node specified and goes back towards
the root applying all the transformation encountered
t o the cylinder-sphere contained in the starting node.

Global planning means searching for a manipulation
path of the end effector as if it will be free from the
rest of the body. T h e global planner generates a
sequence of wrist positions and orientations so that
the end-effector shall avoid obstacles and reach the
final task.

The search algorithm proposed is a special trans-
lation of A* driven by a heuristic that minimize
the straight-line distance between the current state
and the goal one. The expansion step takes care
of the current arrangement of the end-effector and
of the payload carried. represented with their own
cylinder-sphere, and avoids all states that generate a
collision in the environment.

Each orientation of the end-effector comes from an
interpolation between the initial and the final orienta-
tion desired, re-calculated a t each iteration of the A*
algorithm. See Figure 5).

Figure 5:

To improve efficiency, we introduce a grid in the 3D
space whose step-size is determined by the complexity
of the world where the manipulator acts. A large step
decreases the number of moves needed t o reach a goal
state, but could generate a non collision-free path be-
cause it doesn't tBke care of obstacles that lie between
two adjacent positions. On the other hand a small step
increases the resolution, but also the number of steps
required to reach the goal. For this reason we define
a variable step that can be defined a t the beginning of
the computation according t o the complexity of the en-
vironment. The global planner has been implemented
in Prolog.

6 Local Planner

The role of the local planner is to verify and refine the
manipulation plan delivered by the global planner. At
this point some paths may by found t o be impossible;
in such a case the global planner has to find alternative
solutions otherwise the task planner has t o re-plan.

T h e local planning problem, in our hierarchical
structure, is defined as follows. A configuration C,Jbj is
generated by the state of the global planner defined a t
situation s. A state is the vector < pl (s) . . . p , (s) >
of all positions and orientations of the objects in the
work space a t the situation sg, that is the current ge-
ometrical situation of the global planner. The con-
figuration CI-, is the subset of the work space occu-
pied by the end-effector and generated by the state

.: y ~ (s) . . . P , ~ (s) >, where q l (s) . . . qn(s) are the posi-
tlons and orientations of the cylindersphere bounding
the end-effector and eventually the object. it is manip-
ulating.

Given C and C:-, and a sequence of actions
[ma1 . . .ma,, executable a t the global level and a se-
quence of states associated with situations s l . . . s,,, the
problem is to find configuration spaces C1 . . . C,,, where
!', is the set of all configurations of the robot arm and
ol)ject,s a t the state < p, (s) . . . p,,(s) , ql (s) . . . q,,, (s) >,
such that there exists a collision free path for the whole
,rrnl for tsecuting [m a l . . . m a n] . Observe that since
' r i l c l i . . r r m , ,] is a coarse expansion of n task action
(I . in or-tlcr to find a manipulation sequence, collision
f r w , for the end effector, any subset of [m a l . . . ma,,]
%at isfy ing the preconditions and postconditions or any
sequence of configurations for a , a t the geometrical
r~iodel, would be accepted. To solve the local planning
~)roI)ler~i wc have used an inverse kinematics algorithm
h s ~ d on the' coniputation of the transpose of the .la-
(ol)i;u, 111atri.u [19].

The rnethod relies on the linear relationship between
c<ntl-effector and joint velocities; it was early introduced
i lv LVolovicli and Elliot [20]. Sciavicco Siciliano in [19]
;~pplied the method to redundant manipulators and
:>howed that the redundant degrees of freetlonl could
Iw r~sed to satisfy both obstacle avoidance constraints,
, m r i constraints on joint ranges of motion.

T h f . niethod works as follows Cons~r le r~ng n com-
i) c ~ ? ~ t t , for(t, E' app l~ed to the end-effector thlz tutc>rr~al
forcr. wlll rtsult In Internal torques and forces at the
~oil i ts 7 he relatlon between F and the ~nterl ial forces
- h~ written as

T l ~ i s suggests an iterative method for forcing the
c~nrl-c,ffcc.tor to track a time-varying traject,ory s , i (t) .
I f the. clirrt.nt, end-effector position is x , - (t) , then the
('rr or I I I V L S U ~ V .

r a n l ~ c thought of as a force f pulling the end-effector
toivnrtl the desired trajectory point x d (t) . From this
forrr wc, car1 calculate the joints velocities q ' .

A srngle integration step yields a new vector y which
rnoves the end-effector towards x d (t) . This procedure
repeats until the end-effector reaches the desired posi-
t.ion, or some other stopping condition is met.

The rnet,hod ensures that only forward kinematic cal-
c-lrlation is required and in general problems with ma-
trix singularities are avoided. Their occurrence can be
overcome using an integration method with an adap-
t ntivv step-size.

'The local planner has been implemented in JAVA.

7 The graphic Interface

Figure 6: Graphical interface

The three-dimensional user interface allows to rrl;rli-

age in a visual and friendly way the operations rtq~liretl
by the robot arm during the execution of the tasks. 111
particular the user can perform the following optxr;L-
tions.

1. O1)serve the evolution of the scene in n r v i r i r l ~) i v

visualizing the 3-D animation of 110th tlif. robot
and t,hc object it is manipulating.

2 . Observe the state of the robot on sorrle pnncls 111

which there are information about end-cffcctor po-
sition anti orientation, joints angles, ~ t c .

2. Manually interact with the robot arm spt>cifyirlg
a final configuration for thc arm: joints ar~glcs.
entl-effector position, hand opening etc.

