
SATELLITE TELE-COMMUNICATIONS SCHEDULING AS DYNAMIC CONSTRAINT SATISFACTION

Christian Plaunt Ari K. J6nsson Jeremy Frank
Caelum Research Corporation Rl ACS Caelum Research Corporation
NASA Ames Research Center NASA Ames Research Center NASA Ames Research Center

Mail Stop 269-2 Mail Stop 269-2 Mail Stop 269-2
Moffett Field, CA 94035, USA Moffett Field, CA 94035, USA Moffett Field, CA 94035, USA

phone: +I 650 604 2928 phone: +I 650 604 2799 phone:+16506042524
fax: + 1 650 604 3594 fax: +I 650 604 3594 fax: +1 650 604 3594

plaunt@ptolemy.arc.nasa.gov jonsson@ptolemy.arc.nasa.gov frank@ptolemy.arc.nasa.gov

ABSTRACT

We consider a single satellite telecommunications
problem in which a dynamic set of calls must be as-
signed to beams of the satellite. These assignments
must satisfy beam-coverage constraints, capacity con-
straints and requirements based on the priorities of in-
coming calls; additionally, the satellite must respond
quickly to the changing call load and environment. We
show how this problem can be solved by using con-
strain~ satisfaction trchnology. We model the prob-
lem as a Dynamic Constrained Optimization Problem
(DCOP) and present an algorithm inspired by hill-
climbing search. We present empirical results from
a simulation showing that the algorithm meets the re-
quirements imposed by the problem domain, and finds
solutions that are within 2% of the optimal.

I. INTRODUCTION

Advances in satellite communications technologies
have given rise to new challenges for automated allo-
cation techniques for dynamic resources such as satel-
lite and bandwidth availability. In this paper, we look
at a particular class of satellite tele-communications
scheduling problems, and present an approach for solv-
ing those problems effectively within strict real-world
time limits. The approach is based on viewing the satel-
lite communications scheduling problem as a Dynamic
Constraint Optimization Problem (DCOP). This well-
known class of automated reasoning problems provides
us with a well-defined framework and a number of pos-
sible approaches to solving such problems.

We present an automated dynamic scheduling
method based on an encoding of this problem as a dy-
namic constrained optimization problem. The algo-
rithm we selected to solve this problem was inspired
by the local search paradigm, which provides good so-
lutions to such problems in real-time. Experimental re-
sults show the scheduling method to be very effective at

finding near-optimal solutions, even in the face of de-
graded communications capabilities.

Our problem domain consists of a single satellite with
b communication links or beams, which cover a set of
g ground stations. Each call is assigned a priority, and
there are p priorities available. The satellite must sup-
port a dynamically changing set of call requests. Each
call request consists of a source ground terminal, a des-
tination ground terminal, a number of units of band-
width, and a priority. A call must be assigned to both
an uplink beam and a downlink beam or be rejected.
The uplink beam must cover the source ground termi-
nal and the downlink beam must cover the destination
ground terminal. Each beam has a maximum capacity
for uplinked and downlinked calls. That is, the total
bandwidth of uplinked calls on a beam may not exceed
a capacity c,, and the total bandwidth of downlinked
calls on the same beam may not exceed a capacity cd.

Furthermore, calls of priority y, outweigh all calls of
strictly lower priority; if there is not enough space ca-
pacity on a beam for an incoming call of high prior-
ity, the system is required to disconnect enough calls of
lower priority to accommodate the new, higher priority
call, if possible. Each call has a finite but unknown du-
ration, so calls periodically are released, thereby free-
ing more capacity for new calls. Calls arrive at arbi-
trary intervals. A call does not change priority, source
or destination station while it is in progress. However,
the capacity of beams may increase or decrease, forcing
some calls to other beams or requiring the premature
termination of some calls.

The problem of managing calls on the satellite con-
sists of the following:

1. When a new call arrives, the satellite must decide
whether to accept the call or reject it; if the call
is accepted, the satellite must decide which beams
the call will utilize.

2. When the capacity of a beam changes, the satel-
lite must decide whether to move or terminate any

I<ohol~c\ m d Automat~on In Space, 1-3 June 1999 (ESA SP-440)

calls, and if so, which ones.

