687

JERRY - A System for the Automatic Generation and Execution of
Plans for Robotic Devices: The Case Study of the SPIDER Arm *

A. Cesta. P. Riccucci, IP-CNR. National Research Council. Rome. Italy
M. Daniele, P. Traverso, IRST. Trento. Italy
E. Giunchiglia. M. Piaggio. DIST. University of Genoa, Italy
M. Schaerf, DIS. University of Rome “La Sapienza”. Italy

Abstract

"T'his paper describes JERRY, a system which
supports the interactive design, planning,
control and supervision of the operations
of autonomous systems in a space environ-
ment. The aim of JERRY is to provide a high
level of autonomy still retaining the possi-
bility for the user to monitor, control and
override potentially autonomous operations
i a flexible way. JERRY is composed by
a set of tightly integrated specialized sub-
systemns, which have been designed to per-
form effectively and efficiently their specific
tasks. and, at the same time, to be open
to the interaction with the user and among
each other. This results in a system with
a potential high level degree of autonomy.
but which can still be controlled and guided
through nteraction.

JERRY s architecture and underlying ideas
have been tested and made operational
for monitoring and controlling a SPIDER
robotic arm operating in an indoor environ-
ment very close to the payload tutor exper-
iment deseribed in [5].

1 Introduction

The recent development of space autonomy results
in a set of novel problems related to the integrated
work of human beings and robotic devices in space
missions. I'rom the one side, the increasing com-
plexity of the services requested to robotic devices
results i a need for more and more sophisticated
and autonomous svstems. From the other side, a
relevant aspect of space missions involving humans
s their possibility to maintain a level of control
over autonomous robotic devices (see for example [7:
8]). This is due to quite a number of factors, such
as the possibility of a completely unexpected event

R Corresponding author: Amedeo Cesta, [P-CNR,
Viale Marx 15, 1-00137 Rome, Italy. fax:439-06-824737,
e-mail: cestadip.rm.cnr.it.

Proc. Fifth International Symposium on Artificial Intelligence,

Robotics and Automation in Space, 1-3 June 1999 (ESA SP-440)

that may require the humans to override the robotic
autonomy: or the long run psychological effects for
the human of living in an environment in which ev-
erything is “externally directed and operated”.

In this paper we describe JERRY. a system which sup-
ports the interactive design, planning, control and
supervision of the operations of autonomous systems
in a space environment. The aim of JERRY 1s to pro-
vide a high level of autonomy still retaining the pos-
sibility for the user to monitor. control and override
potentially autonomous operations in a flexible way.
JERRY is composed by a set of tightly integrated spe-
cialized sub-systems, which have been designed to
perform effectively and efficiently their specific tasks,
and, at the same time, to be open to the interaction
among each other. This results in a system with a
potential high level degree of autonomy, but which
can still be controlled and guided through interac-
tion. The set of tools provided by JERRY, all to-
gether, have been developed to provide the following
main features:

Modularity: different kinds of tasks. which are in-
trinsically complex and require special purpose
capabilities, are handled by independent and
highly specialized sub-systems.

Autonomy: the system 1s able to carry out tasks
without a continuous and detailed user super-
vision, by enabling the specialized sub-systems
to exchange data autonomously and to perform
their own tasks automatically.

Interactivity: the system provides the user with
the ability to inspect and direct every step of
a system operation, via specialized sub-systems
designed as “open systems” which can satisfy
different kinds of user’s requests.

Flexibility: the svstem can be reconfigured to fit
several different robotic systems and environ-
ments of interest, by allowing for the possibil-
ity to flexibly specify the application domain,
to require different kinds of services to the spe-
cialized subsystems, and to exchange data with
different modalities.

Adaptability: the system can be adapted to work

688

w /Plan
Execution
Y
User Interacton
Support w /SystEm
Tools S ulatdon

Figure 1: Structure of the System

at various levels of task specification detail and
can support different user expertise.

