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ABSTRACT 

We consider a single satellite telecommunications 
problem in which a dynamic set of calls must be as- 
signed to beams of the satellite. These assignments 
must satisfy beam-coverage constraints, capacity con- 
straints and requirements based on the priorities of in- 
coming calls; additionally, the satellite must respond 
quickly to the changing call load and environment. We 
show how this problem can be solved by using con- 
strain~ satisfaction trchnology. We model the prob- 
lem as a Dynamic Constrained Optimization Problem 
(DCOP) and present an algorithm inspired by hill- 
climbing search. We present empirical results from 
a simulation showing that the algorithm meets the re- 
quirements imposed by the problem domain, and finds 
solutions that are within 2% of the optimal. 

I. INTRODUCTION 

Advances in satellite communications technologies 
have given rise to new challenges for automated allo- 
cation techniques for dynamic resources such as satel- 
lite and bandwidth availability. In this paper, we look 
at a particular class of satellite tele-communications 
scheduling problems, and present an approach for solv- 
ing those problems effectively within strict real-world 
time limits. The approach is based on viewing the satel- 
lite communications scheduling problem as a Dynamic 
Constraint Optimization Problem (DCOP). This well- 
known class of automated reasoning problems provides 
us with a well-defined framework and a number of pos- 
sible approaches to solving such problems. 

We present an automated dynamic scheduling 
method based on an encoding of this problem as a dy- 
namic constrained optimization problem. The algo- 
rithm we selected to solve this problem was inspired 
by the local search paradigm, which provides good so- 
lutions to such problems in real-time. Experimental re- 
sults show the scheduling method to be very effective at 

finding near-optimal solutions, even in the face of de- 
graded communications capabilities. 

Our problem domain consists of a single satellite with 
b communication links or beams, which cover a set of 
g ground stations. Each call is assigned a priority, and 
there are p priorities available. The satellite must sup- 
port a dynamically changing set of call requests. Each 
call request consists of a source ground terminal, a des- 
tination ground terminal, a number of units of band- 
width, and a priority. A call must be assigned to both 
an uplink beam and a downlink beam or be rejected. 
The uplink beam must cover the source ground termi- 
nal and the downlink beam must cover the destination 
ground terminal. Each beam has a maximum capacity 
for uplinked and downlinked calls. That is, the total 
bandwidth of uplinked calls on a beam may not exceed 
a capacity c,, and the total bandwidth of downlinked 
calls on the same beam may not exceed a capacity cd. 

Furthermore, calls of priority y, outweigh all calls of 
strictly lower priority; if there is not enough space ca- 
pacity on a beam for an incoming call of high prior- 
ity, the system is required to disconnect enough calls of 
lower priority to accommodate the new, higher priority 
call, if possible. Each call has a finite but unknown du- 
ration, so calls periodically are released, thereby free- 
ing more capacity for new calls. Calls arrive at arbi- 
trary intervals. A call does not change priority, source 
or destination station while it is in progress. However, 
the capacity of beams may increase or decrease, forcing 
some calls to other beams or requiring the premature 
termination of some calls. 

The problem of managing calls on the satellite con- 
sists of the following: 

1. When a new call arrives, the satellite must decide 
whether to accept the call or reject it; if the call 
is accepted, the satellite must decide which beams 
the call will utilize. 

2. When the capacity of a beam changes, the satel- 
lite must decide whether to move or terminate any 
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calls, and if so, which ones. 