If we consider the satellite at any instant, there is a
list of call requests in the system. The problem is to de-
cide which calls to accept and which to reject, and then
to assign each call uplink and downlink beams in such a
way that each call's coverage requirements are satisfied
and the capacity constraints on the satellite beams are
met. A problem of this type can be encoded as a Con-
straint Stztisfaction Problem or CSP. Informally, a CSP
consists of a set of variables, a description of the possi-
ble values each variable can take on, and a list of con-
straints which define valid assignments to sets of vari-
ables. The problem we have described also includes
a preference for assigning calls of high priority to the
satellite. Adding such a preference order among solu-
tions satisfying the constraints results in a Constrained
Optimization Problem or COP. CSPs and COPS have
been heavily studied, and many theoretical and practi-
cal results can be brought to bear to address such prob-
lems; for work on CSPs in general see Haralick & El-
liot (1980), Nadel (1989), and for a specific application
see Banerjee & Frank (1996). However, as calls arrive
and depart, we have not just one but a sequence of such
problems. These problems are closely related, as each
problem in the sequence is derived from an earlier prob-
lem by the termination of an existing call, the addition
of a new call, or the reduction in capacity on a beam.
A modification of CSPs known as Dynamic Constrainr
Satisfaction Problems or DCSPs can be used to encode
the sequence of problems which results from the arrival
and departure of call requests.

There are a number of methods for solving CSPs and
DCSPs. However, in this domain, the solver must meet
performance requirements imposed by the telecommu-
nications application, as the satellite must be able to re-
spond rapidly to new call requests as well as to changes
in the available bandwidth on the beams. The solver
must nonetheless provide good solutions (i.e. allocate
high priority calls) which are also valid (i.e. meet the
coverage constraints and do not exceed beam capac-
ity 1. In addition, the fact that we are presented with a
sequence of closely related problems suggests that any
algorithm to solve the sequence of problems reuse the
solution to the previous problem to increase the speed
of the solver. Hill-climbing algorithms for CSPs oper-
ate by perturbing solutions in order to find better so-
lutions which are nearby. These methods have good
problem solving performance in general Selman et al.
(1992), Minton et al. (1 990), and also promote the reuse
of solutions between successive problems in the DCSP
framework Freuder & Wallace (1998).

The rest of the paper is organized as follows. In Sec-
tion 2 we formally define CSPs and DCSPs and dis-
cuss methods of solving these problems, including hill-

climbing methods. In Section 3 we formally describe
the satellite telecommunications problem as a Dynamic
Constrained Optimization Problem (DCOP). In Section
4 we present a hill-climbing algorithm for responding
to new connection requests and reductions in the capac-
ity of beams. We also give a bound on the complex-
ity of this procedure, and establish that it can respond
to changes in real-time. In Section 5 we present the
results of applying the hill-climbing algorithm to a set
of telecommunications requests taken from a real satel-
lite telecommunications problem. We show that hill-
climbing can consistently find solutions within 2% of
the best possible solution. In Section 6 we conclude
and discus some opportunities for future work.

2. DYNAMIC CONSTRAINT SATISFACTION AND
OPTIMIZATION PROBLEMS

In this section we present the formal machinery we
will use to solve the satellite telecommunications prob-
lem. We shall first formally define CSP, COP, DCSP
and DCOP, then discuss hill-climbing algorithms to
solve these problems.

A Constraint Sarisfaction Problem or CSP is a triple
P = (V, D , C) , where:

1. V = {ul , . . . , v,) is a set of variables

2. D = D,, I i E (1,. . . , n) are the domains of the
variables, where each D,,, is a finite set of possible
values of I) , .

3. C is a set of constraints (I.j, R,), where each con-
straint consists of a scope Y , = { r , i , , . . . , v,,) C
1' and a relation R; C n:=, D,,LL

It is worth mentioning that if the domains D,, are
large and the scope contains many variables, then ex-
plicitly enumerating the relations of the constraints may
be quite cumbersome. Consequently, relations are often
written in a condensed form. For instance, if the vari-
able domains are subsets of the integers, we can write
relations as equations such as C1 = ((6, y ,), x + y <
5) rather than enumerating all the legal pairs of values
of x and y.