JERRY 18 composed by four inter-connected modules.
called the User-System Interaction module (devel-
oped at [P-CNR), the Planning module (IRST). the
Execution module (DIST) and the Simulator Module
(DIS). The Planning, Execution and Simulator mod-
ules are highly autonomous but open sub-systems,
which can work at various levels of interaction. The
planning module generates high level plans of ac-
tions to be executed; the execution module translates
them into lower level programs and monitors execu-
tions: the simulator module provides a graphical and
interactive simulation environment.

A main characteristic of JERRY is the provision of
a fexible interface, through the User-System Inter-
action Module, which allows for different levels of
interactionn. It allows to access data and control
the behavior of highly automatic systems by pro-
viding either high level specifications of what has
to be achieved or detailed constraints on how the
task should be performed. For instance, the user can
request the planning module to generate automat-
ically a high-level plan which achieves a high-level
specified goal. or can direct the planner by impos-
g constraints on how to generate the plan. Anal-
ogously. the user can request the execution module
to generate automatically the low level program cor-
responding to a plan, or can direct the execution
mocule by imposing constraints on how the low-level
robotic plan has to be generated. Finally, the user
can directly monitor the execution of the program
by looking at the simulation, or can directly interact
with the simulator and specify the final destination
to be reached. Such a high-level degree of interac-
fivity between the user and the robotic device has
been obtaimed via a “client-server configuration”™ in
which the User-System Interaction Module is central
to the system and can request different services from
the other modules.

The structure of the system is represented in Fig-

ure . In this figure, the planning. execution and
simulator modules are visible in the top part, while
the interaction module (with the sub-modules act-
ing as interfaces with one of the other modules) is
the “big box™ at the bottom. The “Domain Defini-
tion” box represents a module that allows the user
to specify the domain considered, and is currently
part of the simulator. The "Robotic System™ box
represents the real robotic device. The solid arrows
represent a flow of information, while the dotted ar-
rows represent a still missing connection. For exam-
ple, the dashed arrow between “Domain Definition™
box and the interface, means that currently the user
can specily a domain not through the terface, but
only interacting directly with this module.

Finally, JERRY has been developed as part of an on-
going and more ambitious project funded by ASI,
the Ttalian Space Agency. In this application, JERRY
provides its functionality to different kinds of users
which have to design, control and monitor a SPIDER
Robot Arm performing quite complex tasks, e.g., the
set up of several kinds of experiments 1 a space
workeell. Even though the project s still running,
a first prototype Is already working and available
for experimentation. The prototype produces plans
for problem in a scenario which is quite close to the
payload tutor experiment described in [5]. In this
scenario, e.g., the SPIDER arm is supposed to ex-
tract a tray from a shelf, fix it to one out of two
tables and then automatically perform experiments
moving objects contained 1n the tray. As far as the
whole project is concerned. the funcrionalities of the
whole system will be those of JERRY. integrated by
the services provided by a module for diagnosis [9],
a module for the visual interpretation of arm’s ac-
tivities [1], and a module (see [4]) responsible for
supervising the arm in a outdoor environment sini-
ilar to that described in [6]. See the corresponding
papers (in this volume) for more information on any
of these additional modules.

In this paper. we first provide a global overview of
JERRY by describing its high level architecture (Sec-
tion 2). We then describe the main features of each
subsystem: the user interface (Section 3), the plan-
ning module (Section 4). the execution module (Sec-
tion), and the simulation module (Section 6). Some
couclusions end the paper.

2 JERRY'’s Architecture

JERRY can work at two levels of interactions that
are targeted to two typical users of space robotic de-
vices: the “programmer-level” contains functionali-
ties offered to the robotic system operator: the ~user-
level™ deals with activities performed by on-ground
sclentists or payvload operators. At the programmer-
level, the user can program the bhehavior of the de-
vice using its typically low-level interface language,

o.g. the language (called PDL2) currently used to
control the SPIDER arm. A typical PDL2 instruc-
1on 15 "MOVE LINEAR TO point-in-space’, where
point—in-space is a O-tuple of real values. This
level of interaction is adequate for an experienced
nser. Nevertheless, programming complex tasks at
this level may be very difficult for a user which has
no experience with the programming language, e.g.
PDL2. Moreover, low-level programs can be hard to
matntain and re-use. For this reason, interaction at
the user-level provides also non experts (e.g. scien-
tists) with the ability to specify robotic tasks. Such
users do not need any knowledge of the underlying
physical structure of the robotic device [e.g. of the
degrees of freedom of the arm) or of the physical
scenario (e.g. of the exact position in space of the
objects). A typical high-level instruction is "GET 0B-
JLCY object-name” .