If we consider the satellite at any instant, there is a 
list of call requests in the system. The problem is to de- 
cide which calls to accept and which to reject, and then 
to assign each call uplink and downlink beams in such a 
way that each call's coverage requirements are satisfied 
and the capacity constraints on the satellite beams are 
met. A problem of this type can be encoded as a Con- 
straint Stztisfaction Problem or CSP. Informally, a CSP 
consists of a set of variables, a description of the possi- 
ble values each variable can take on, and a list of con- 
straints which define valid assignments to sets of vari- 
ables. The problem we have described also includes 
a preference for assigning calls of high priority to the 
satellite. Adding such a preference order among solu- 
tions satisfying the constraints results in a Constrained 
Optimization Problem or COP. CSPs and COPS have 
been heavily studied, and many theoretical and practi- 
cal results can be brought to bear to address such prob- 
lems; for work on CSPs in general see Haralick & El- 
liot (1980), Nadel (1989), and for a specific application 
see Banerjee & Frank (1996). However, as calls arrive 
and depart, we have not just one but a sequence of such 
problems. These problems are closely related, as each 
problem in the sequence is derived from an earlier prob- 
lem by the termination of an existing call, the addition 
of a new call, or the reduction in capacity on a beam. 
A modification of CSPs known as Dynamic Constrainr 
Satisfaction Problems or DCSPs can be used to encode 
the sequence of problems which results from the arrival 
and departure of call requests. 

There are a number of methods for solving CSPs and 
DCSPs. However, in this domain, the solver must meet 
performance requirements imposed by the telecommu- 
nications application, as the satellite must be able to re- 
spond rapidly to new call requests as well as to changes 
in the available bandwidth on the beams. The solver 
must nonetheless provide good solutions (i.e. allocate 
high priority calls) which are also valid (i.e. meet the 
coverage constraints and do not exceed beam capac- 
ity 1. In addition, the fact that we are presented with a 
sequence of closely related problems suggests that any 
algorithm to solve the sequence of problems reuse the 
solution to the previous problem to increase the speed 
of the solver. Hill-climbing algorithms for CSPs oper- 
ate by perturbing solutions in order to find better so- 
lutions which are nearby. These methods have good 
problem solving performance in general Selman et al. 
( 1992), Minton et al. ( 1 990), and also promote the reuse 
of solutions between successive problems in the DCSP 
framework Freuder & Wallace (1998). 

The rest of the paper is organized as follows. In Sec- 
tion 2 we formally define CSPs and DCSPs and dis- 
cuss methods of solving these problems, including hill- 

climbing methods. In Section 3 we formally describe 
the satellite telecommunications problem as a Dynamic 
Constrained Optimization Problem (DCOP). In Section 
4 we present a hill-climbing algorithm for responding 
to new connection requests and reductions in the capac- 
ity of beams. We also give a bound on the complex- 
ity of this procedure, and establish that it can respond 
to changes in real-time. In Section 5 we present the 
results of applying the hill-climbing algorithm to a set 
of telecommunications requests taken from a real satel- 
lite telecommunications problem. We show that hill- 
climbing can consistently find solutions within 2% of 
the best possible solution. In Section 6 we conclude 
and discus  some opportunities for future work. 

2. DYNAMIC CONSTRAINT SATISFACTION AND 
OPTIMIZATION PROBLEMS 

In this section we present the formal machinery we 
will use to solve the satellite telecommunications prob- 
lem. We shall first formally define CSP, COP, DCSP 
and DCOP, then discuss hill-climbing algorithms to 
solve these problems. 

A Constraint Sarisfaction Problem or CSP is a triple 
P = (V, D ,  C ) ,  where: 

1. V = {ul ,  . . . , v,) is a set of variables 

2.  D = D,, I i E (1,. . . , n)  are the domains of the 
variables, where each D,,, is a finite set of possible 
values of I ) , .  

3. C is a set of constraints (I.j, R,), where each con- 
straint consists of a scope Y ,  = { r , i , ,  . . . , v,,) C 
1' and a relation R; C n:=, D,,LL 

It is worth mentioning that if the domains D,, are 
large and the scope contains many variables, then ex- 
plicitly enumerating the relations of the constraints may 
be quite cumbersome. Consequently, relations are often 
written in a condensed form. For instance, if the vari- 
able domains are subsets of the integers, we can write 
relations as equations such as C1 = ((6, y ,  ), x + y < 
5) rather than enumerating all the legal pairs of values 
of x and y.  