A valid solution to a constraint sati5faction problem
P = (L: D , C) , where V = {xl, . . . , x,,), is an n-tuple
(v z l , . . . , v,,,), such that:

1 . 'u,, E D,, for k = 1, . . . , n, and

2. For any (1; R) E C with Y = (x,, , . . . , x,,), we
have (v,,, , . . . ,71,,,) E R.

12igure 1 : A network consisting o f one satellite with three uplink/downlink beams. Beam 1 o f capacity 55 covers
stations A, B and E , beam 2 o f capacity 50 covers stations D,E,C and F, and beam 3 o f capacity 80 covers station C .

Many problems consist o f both constraints and an
optimization criteria which differentiates between valid
solutions. For example, in our telecommunications do-
main, an allocation o f calls to the beams o f the satellite
may satisfy the constraints, but we prefer assignments
which assign more high priority calls to the satellite. To
formali~e this concept, we define a Constrained Opti-
mi,-arion Probletn or COP as a pair (P , g) where P is a
constraint satisfaction problem and y is a function that
mapa every valid solution o f P into R.. The goal o f
constraint optimization is to find a valid solution that
maximizes 9.

As an example o f a COP, let us consider a sim-
ple scheduling problem consisting o f two low-capacity
beams and n few call requests (disregarding geographic
constraints for simplicity). The calls must be assigned
to beams or rejected, and the constraints limit the over-
all bandwidth requirements for all calls assigned to a
beam. Finding a satisfactory assignment o f calls to
beam 1, beam 2 or rejection, is a CSP. I f we now spec-
i f y a preference among solutions, or equivalently, spec-
i f y an optimization function on the set o f valid assign-
ments, we have a COP. In other words, the CSP defines
a set o f valid call assignments, and the preference func-
tions defines an ordering among solutions.

As ment~oned earlier, the satellite telecommunica-
t~ons problem is not a CSP, since calls are constantly
being added and deleted. However, the changing set o f
calls can be represented as a sequence o f closely related

CSPs. To formalize this notion, let P = (V, D , C) be
a constraint satisfaction problem. Any problem o f the
form Q = (V ' , D' , C ') such that 1" > V (i.e. there
are more variables), D: C D,, for each v E V (i.e.
there are fewer legal values for variables) and C' 2 C,
(i.e. there are fewer legal combinations for variables in
a constraint) is a restriction o f P. Any problem o f the
form Q = (V ' , D' , C ') such that 1" C L' (i.e. there are
fewer variables), D:. > D, for each u E V (i.e.there are
more values for variables) and C' > C (i.e. there are
more legal combinations for variables in a constraint),
is a relaxation o f P. A Dynamic Constraint Sarisfac-
tion Problem or DCSP is a sequence o f constraint sat-
isfaction problems Po, P I , . . ., such that each problem
Pz is either a restriction or a relaxation o f P,-1. This
definition is consistent with similar definitions given
in Dechter & Dechter (1988) and Verfaillie & Schiex
(I 994).

Not surprisingly, it is relatively straightforward to
generalize the idea o f dynamic constraint satisfaction to
dynamic optimization problems. Formally, a Dynamic
Construined Optimization Problem or DCOP is a se-
quence o f optimization problems, such that each entry
is a relaxation or a restriction o f the previous problem.
This means that the optimization function remains un-
changed throughout, but the set o f variables, domains
and constraints may change.

2.4 S E A R C H METHODS A N D H I L L - C L I M B I N G

There are two main families o f procedures for solv-
ing CSPs and COPS. Complete methods are guaranteed
either to find a valid assignment o f values to variables or
prove that no such assignment exists. Complete meth-
ods frequently exhibit good performance, and guarantee

a correct and optimal answer for all inputs. Unfortu-
nately, they require exponential time in the worst case,
which is not acceptable for the satellite telecommunica-
tions domain.

Recently, researchers have become interested in in-
complete search methods which do not guarantee cor-
rect answers for all inputs. These methods can find
satisfying assignments for solvable problems with high
probability. These incomplete algorithms have gained
popularity in recent years, due to their simplicity, speed
and observed effectiveness at solving certain types of
problems.