Operationally, the two interaction levels reflect two
working modalities:

user-drives-system-supervises: in this modality
an expert, knowledgeable of the underlying
robotic device and mission interacts with the
svstem by describing the mission in the robotic
device ynterface language. The mission 1s en-
coded s a low level plan which is directly exe-
cutable by the execution module.

system-drives-user-supervises: in this modality
the user (even a non expert, e.g. a scientist)
fixes the goal in a high level specification lan-
guage. The high level specification cannot. be
executed directly, The system generates auto-
matically executable low level programs. This is
achieved in two steps. First, the planning mod-
e generates a set of high level actions which
have to be executed in different situations and
which are guaranteed to achieve the goal. Then
the exccution module, for each high level action,
generates a corresponding sequence of low-level
actions in the robotic device interface language
(c.g. PDL2). ludependently froni how the low-
level plan is generated. the execution module is
responsible for 1ts execution. and for the moni-
roring of the behavior of the robotic system. At

each step of the execution process, the user can
be prompted for validating the high-tevel action
10 be executed, or. if required, the current low-
tevel program.

The resulting architecture 1s highly modular and con-
figurable: the system can be configured to work at
different lTevels of automation (e.g. depending on the
activity performed by the planning module) and the
nser has the possibility to flexibly access data manip-
ulated at different levels of detail (e.g. data at the
exccution or at the planning level). The mterface can
be set to be used by users with different experience
(programmers or scientists) and can also be adapted

689

SERTAEL S o iy St
Plan SystEm
G eneration Smulation

Figure 2: JERRY s Current Architecture

to different input devices (e.g.. driven entirely from
mouse or touchpad, entirely from keyboard, or, pos-
sibly, from custom input devices).

A first version of the demonstrator has been fully
implemented, 1s available for inspection, and is cur-
rently under development to improve its general per-
formance and to enrich the services offered to the
user. This demonstrator (whose architecture is rep-
resented in Figure 2) is based on a client/server ar-
chitecture in which a client interface service is able
to continuously interact with the planning, execu-
tion and simulator modules. This has involved the
development of specialized protocols that allow each
interaction module to safely exchange data with the
three servers through point-to-point communication.
C'urrent protocols are deliberatively designed to be
very simple to minimize the overhead of communica-
tion between modules and to quickly arrive to a first
mtegration.

3 Interaction Module

The role of software svstems like JERRY s to al-
low different users to employ complex robotic devices
while preserving the levels of respousibility that users
have in their working contexts. Both the user-level
and the programmer-level preserve the usual working
activity. but offer a number of additional function-
alivies that allow the users to focus on strategic and
decisional tasks and to delegate repetitive or very
difficult tasks to the interactive planning software.
The Jerry Interaction Module consists of a Graph-
ical User Interface endowed with the following func-
tionalities:

e Task orented help.

e Problem specification targeted to the planner
domain representation language.

o Inspection of high-level plans: a rather simple
representation of the plan returned by the plan-
ner is shown and the possibly of inspecting the
representation of single plan states Is given,

690

Page contents:

Jerry i

al8ix

Heip

oo & Jorryiel B Exaeanor Il Y
Help | p
information e Release
Creaits
Home o shelf_daor= open, trayl_pos
page openﬂf L sl LockHole Tray3
: o e shell_goor = apen, trayl_pos
l (nane) vl