A valid solution to a constraint sati5faction problem 
P = (L: D ,  C ) ,  where V = {xl, . . . , x,,), is an n-tuple 
( v z l , .  . . , v,,,), such that: 

1 .  'u,, E D,, for k = 1, . . . , n, and 

2. For any (1; R )  E C with Y = (x,, , . . . , x,,), we 
have (v,,, , . . . ,71,,, ) E R. 



12igure 1 :  A network consisting o f  one satellite with three uplink/downlink beams. Beam 1 o f  capacity 55 covers 
stations A, B and E ,  beam 2 o f  capacity 50 covers stations D,E,C and F, and beam 3 o f  capacity 80 covers station C .  

Many problems consist o f  both constraints and an 
optimization criteria which differentiates between valid 
solutions. For example, in our telecommunications do- 
main, an allocation o f  calls to the beams o f  the satellite 
may satisfy the constraints, but we prefer assignments 
which assign more high priority calls to the satellite. To 
formali~e this concept, we define a Constrained Opti- 
mi,-arion Probletn or COP as a pair ( P ,  g )  where P is a 
constraint satisfaction problem and y is a function that 
mapa every valid solution o f  P into R.. The goal o f  
constraint optimization is to find a valid solution that 
maximizes 9. 

As an example o f  a COP, let us consider a sim- 
ple scheduling problem consisting o f  two low-capacity 
beams and n few call requests (disregarding geographic 
constraints for simplicity). The calls must be assigned 
to beams or rejected, and the constraints limit the over- 
all bandwidth requirements for all calls assigned to a 
beam. Finding a satisfactory assignment o f  calls to 
beam 1, beam 2 or rejection, is a CSP. I f  we now spec- 
i f y  a preference among solutions, or equivalently, spec- 
i f y  an optimization function on the set o f  valid assign- 
ments, we have a COP. In other words, the CSP defines 
a set o f  valid call assignments, and the preference func- 
tions defines an ordering among solutions. 

As ment~oned earlier, the satellite telecommunica- 
t~ons  problem is not a CSP, since calls are constantly 
being added and deleted. However, the changing set o f  
calls can be represented as a sequence o f  closely related 

CSPs. To formalize this notion, let P = (V, D ,  C )  be 
a constraint satisfaction problem. Any problem o f  the 
form Q = (V ' ,  D' ,  C ' )  such that 1" > V (i.e. there 
are more variables), D: C D,, for each v E V (i.e. 
there are fewer legal values for variables) and C' 2 C,  
(i.e. there are fewer legal combinations for variables in 
a constraint) is a restriction o f  P. Any problem o f  the 
form Q = (V ' ,  D' ,  C ' )  such that 1" C L' (i.e. there are 
fewer variables), D:. > D, for each u E V (i.e.there are 
more values for variables) and C' > C (i.e. there are 
more legal combinations for variables in a constraint), 
is a relaxation o f  P. A Dynamic Constraint Sarisfac- 
tion Problem or DCSP is a sequence o f  constraint sat- 
isfaction problems Po, P I , .  . ., such that each problem 
Pz is either a restriction or a relaxation o f  P,-1. This 
definition is consistent with similar definitions given 
in Dechter & Dechter (1988) and Verfaillie & Schiex 
( I 994). 

Not surprisingly, it is relatively straightforward to 
generalize the idea o f  dynamic constraint satisfaction to 
dynamic optimization problems. Formally, a Dynamic 
Construined Optimization Problem or DCOP is a se- 
quence o f  optimization problems, such that each entry 
is a relaxation or a restriction o f  the previous problem. 
This means that the optimization function remains un- 
changed throughout, but the set o f  variables, domains 
and constraints may change. 

2.4 S E A R C H  METHODS A N D  H I L L - C L I M B I N G  

There are two main families o f  procedures for solv- 
ing CSPs and COPS. Complete methods are guaranteed 
either to find a valid assignment o f  values to variables or 
prove that no such assignment exists. Complete meth- 
ods frequently exhibit good performance, and guarantee 



a correct and optimal answer for all inputs. Unfortu- 
nately, they require exponential time in the worst case, 
which is not acceptable for the satellite telecommunica- 
tions domain. 