Hill-climbing is one of the most popular incomplete
approaches to solving constraint satisfaction problems.
These algorithms map assignments to a set of assign-
ments by making minor changes to the original assign-
ment. Each element of the set is evaluated according to
some criteria designed to move closer to a valid assign-
ment andlor improve the evaluation score of the state.
The best element of the set is made the next assignment.
This basic operation is repeated until either a solution is
found or a stopping criteria is reached. A hill-climbing
algorithm requires two components: a candidate gener-
ator which maps one solution candidate to a set of pos-
sible successors, and a evaluation criteria which ranks
each valid solution (or invalid full assignments), such
that improving the evaluation leads to better (or closer
to valid) solutions.

To take a concrete example of hill-climbing, consider
the following scenario for a slightly unrealistic satellite
telecommunications problem. We have a satellite with
only one beam and one station. Assume we have as-
signed a call of priority 5 requiring a bandwidth of 2, to
a single given beam with capacity of 4 units. Two calls
are currently rejected, one with priority 3 and band-
width requirement of 3, and the other with priority 7
and bandwidth requirement of 1. This current solution
could be described as ({C5,2), {C3,3, C7,1)), with the
first set being calls assigned to the beam and the second
set consisting of rejected calls.

Let us then choose a simple optimization function,
which sums up (10 - p) . b, where p is the priority (I
highest, 8 lowest) and b is the bandwidth used. Our
current solution then evaluates to (10 - 5) . 2 = 10.
Our successor function might then give the following
options:

({ c 3 , 3) , { c 5 , 2 3 c7,l))

wh~ch evaluates to 21, and

which evaluates to 13. We therefore pick the first can-
didate as the new current solution.

A second hill-climbing iteration would then result in

which is indeed an optimal solution at 24.
Hill-climbing algorithms do not always find optimal

solutions for real problems. However, hill-climbing
methods have the distinct advantage that they can often
provide a valid solution at any time-point. This makes
the technique very suitable for systems that must per-
form with real-time guarantees. An added bonus is that
the more time the hill-climbing process is given, the bet-
ter the solution will typically be. Gent & Walsh (1993)
Finally, hill-climbing is especially attractive for DCSPs,
because it is likely that the solution to problem Ci is a
good starting assignment for problem C,+l. Freuder &
Wallace (1998) For these reasons, we chose to base our
solution to the satellite telecommunications problem on
hill-climbing.

3. THE PROBLEM AS A DCOP

As mentioned earlier, our problem domain consists
of a single-satellite, multiple ground-station communi-
cations network with variable connection coverage and
varying bandwidth due to technical glitches, mainte-
nance and other factors. In order to handle a commu-
nications request, we need to allocate sufficient band-
width from the source terminal node to the central node,
along a link that covers that node, and from the central
node to the destination node, along a link covering the
destination.

Let us assume that we are given a single satellite com-
munication assignment problem with n calls, b beams, g
ground stations, p priorities and s ground stations. Each
beam has capacity of di slots for downlink, ui slots for
uplink.

A satellite communication assignment problem is de-
fined by:

0 { t l , . . . , t,), a set of ground stations

0 (1 1 , . . . , l b) , a set of links between a set of ground
stations and the satellite

capu(&), function identifying the uplink capacity
of each link

capd(l i) , function identifying the downlink capac-
ity of each link

cover(li , t j) a predicate indicating whether beam
i covers the location of ground station j

0 {cl , . . . , c,), set of calls, including start times and
durations.

0 ~ (c ,) , function giving priority of call

use(ci), function indicating bandwidth required
for call

0 source(ci), indicates the terminal source of call

dest(ci), indicates the terminal destination of the
call

To describe our problem as a DCOP, we first deter-
mine what our variables and values are. The key deci-
sions are how each call is routed, i.e, which beams the
uplink and downlink are assigned to. We define two
variables ui and di for each call that is in the system,
the uplink-beam and the downlink-beam. The values
for these variables include all possible beams, but we
also need a value to represent that a call is rejected. So,
for each call variable ui or di, we have a set of links that
we can assign to it, {II , . . . , lb), and a flag indicating
that the call is rejected. To facilitate the specification of
this problem, let us represent this domain as the num-
bers from 0 to b, with 0 standing for the rejection flag
and i E (1, . . . , b) standing for (II, . . . , lb) respectively.