Wwelcome to the Jerry Help files - English edition

This iz actually a group of HTML files which you

are viewing through the Swing JEditorPane

norabiez vl
(dony care) T g

OPEN HAND; ke

fompanent b
A s ;J’j

- oo tayt holel 2 MOVE LINEAR TO PO§ IF (
M2 tdont cale) ¥ ; - - o
Hem3 onteare) o | .CLOSE HAND;
Hemd on_travl_hole2 ¥4 ‘MOVE CIRCULAR TO FO3_R
FINBUSHIE o i S e o A S i POS_ROT_Z ("sportellad’
switehl i e {OPEN HAND;
switth?. ravt: o MOVE LINEAR AWAY 103;
switeh] trayd (dontcare) ¥ 1 L :
, ; - |
L eI et |
“Finglstatus . L 14

| 2

hulet Yyt - -

foie2_travt o i

htited vz ,
hiole2 ray2

«

unlocked »: :)
ynincked J
(ant carey ¥ H
(dontcare: ¥
canﬂgurauoni intiai : Final - ! ! l i a
1

Haig 7 l

“-_’J:J

lEUlldlng status panel...

=

Press F1 for Help

b1 SR

Figure 3: JERRY Interactive Module

e I[nspection of plan compilation: the low-level
code produced by the plan compilation and ex-
ecution module is shown to the user.

e Robhotic device simulator visualization.

The current look of the Interactive Module is shown
m Figure 3. [u the Figure we can see (/) the Help
window (top-left) that is designed as a separate en-
tity: (/) the planning problem specifcation window
(main window below the Help window); (¢i7) the plan
current in execution (top-right): (iv) the PDL2 code
corresponding to the action being executed (middle-
right); and (v) the execution of the plan coming from
the simulator (bottom-right). The size of the 4 win-
dows corresponding to point from {#) to (v) are in-
terconnected and vary according to the user current
focus of attention that is always contained in the
main window.

According to the subdivision made between the
“programiner-level” user and the “scientist-level”
user, the tasks allowed to each level have been de-
tined. In the current nmplementation of the —“user-
level interaction” the users can: (i) get acquainted
with an operating environment; (iz) define specific
parameters of the scenario (e.g., decide the num-
ber of trays in an experiment); (ii7) specify the goal
he want to achieve and the constraints to satisfy in
achieving 1t: (7¢) ask the planning module to deter-
mine the set of actions (the plan) that achieves the

goal; (v) display and comment the resulting plan;
(vi) activate plan execution. Special attention has
heen dedicated to automatically checking the consis-
tency of commands selected by the user and in offer-
ing explanation facilities for non-expert users. The
“programmer-level interaction™ offers: (4) the possi-
bilitv of creating robot programs directly using the
robot language, (i7) the choice of having the plan-
ning and execution mechanisms that work as back-
ground help of the programmer; (i:f) the possibility
of experimenting different operational situation of-
fering a choice among alternative input modalities.
The possibility of customizing the interaction modal-
ity is relevant for experimenting on-flight use of the
programming ability. In is worth observing that be-
ing the Tnteraction Module configured as a client it is
possible to serve multiple users at the same time each
of them interactiong with personalized funtionalities.

An implementation in Java {compatible with JDIX
1.2) has been realized and is currently tested for im-
provements,

4 Plan Generation

The Planning Module developed on tup of the MBP
svstem (Model Based Planner) [2: 3], receives in in-
put from the Interaction Module a high level spec-
ification of the task to be performed (called goal).

I'hie goal 15 a high level description of what has to
be achieved. Tt does not detail how the task should
be performed. The Planning Module generates au-
tomatically a plan of actions which achieves the task
specified by the goal. The plan of actions is the out-
put which can be passed, through the Interaction
Module and possibly under control of the user, to
the Execution Module. A typical plan synthesized
by MBP looks like the following:

Get object Y.

if this action succeeds,

then put Y on experiment tray Z,
otherwise get object Yi;

Both the goal (the high level specification of the task
to be performed) and the plan of actions (the se-
quence of operations to be executed to achieve the
goal) can be specified and inspected by the user in-
terface. The user-level specification of the problem
is translated into the representation language of the
planning module. The planning module returns to
the user-interface a representation of the plan which
assoclates to each operation in the plan a description
of the situation (the state) which should be reached
after executing the operation.