Recently, researchers have become interested in in- 
complete search methods which do not guarantee cor- 
rect answers for all inputs. These methods can find 
satisfying assignments for solvable problems with high 
probability. These incomplete algorithms have gained 
popularity in recent years, due to their simplicity, speed 
and observed effectiveness at solving certain types of 
problems. 

Hill-climbing is one of the most popular incomplete 
approaches to solving constraint satisfaction problems. 
These algorithms map assignments to a set of assign- 
ments by making minor changes to the original assign- 
ment. Each element of the set is evaluated according to 
some criteria designed to move closer to a valid assign- 
ment andlor improve the evaluation score of the state. 
The best element of the set is made the next assignment. 
This basic operation is repeated until either a solution is 
found or a stopping criteria is reached. A hill-climbing 
algorithm requires two components: a candidate gener- 
ator which maps one solution candidate to a set of pos- 
sible successors, and a evaluation criteria which ranks 
each valid solution (or invalid full assignments), such 
that improving the evaluation leads to better (or closer 
to valid) solutions. 

To take a concrete example of hill-climbing, consider 
the following scenario for a slightly unrealistic satellite 
telecommunications problem. We have a satellite with 
only one beam and one station. Assume we have as- 
signed a call of priority 5 requiring a bandwidth of 2, to 
a single given beam with capacity of 4 units. Two calls 
are currently rejected, one with priority 3 and band- 
width requirement of 3, and the other with priority 7 
and bandwidth requirement of 1. This current solution 
could be described as ({C5,2), {C3,3, C7,1)), with the 
first set being calls assigned to the beam and the second 
set consisting of rejected calls. 

Let us then choose a simple optimization function, 
which sums up (10 - p)  . b, where p is the priority ( I  
highest, 8 lowest) and b is the bandwidth used. Our 
current solution then evaluates to (10 - 5) . 2 = 10. 
Our successor function might then give the following 
options: 

( { c 3 , 3 ) ,  { c 5 , 2 3  c7,l)) 

wh~ch evaluates to 21, and 

which evaluates to 13. We therefore pick the first can- 
didate as the new current solution. 

A second hill-climbing iteration would then result in 

which is indeed an optimal solution at 24. 
Hill-climbing algorithms do not always find optimal 

solutions for real problems. However, hill-climbing 
methods have the distinct advantage that they can often 
provide a valid solution at any time-point. This makes 
the technique very suitable for systems that must per- 
form with real-time guarantees. An added bonus is that 
the more time the hill-climbing process is given, the bet- 
ter the solution will typically be. Gent & Walsh (1993) 
Finally, hill-climbing is especially attractive for DCSPs, 
because it is likely that the solution to problem Ci is a 
good starting assignment for problem C,+l. Freuder & 
Wallace (1998) For these reasons, we chose to base our 
solution to the satellite telecommunications problem on 
hill-climbing. 

3. THE PROBLEM AS A DCOP 

As mentioned earlier, our problem domain consists 
of a single-satellite, multiple ground-station communi- 
cations network with variable connection coverage and 
varying bandwidth due to technical glitches, mainte- 
nance and other factors. In order to handle a commu- 
nications request, we need to allocate sufficient band- 
width from the source terminal node to the central node, 
along a link that covers that node, and from the central 
node to the destination node, along a link covering the 
destination. 

Let us assume that we are given a single satellite com- 
munication assignment problem with n calls, b beams, g 
ground stations, p priorities and s ground stations. Each 
beam has capacity of di slots for downlink, ui slots for 
uplink. 