The constraints that must be satisfied are the follow-
ing:

0 For each link li,

For each link li,

0 For each call ci, if ui = j then either j = 0 or
cover(bj, source(ci))

0 For each call ci, if di = j then either j = 0 or
cover(b,, dest(ci))

For each call ci, ui = 0 if and only if di = 0

where I is the indicator function. The optimization
function is defined as follows:

The problem is dynamic in that calls arrive and are
accepted or rejected; calls are terminated or completed;
and the beam capacity changes. In terms of DCOPs, the
relaxations that can occur are:

0 The two variables corresponding to an existing call
are deleted from the problem along with all asso-
ciated constraints. This occurs if a call is either
rejected, terminated or completed.

0 The capacity of a link increases.

The restrictions that can occur are:

0 Two new variables corresponding to a new call are
added to the problem along with all associated con-
straints.

0 The capacity of a link decreases.

4. SOLVING THE DCOP USING
LOCAL SEARCH

We are now ready to describe our solution to the
satellite telecommunications DCOP. When a relaxation
occurs, we do nothing; the solution to the previous prob-
lem is always adequate when the problem is relaxed.
There are two categories of restrictions in this problem:
call arrival and capacity reduction. When a new call ar-
rives, it is assigned to a pair of beams which have the
appropriate coverage and have the most remaining ca-
pacity. The resulting assignment may overload one or
both beams, which also happens when the capacity of a
beam is reduced. Consequently, the main issue is mov-
ing or terminating calls in such a way that we preserve
the high priority calls and no beams are overloaded.

We solve the problem of reassigning calls on over-
loaded beams using hill-climbing. Recall that a
hill-climbing algorithm requires two components: a
candidate-generation component to take an initial as-
signment and generate new assignments, and an eval-
uation function which ranks the new assignments. The
best of the candidate assignments according to the ob-
jective function is then selected as the new assignment.
We first discuss these two components then show how
the algorithm works as a whole.

We generate new candidates by trying to move the
lowest priority calls on overloaded beams. Let L be
the set of all of the lowest priority calls which could be
moved to relieve the capacity of any overloaded beam,
and let m be the highest priority call in L. (Should there
be several calls of the same priority, assume that each
call has a unique identifier and pick the one with the
smallest id.) Now let B be the set of beams satisfying
the coverage requirements for this call. The candidates
that are generated consist of moving the call to each of
these beams in turn or rejecting the call. Notice that
there is always at least one option because we can al-
ways reject a call.

Now let us see how we compare the candidates. Our
preference is to keep calls of high priority; for the objec-
tive function we interpret each priority as an integer and
sum the priorities of calls which are assigned to beams.
We do this by counting the highest priority calls on each
beam until the capacity is reached. Under this scheme,
the priorities of calls must be chosen so that calls of
lower priority are appropriately comparable to calls of
higher priority; for instance, if 2 calls of priority p are

worth more than 1 call of priority p+l then p + 1 < 2p.
Additionally, we do not count a call if either its uplink
or downlink is on an overloaded beam and is of low
enough priority that it might be terminated.

In some cases the candidates can all have the same
rank. If the call being moved has a priority low enough
that it would not stay on any beam, we reject the call to
remove it from the system. In any other situation, we
randomly select one of the best candidates as the new
configuration.

We now have an operation which determines what to
do with a single call on an overloaded beam. The call is
moved to another beam if it is of high enough priority
to displace calls of lower priority or if there is excess
capacity. Otherwise, the call is terminated. We execute
this operation repeatedly until no beams are over capac-
ity any longer. Figure 2 shows the sketch of the full
algorithm, which we call load-balance.

procedure load-balance()
0 = set of overloaded beams
w h i l e 0 is not empty

L = set of calls to be bumped from 0
rn = highest priority call from M
B = set of beams rn can move to
f o r b ~ R
i f h satisfies coverage requirements of m
rank moving rn to b

i f rank of terminating rn == rank of best move
terminate m
else make best move
update 0

end # while
end

Figure 2: The load-balance hill-climbing algorithm.