A main characteristic of the planning module is that
It 1% an open system, t.e. each of its operations (e.g.
plan search) can be inspected, controlled and guided
by the user. This fact opens up the possibility to
provide a planning functionality which supports a
“user-centered operation mode” for JERRY, in which
the planner interacts flexibly with the user interface
module. The user, beyond asking for a goal to be
satisfied, can ask the planner for different services,
e.g. show all the plans which satisfy a goal, select
one of them, query the planner about the possible ef-
fects of the execution of plans, re-use existing plans,
ask the planner to validate a user defined plan, in-
hibit some plans, query the planner about the cur-
rent state of the execution in terms of high-level ac-
tions. This ~user-centered” modality requires a de-
sign of the planning module which is different in phi-
losophy wrt current state of the art planners. The
planner 1s no longer the automatic generator of so-
lutions, 1t becomes a system which exploits its au-
tomatic generation capabilities to support the user
to find the right solution and is flexible enough to
adjust its plan generation activity to different user
requirements.

Another characteristic of the planning module is
that MBP returns “safe plans™, 1.e. plans which
are guaranteed to achieve the goal in spite of non-
determinism. For examiple, MBP is able to find a safe
plan (assuming that one such a plan exists) even in
the case in which some actions may fail (e.g. Decause
of some malfunctioning of the devices) or in the case

some action is no longer executable (e.g. because

691

some of the actuators is broken].

For eficiency reasons, the planning module has been
written in (. To improve its portability, the standard
ANSI has been followed.

5 Plan Compilation/Execution

The Plan Compilation/Execution module is respon-
sible for transtforming a high-level. user-oriented ab-
stract plan into a sequence of low-level, machine-
oriented execution plan. In more detail, the Plan
Compilation/Execution module receives in input
from the interface an arbitrarily long sequence of ac-
tions to be performed, and generates a sequence of
actions (a “program”) that the robot can directly
execute. For example, in the case of a robotic arm,
the program corresponding to a move(o.l) (“move
object o to location ") looks like the following se-
quence of instructions

move.near <pos.o> by 800;

open_hand;

move_linear <pos_o>;

close_hand;

move near <pos_1> BY 800;

move_linear <pos._1>;

open_hand;

move_away 1200;

where <pos_o> and <pos.1> are six tuples of real
numbers specifyving the positions of the object and
of the location respectively.

[n any case. the sequence of actions given to the exe-
cution module does not need to correspond to a com-
plete plan. Instead, the user can (i) break a plan as
given by the planning module into blocks of planning
actions. (/i) require the compilation of all or some of
the blocks, (ii/) validate the execution program cor-
responding to a program, or (/) ask for an execution
program differing from the proposed one.

As for the planning module, the execution module
is an open system in which the parameters affect-
ing its behavior (e.g. the availability of a given low-
level action) can be inspected, controlled and even-
tually modified by the user. For example, the user
can inhibit the execution module from using a cer-
tain low-level action because it involves some dan-
gerous or unavailable move for some joint. As above,
this fact opens up the possibility to provide a “user-
centered operation mode” for JERRY, in which the
execution module interacts flexibly with the user in-
terface module.

A Java (compatible with JDIX 1.2) implementation
of the execution module has been realized, and is
currently tested for improvements.

6 Robotic System Simulator

The simulator allows for a 3D representation of a
robotic arm i a given working environment. The

692

sinulator 1s composed by three parts:

e o user mterface which allows the user to exam-
e the scene and to interact with it by suitable
commands:

o an interface that allows the user to define all the
objects in the scenario;

e and interface that allows the user to define the
robot employed to manipulate the ohjects in the
scene.

Currently, the simulator has been specialized with
knowledge of two domains: the first is close to the
external robotic experiment described in [6]; the sec-
ond domain resembles the internal payload tending
described in [5]. In both cases, the robotic device is
the SPIDER arm.