A satellite communication assignment problem is de- 
fined by: 

0 { t l ,  . . . , t,), a set of ground stations 

0 ( 1 1 , .  . . , l b ) ,  a set of links between a set of ground 
stations and the satellite 

capu(&),  function identifying the uplink capacity 
of each link 

capd( l i ) ,  function identifying the downlink capac- 
ity of each link 

cover(li ,  t j )  a predicate indicating whether beam 
i covers the location of ground station j 

0 {cl , . . . , c,), set of calls, including start times and 
durations. 

0 ~ ( c , ) ,  function giving priority of call 

use(ci),  function indicating bandwidth required 
for call 



0 source(ci), indicates the terminal source of call 

dest(ci),  indicates the terminal destination of the 
call 

To describe our problem as a DCOP, we first deter- 
mine what our variables and values are. The key deci- 
sions are how each call is routed, i.e, which beams the 
uplink and downlink are assigned to. We define two 
variables ui and di for each call that is in the system, 
the uplink-beam and the downlink-beam. The values 
for these variables include all possible beams, but we 
also need a value to represent that a call is rejected. So, 
for each call variable ui or di, we have a set of links that 
we can assign to it, {II , .  . . , lb), and a flag indicating 
that the call is rejected. To facilitate the specification of 
this problem, let us represent this domain as the num- 
bers from 0 to b, with 0 standing for the rejection flag 
and i E (1, . . . , b) standing for (II, . . . , lb) respectively. 

The constraints that must be satisfied are the follow- 
ing: 

0 For each link li, 

For each link li, 

0 For each call ci, if ui = j then either j = 0 or 
cover(bj, source(ci)) 

0 For each call ci, if di = j then either j = 0 or 
cover(b,, dest(ci)) 

For each call ci, ui = 0 if and only if di = 0 

where I is the indicator function. The optimization 
function is defined as follows: 

The problem is dynamic in that calls arrive and are 
accepted or rejected; calls are terminated or completed; 
and the beam capacity changes. In terms of DCOPs, the 
relaxations that can occur are: 

0 The two variables corresponding to an existing call 
are deleted from the problem along with all asso- 
ciated constraints. This occurs if a call is either 
rejected, terminated or completed. 

0 The capacity of a link increases. 

The restrictions that can occur are: 

0 Two new variables corresponding to a new call are 
added to the problem along with all associated con- 
straints. 

0 The capacity of a link decreases. 

4. SOLVING THE DCOP USING 
LOCAL SEARCH 

We are now ready to describe our solution to the 
satellite telecommunications DCOP. When a relaxation 
occurs, we do nothing; the solution to the previous prob- 
lem is always adequate when the problem is relaxed. 
There are two categories of restrictions in this problem: 
call arrival and capacity reduction. When a new call ar- 
rives, it is assigned to a pair of beams which have the 
appropriate coverage and have the most remaining ca- 
pacity. The resulting assignment may overload one or 
both beams, which also happens when the capacity of a 
beam is reduced. Consequently, the main issue is mov- 
ing or terminating calls in such a way that we preserve 
the high priority calls and no beams are overloaded. 

We solve the problem of reassigning calls on over- 
loaded beams using hill-climbing. Recall that a 
hill-climbing algorithm requires two components: a 
candidate-generation component to take an initial as- 
signment and generate new assignments, and an eval- 
uation function which ranks the new assignments. The 
best of the candidate assignments according to the ob- 
jective function is then selected as the new assignment. 
We first discuss these two components then show how 
the algorithm works as a whole. 

We generate new candidates by trying to move the 
lowest priority calls on overloaded beams. Let L be 
the set of all of the lowest priority calls which could be 
moved to relieve the capacity of any overloaded beam, 
and let m be the highest priority call in L. (Should there 
be several calls of the same priority, assume that each 
call has a unique identifier and pick the one with the 
smallest id.) Now let B be the set of beams satisfying 
the coverage requirements for this call. The candidates 
that are generated consist of moving the call to each of 
these beams in turn or rejecting the call. Notice that 
there is always at least one option because we can al- 
ways reject a call. 