The load-balance procedure may be called many
times, since moving a call may exceed the capacity ot
wme other beam, and several calls may be required
to reduce the capacity on a single, heavily overloaded
beam. We now provide a worst-case complexity of the
number of times load-balance will be called in order to
satisfy the capacity constraints on all the beams. Let C
be the total number of calls in the system at the time
that load balancing occurs. We shall show that no call
is ever handled by the procedure more than once. If
loud-balance rejects a call it is never manipulated again,
so let us consider what happens if the procedure moves
part of a call c,. Recall that c, is the highest priority call
of all the calls which must be moved from any over-
loaded beam. Because c, is moving and not being ter-
minated, we know that either there is space on the des-
tination beam, or some other calls can be moved from

the destination beam. But all of these calls are of strictly
lower priority than c;. Therefore, no call moved after c;
can displace c, from it's new home. Consequently, in
the worst case, each component (uplink and downlink)
of a call would have to move once. Since each call is
either terminated or each component of a call is moved
only once, load-balance is called fewer than 2C times.'
Also notice that the complexity of any single call ma-
nipulation is O(b) since there are h beams and each call
manipulation must consider all beams in the worst case.
So overall the algorithm requires O(CD) elementary op-
erations.

We now return to the issue of call acceptance. When
a new call arrives, the satellite must decide whether
to accept or reject the call. The procedure to do this
requires first finding a pair of uplink-downlink beams
which satisfy the coverage requirements. We tentatively
assign the call to those beams with the highest capacity
path, and then call load-balancing. Once load balancing
is done, if the new call request is part of the assignment,
then the call is accepted and all changes required to real-
ize the new solution are taken. If the new request is not
part of the new solution, which can happen when one of
the beams in at or near capacity and the new request is
of low priority, the call is denied.

5. EMPIRICAL RESULTS

In this section we present the results of a simulation
using call requests from a real telecommunications ap-
plication. The scenario we experimented with uses a
satellite with 2 beams covering 5 ground stations. Three
of the stations are covered by both satellites, and the
remaining two stations are covered by only 1 satellite
each. Calls have 8 possible priorities, with priority
1 calls the highest. As the simulation proceeded, we
ratcheted down the capacity of the uplink and downlink
capcity of both the beams from 1000 to 400 units of
bandwidth over the course of 1000 seconds. This sce-
nario was designed to show that, as the capacity of this
beam changes, our hill-climbing algorithm terminates
calls in lowest-first priority order.

We encoded the problem as a DCOP as we have in-
dicated in the previous sections of the paper. In addi-
tion, we carefully crafted an objective function in order
to ensure that calls of the highest priority stayed on the
beams as capacity changed.

Figure 3 shows a graph of bandwidth usage by rela-
tive priority hover time on one of the downlink beams
during a test run of 7769 dynamic call requests over a
period of 33 minutes (an average of about 3.9 calls per

'We can put a tighter bound on the number of manipulations at
runtime, but space prohibits us from including these results.

' ~ h e s e are not the priority values used to compute the objective
function during search.

Capacity -
8 ---
7 - - - -

6
5

5 5 0 0 6 0 0 0 6500
Time in Seconds

Figure 3: A graph of bandwidth capacity and usage by priority over time on a downlink beam. The highest priority
calls (1) are at the bottom, with successive lower priority call in increasing order above (2-8), total available bandwidth
capacity at the top

Figure 4: Closeness of the solution found by load-
balance to the optimal solution as simulation time in-
creases.

[Time

5450
5550
5650

second). Note that the highest priority calls are graphed
at the bottom, with successive ranks of lower priority
calls i n increasing order above. The top-most (solid)
line shows the total available bandwidth capacity of the
beam during the run. As we see from the figure, the
calls of low priority are terminated to keep the high pri-
ority calls on the system, as desired.