About the user interface, the operator may:

e observe the evolution of the scene on a screen,
both by looking at the arm’s movements and
information of the specific values of the various
variables controlling the arm,

e interact with the robot, e.g. by specifying a po-
sition to he reached, or

e control the robot, by writing a PDL2 program
which can be executed.

Finally, the simulator has been written using the
Java language, the Java 3D library, while some
VRMIL files specify the geometry of the objects in the
scenario. The simulator 1s therefore a Java applica-
tion that does not depend on the particular external
browser used.

7 Conclusions

This paper describes JERRY, a system for the auto-
matic generation and execution of plans for robotic

devices. and briefly reports about the case study of

the SeipeER arm. The main feature of the system is
the high-level of interaction that the user can decide
to have with the system. This level of interaction
i eritical in the context of spatial missions, where
(7} unforeseen emergencies can happen, and (i) still
the mission has to proceed, possibly under the hu-
mans’ supervision.

JERRY has been designed to be a flexible, open archi-
tecture. Care has been taken in order to distinguish
the domain-dependent from the domain-independent
tasks 1n order to minimize the customization efforts.
JERRY s architecture and underlying ideas have been
tested and made operational for monitoring and con-
trolling & SPIDER robotic arm operating in an indoor
environment very close to the payload tutor experi-
ment described in [5].

Acknowledgments

This research 1s supported by ASI (Italian Space
Agency) as part of the project “Un Sistema Intel-
ligente per la Supervisione di Robot Autonomi nello
Spazio”. Special thanks to the other participants in
the project for the many fruitful discussions and the
technical help.

References

(1] A. Chella, S. Gaglio, D. Guarino, and I. In-
fantino. An Artificial High-Level Vision Agent for
the iuterpretation of the Operations of a Robotic
Arm. In Proec. 5th Int. Symp. on Artificial In-
telligence, Robotics and Automation in Space, 1-
SAIRAS99, ESTEC, Noordwijk, NL, 1999.

(2] A. Cimatti, E. Giunchiglia, F. Giunchiglia, and
P. Traverso. Planning via Model Checking: A
Decision Procedure for AR. In Lecture Notes in
Computer Science, volume 1348, 1997.

[3] A. Cimatti, M. Roveri, and P. Traverso. Au-
tomatic OBDD-based Generation of Universal
Plans in Non-Deterministic Domains. In Proceed-
ings of the 15th National Conference on Artificial
Intelligence (AAAL-98). AAAL Press, 1998.

[4] A. Dell’Arciprete, G. Rossi, A. Finzi, F. Pirri,
and M. Schaerf. A System Integrating High and
Low Level Planning of Complex Tasks with a 3
Dimensional Visualizer. In Proc. 5th Int. Symp.
on Artificial Intelligence, Robotics and Automa-
tion in Space, i-SAIRAS99, ESTEC. Noordwyjk,
NL, 1999,

5] S. Di Pippo. G. Colombina. R. Boumans. and
P. Putz. Future Potential Applications of
Robotics for the International Space Station,
Robotics and Autonomous Systems. Robotics and
Autonomous Systems, 23:37-43, 1998,

6] F. Didot, J. Dettmann, S. Losito, D. Torfs,
and (. Colombina. JERICO: A Demonstration
of Autonomous Robotic Servicing on the MIR
Space Station. Robotics and Autonomous Sys-
tems, 23:29-36, 1998,

[7] . Dorais. P. Bonasso, D. Kortenkamp, B. Pell,
and D. Schreckenghost. Adjustable Autonomy
for Human-Centered Autonomous Systerns on
Mars. In Proc. Mars Society Conference, 1998,

[8] JERICO Project Description. ASI Internal Doc-
umentation., 1998,

[9] L. Portinale. P. Torasso. and . Correndo.
Knowledge Representation and Reasoning for
Fault [dentification in a Space Robot Arm. In
Proc. 3th Int. Symp. on Artificial Intelligence,
Robotics and Automation in Space, i-SAIRAS99,
ESTEC. Noordwijk, NL, 1999.