Now let us see how we compare the candidates. Our 
preference is to keep calls of high priority; for the objec- 
tive function we interpret each priority as an integer and 
sum the priorities of calls which are assigned to beams. 
We do this by counting the highest priority calls on each 
beam until the capacity is reached. Under this scheme, 
the priorities of calls must be chosen so that calls of 
lower priority are appropriately comparable to calls of 
higher priority; for instance, if 2 calls of priority p are 



worth more than 1 call of priority p+l then p + 1 < 2p. 
Additionally, we do not count a call if either its uplink 
or downlink is on an overloaded beam and is of low 
enough priority that it might be terminated. 

In some cases the candidates can all have the same 
rank. If the call being moved has a priority low enough 
that it would not stay on any beam, we reject the call to 
remove it from the system. In any other situation, we 
randomly select one of the best candidates as the new 
configuration. 

We now have an operation which determines what to 
do with a single call on an overloaded beam. The call is 
moved to another beam if it is of high enough priority 
to displace calls of lower priority or if there is excess 
capacity. Otherwise, the call is terminated. We execute 
this operation repeatedly until no beams are over capac- 
ity any longer. Figure 2 shows the sketch of the full 
algorithm, which we call load-balance. 

procedure load-balance() 
0 = set of overloaded beams 
w h i l e  0 is not empty 

L = set of calls to be bumped from 0 
rn = highest priority call from M 
B = set of beams rn can move to 
f o r b ~ R  
i f  h satisfies coverage requirements of m 
rank moving rn to b 

i f  rank of terminating rn == rank of best move 
terminate m 
else make best move 
update 0 

end # while 
end 

Figure 2: The load-balance hill-climbing algorithm. 

The load-balance procedure may be called many 
times, since moving a call may exceed the capacity ot 
wme other beam, and several calls may be required 
to reduce the capacity on a single, heavily overloaded 
beam. We now provide a worst-case complexity of the 
number of times load-balance will be called in order to 
satisfy the capacity constraints on all the beams. Let C 
be the total number of calls in the system at the time 
that load balancing occurs. We shall show that no call 
is ever handled by the procedure more than once. If 
loud-balance rejects a call it is never manipulated again, 
so let us consider what happens if the procedure moves 
part of a call c,. Recall that c, is the highest priority call 
of all the calls which must be moved from any over- 
loaded beam. Because c, is moving and not being ter- 
minated, we know that either there is space on the des- 
tination beam, or some other calls can be moved from 

the destination beam. But all of these calls are of strictly 
lower priority than c;. Therefore, no call moved after c; 
can displace c, from it's new home. Consequently, in 
the worst case, each component (uplink and downlink) 
of a call would have to move once. Since each call is 
either terminated or each component of a call is moved 
only once, load-balance is called fewer than 2C times.' 
Also notice that the complexity of any single call ma- 
nipulation is O(b) since there are h beams and each call 
manipulation must consider all beams in the worst case. 
So overall the algorithm requires O(CD) elementary op- 
erations. 

We now return to the issue of call acceptance. When 
a new call arrives, the satellite must decide whether 
to accept or reject the call. The procedure to do this 
requires first finding a pair of uplink-downlink beams 
which satisfy the coverage requirements. We tentatively 
assign the call to those beams with the highest capacity 
path, and then call load-balancing. Once load balancing 
is done, if the new call request is part of the assignment, 
then the call is accepted and all changes required to real- 
ize the new solution are taken. If the new request is not 
part of the new solution, which can happen when one of 
the beams in at or near capacity and the new request is 
of low priority, the call is denied. 

5. EMPIRICAL RESULTS 

In this section we present the results of a simulation 
using call requests from a real telecommunications ap- 
plication. The scenario we experimented with uses a 
satellite with 2 beams covering 5 ground stations. Three 
of the stations are covered by both satellites, and the 
remaining two stations are covered by only 1 satellite 
each. Calls have 8 possible priorities, with priority 
1 calls the highest. As the simulation proceeded, we 
ratcheted down the capacity of the uplink and downlink 
capcity of both the beams from 1000 to 400 units of 
bandwidth over the course of 1000 seconds. This sce- 
nario was designed to show that, as the capacity of this 
beam changes, our hill-climbing algorithm terminates 
calls in lowest-first priority order. 

We encoded the problem as a DCOP as we have in- 
dicated in the previous sections of the paper. In addi- 
tion, we carefully crafted an objective function in order 
to ensure that calls of the highest priority stayed on the 
beams as capacity changed. 

Figure 3 shows a graph of bandwidth usage by rela- 
tive priority hover time on one of the downlink beams 
during a test run of 7769 dynamic call requests over a 
period of 33 minutes (an average of about 3.9 calls per 

'We can put a tighter bound on the number of manipulations at 
runtime, but space prohibits us from including these results. 

' ~ h e s e  are not the priority values used to compute the objective 
function during search. 
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Figure 3: A graph of bandwidth capacity and usage by priority over time on a downlink beam. The highest priority 
calls ( 1 )  are at the bottom, with successive lower priority call in increasing order above (2-8), total available bandwidth 
capacity at the top 

Figure 4: Closeness of the solution found by load- 
balance to the optimal solution as simulation time in- 
creases. 

[ Time 

5450 
5550 
5650 

second). Note that the highest priority calls are graphed 
at the bottom, with successive ranks of lower priority 
calls i n  increasing order above. The top-most (solid) 
line shows the total available bandwidth capacity of the 
beam during the run. As we see from the figure, the 
calls of low priority are terminated to keep the high pri- 
ority calls on the system, as desired. 

As we have said before, hill-climbing algorithms may 
not always find the optimal solution to a COP. To test 
how close we came to the optimal solution, we created 

% Opt. Score 

99.98 
99.96 
99.76 

the COP induced at a particular time instant of the sim- 
ulation and found the optimal solution. Figure 4 shows 
the results. The percentage is the value of the solution 
found by the load balancer over the optimal value. We 
see that throughout the simulation the hill-climbing al- 
gorithm was able to consistently find solutions within 
2% of optimal. 

We also analyzed the bandwidth use achieved by the 
hill-climbing load balancer. Figure 4 also shows the 
percentage of optimal bandwidth achieved by the load 
balancer. We see that the load balancing algorithm con- 
sistently uses more than 94% of the bandwidth used by 
the optimal solution. 

% Opt. Bandwidth 

97.37 
98.29 
95.69 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, we introduced the satellite telecom- 
munications, and showed how it can be modeled as a 
Dynamic Constrained optimization Problem. We then 
designed and implemented a hill-climbing algorithm to 
solve the problem. Our empirical results show that hill- 
climbing is capable of solving this problem very well, 
as it is consistently able to achieve within 2% of the best 
possible solution. 

There are several future directions for this work. One 
direction is to consider the impact of moving beams. 
As beams change position, ground station coverage pat- 
terns will change, introducing a new set of relaxations 



and restrictions. The framework we have described is 
adequate to address this type of dynamism, and we be- 
lieve that the results will be as good as those presented 
here. Another research question involves increasing 
the number of beams in the simulated satellites. More 
beams and more ground stations may result in larger 
search problems, thereby causing more difficulties as 
the hill-climbing search must work harder to solve the 
problem Instances that arise over time. A third option 
is to consider situations with multiple satellites. This 
problem presents a challenge to modeling via DCOPs, 
because now a call must take several "hops" to get from 
it's source ground station to it's destination ground sta- 
tion. In theory, this should be addressable simply by 
adding some more variables to the problem, but in prac- 
tice it may prove more difficult. 

Another possible research direction is to consider us- 
ing other algorithms to solve this problem. In the pre- 
vious section we used a complete search algorithm with 
hand-crafted heuristics to generate the optimal solutions 
to the optimi~ation problem induced at fixed timepoints. 
We found that while it would often take this program 
a long time to find the optimal solution, it frequently 
found good solutions early. This raises the prospect of 
using other algorithmic techniques for constraint satis- 
faction to address this problem. 
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