As we have said before, hill-climbing algorithms may
not always find the optimal solution to a COP. To test
how close we came to the optimal solution, we created

% Opt. Score

99.98
99.96
99.76

the COP induced at a particular time instant of the sim-
ulation and found the optimal solution. Figure 4 shows
the results. The percentage is the value of the solution
found by the load balancer over the optimal value. We
see that throughout the simulation the hill-climbing al-
gorithm was able to consistently find solutions within
2% of optimal.

We also analyzed the bandwidth use achieved by the
hill-climbing load balancer. Figure 4 also shows the
percentage of optimal bandwidth achieved by the load
balancer. We see that the load balancing algorithm con-
sistently uses more than 94% of the bandwidth used by
the optimal solution.

% Opt. Bandwidth

97.37
98.29
95.69

5. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the satellite telecom-
munications, and showed how it can be modeled as a
Dynamic Constrained optimization Problem. We then
designed and implemented a hill-climbing algorithm to
solve the problem. Our empirical results show that hill-
climbing is capable of solving this problem very well,
as it is consistently able to achieve within 2% of the best
possible solution.

There are several future directions for this work. One
direction is to consider the impact of moving beams.
As beams change position, ground station coverage pat-
terns will change, introducing a new set of relaxations

and restrictions. The framework we have described is
adequate to address this type of dynamism, and we be-
lieve that the results will be as good as those presented
here. Another research question involves increasing
the number of beams in the simulated satellites. More
beams and more ground stations may result in larger
search problems, thereby causing more difficulties as
the hill-climbing search must work harder to solve the
problem Instances that arise over time. A third option
is to consider situations with multiple satellites. This
problem presents a challenge to modeling via DCOPs,
because now a call must take several "hops" to get from
it's source ground station to it's destination ground sta-
tion. In theory, this should be addressable simply by
adding some more variables to the problem, but in prac-
tice it may prove more difficult.

Another possible research direction is to consider us-
ing other algorithms to solve this problem. In the pre-
vious section we used a complete search algorithm with
hand-crafted heuristics to generate the optimal solutions
to the optimi~ation problem induced at fixed timepoints.
We found that while it would often take this program
a long time to find the optimal solution, it frequently
found good solutions early. This raises the prospect of
using other algorithmic techniques for constraint satis-
faction to address this problem.

Banerjee, D. & J. Frank (1996). Constraint satisfaction
in optical routing for passive wavelength route net-
works. In Proceedings of the 2nd International
Conference on the Principles and Practices of
Constraint Programming, pages 3 1-45. Springer
Verlag. Lecture Notes in Computer Science.

Dechter, R. & A. Dechter (1988). Belief maintenance
in dynamic constraint networks. In Proceedings of
the Seventh National Conference on Artificial In-
telligence, pages 3 7 4 2 , Palo Alto, CA. Morgan
Kaufmann.

Freuder, E. & R. Wallace (1998). Stable solutions for
dynamic constraint satisfaction problems. In Pro-
ceedings of the 4th International Conference on
the Principles and Practices of Constraint Pro-
gramming, pages 4 4 7 4 6 1 . Springer Verlag. Lec-
ture Notes in Computer Science.

Gent, I. P. & T. Walsh (1993). Empirical analysis of
search in GSAT. Journal of Artificial Intelligence
Research, 1 :47-59.

Minton, S., M. D. Johnston, A. Phillips, & P. Laird
(1990). Solving large scale constraint satisfac-
tion and scheduling problems using a heuristic re-
pair method. In Proceedings of the 8th National
Conference on Art@cial Intelligence, pages 17-24.
AAAI Press.

Nadel, B. (1989). Constraint satisfaction algorithms.
Computational Intelligence, 5: 188-224.

Selman, B., H. Levesque, & D. Mitchell (1992). New
method for solving hard satisfiability problems.
In Proceedings of the 10th National Conference
on Arti$cial Intelligence, pages 440-446. AAAI
Press.

Verfaillie, G. & T. Schiex (1994). Solution reuse in
dynamic constraint satisfaction problems. In Pro-
ceedings of the Tw2elfth National Conference on
Artificial Intelligence, pages 307-3 12, Cambridge,
MA. MIT Press.

Haralick, R. & G. Elliot (1980). Increasing tree search
efficiency for constraint satisfaction problems. Ar-
tificial Intelligence, 14:263-3 13.