4. Writing a program to accomplish a specific t x k

5. Graphically define a final scene configuration in
terms of payload dispositions in nests, or nests m t l

platform orientations.

The actual scene is represented in a window and t l ~ c t i -
nal one is obtained modifying this scene by the rnorrsc,.
The final configuration activates the planner that ~) r o -
duces a program directly executed by the robot simw
lator

8 Conclusions

We have presented a modular decomposition of a plan-
ning system for a manipulator. We have integrated
our system together with a simulator and a graphical
interface. We have developed the system with condi-
tional plans and perception. The modularity allows to
take care of both perception and spatial reasoning. We
are now concerned with the run-time behaviour of the
planner and with execution monitoring.

Acknowledgments

This project has been found by AS1 (Italian Space
Agency). We thanks Ray Reiter, Andrea Pompili,
Giuseppe Rossi and Angelo DelllArciprete for their
help and important contributions t o the realization of
this work.

References

[l] D. McDermott, J . Hendler Planning: CVhat it is ,
CVhat zt could be, An introduction t o the Special Issue
on Planning and Scheduling. Artificial Intelligence
Journal vol. 76(1-2), pages 1-16,1995.

[2] Bacchus and Iiabanza. Uszng Temporal Logzc
to Control Search i n a Forward Chaznzng Plan-
ner N P W Dzrectzons zn Plannzng, M.Ghallab and
A .11~1nnz(Eds.)lOS Press pages 141-153,1996

131 J.Barraquand, J.C.Latombe. Robot Motions Plan-
nzng: A Distruibuited Rappresentation Approach
Int . J.Rob.Research,l O(6) , l99l .

[-I] A . hlcLean, S.Cameron. Effecttve Path Plannzng
and C'ollzszon Avoidance for Redundant Manipula-
tor. Int. Conf. Adv. Rob. S: Comp. Vision,l99G.

151 S Cameron Dealzng utzth Geometrzc Complexzty zn
A lo t~on Plnnnzng I E E E Conf Rob. k Autonia-
ton, 1996

[i j] I i Erol, D.S. Nau, V.S. Subrahmanian. 1995 Com-
p len ty , deczdabilzty and undecidabzlity results for
domain-zndependent planning. Artificial Intellzgence
Journnl vol. 76(1-2), pages 74-88,1995.

[i '] C.C.Green. Theorem Proving by resolution as ba-
sis for question-answering systems. In B.Meltzer and
D.hlichie, editors, Machine Intellzgence 4, pages 183-
'205. American Elsevier, New york, 1969.

[8] P. J.Hayes and J.hIcCarthy.1969. Some Philosoph-
~ c u l Problems from the Standpoint of Artzficial In-
telligence. Machine Intelligence 4. B.Melzer and
D.Ivlichie eds., Edinburgh University Press 463-502.

[9] D. Henrich, X. Cheng. Fast Distance Computation
for on-line Collision detection with multi-arm robots.
I n I E E E International Conference on Robotics and
Automat ton pp. 2514-2519, 1992.

(101 J.C. Latombe. Robot mot ion planning Kluwer
Academic Publishers, 1991.

[l l] Y. Koga, K. Kondo, J . Kuffner,J.C. Latombe.
Planning Motions with Intent ions In Proc.
SIGGRAPHJ94,394-408,1994.

1121 Y. Koga and J.C. Latombe. O n Multi-arm ma-
nipulation planning In International Conference o n
Robotics and Automation. pp 945-952, 1994.

[13] D. Iiortenkamp, R. Bonasso and R. Murphy eds.
A I-based Mobile Robots: Case studies of successful
robot systems Cambridge,hlA:MIT Press.1998

(141 K. Konolige and K . Meyer. T h e Saphira archi-
tecture for autonomous mobile robots. In AI-based
Mobile Robots: Case studies o f successful robot sys-
t ems Cambridge,MA:MIT Press. 1998

[15] Y. Lesperance, H.J. Levesque, F. Lin, R. Reiter
and R.B. Scherl. GOLOG: a logic progran~n~ing
language for dynamic domains. Journal of Logic
Programmang,31,59-84,1997.

(161 R.Reiter. The Frame Problem zn the Sl tu-
at ion Calculus: A simple solution (sometimes)
and a completeness result for goal regresszon.
Artificzal Intelligence and Mathematical theory
of Computation:papers zn Honor of John illc-
Carthy,Vladimir Lifschitz (ed.),Acadeniic Press,San
Diego,CA,1991,pp.359-380.

[17] R. Reiter.Knowledge i n Act ion: Logzcal
Foundations for Describing and Implement-
zng Dynamzc Systems. MIT Press, to appear.
http://www. cs. toronto. edu/?ogrobo/

[18] Burgard, W., Creniers, A. B., Fox, D., Hiihnel, D.,
Lakemeyer, C;., Schulz, D., Steiner, W., Tlirun, S. ,
The Interactive Museum Tour-Guide Robot, r1;l:ll-
98.

(19) L. Sciavicco and B. Siciliano. A dynamic solu-
tion to inverse kinematic problem of redundant nia-
nipulators. In I E E E Int.Conference o n Robotzcs and
Automotzon, pages 1081-1086, March 1987.

[30] W.A. Wolovich and H. Elliot. A computational
technique for inverse kinematics problem of mechan-
ical manipulators. I E E E Transactions o n Robotzcs
and Automation, 1988

1311 G . Wilfong. Motion Planning in the presence of
movable obstacles. Proceedings of the 4th A C M Sym-
posium on Computational Geometry. 1988, pp 279-
288.

