NOTE: THIS is a hypertextual document

Navigation instructions:
Titles of sessions and papers are hyperlinked, that means that:

- when you see the pointer changing from 👀 to 📚 you can click over to open the hyperlinked document.
- to go back (and forth) in your navigation you can use the navigation buttons in the Acrobat Reader toolbar.
- To start the navigation click HERE.
Fifth International Symposium on Artificial Intelligence, Robotics and Automation in Space

iSAIRAS '99

ESTEC, Noordwijk, The Netherlands
1 – 3 June 1999
iSAIRAS '99

Fifth International Symposium

on

Artificial Intelligence, Robotics and Automation in Space

ESTEC, Noordwijk, The Netherlands
1 - 3 June 1999

European Space Agency
Agence spatiale européenne
Title: Proceedings of the Fifth International Symposium on Artificial Intelligence Robotics and Automation in Space,

Reference: ESA SP-440

Editor: Michael Perry

Published by: ESA Publications Division, Noordwijk, The Netherlands

ISBN: 92-9092-760-7

Copyright: © 1999 European Space Agency

Price: € 57.00
iSAIRAS '99
Objectives of the Symposium

Following the four previous meetings held in Kobe (Japan 1990), Toulouse (France 1992), Pasadena (USA 1994) and Tokyo (Japan 1997), i-SAIRAS '99 was the fifth in this series of international symposia. It was devoted to the technology of Artificial Intelligence (AI), Automation and Robotics (A&R) and its application in space. The Symposium took place on 1-3 June 1999 at ESTEC, the European Space Agency’s Technology Centre located at Noordwijk in the Netherlands. The main topics covered by the Symposium were:

Artificial intelligence for space systems

- Spacecraft autonomy: Onboard software for mission planning and execution (resource management, fault protection, science data analysis, guidance, navigation and control), smart sensors, testing and validation, architectures;
- Mission operations automation: Decision support tools (for mission planning and scheduling, anomaly detection and fault analysis), innovative operations concepts, data visualisation;
- Design tools and optimisation methods, electronic documentation;
- Artificial intelligence methods (automated planning and scheduling, agents, model-based reasoning, machine learning and data mining).

Robotics and automation for space systems

- Application scenarios (e.g. space base assembly and servicing, external and internal payload tending, satellite inspection and servicing, planetary and cometary exploration, ground processing), programatic and utilisation aspects;
- Robotics technologies for A&R systems, support equipment, ground segments, mobility, manipulation, end effectors and tools, sensing and robot vision, control, robot-friendly payload design, test and operations;
- Technology for (non-robotic) space laboratory automation, payload control systems, data communications, imaging, user interfaces and telepresence/telescience.
iSAIRAS '99

Sponsoring Organisations

Italian Space Agency, ASI (Italy)
French National Space Agency, CNES (France)
German Aerospace Centre, DLR, (Germany)
European Space Agency, ESA
Institute of Space and Astronautical Science, ISAS (Japan)
National Aerospace Laboratory, NAL (Japan)
National Aeronautics and Space Administration, NASA (USA)
National Space Development Agency, NASDA (Japan)
Netherlands Agency for Aerospace Programs, NIVR, (Netherlands)

Symposium Chair Panel
G. Hirzinger, DLR (Germany)
M. Montemerlo, NASA (USA)
K. Tsuchiya, Kyoto University (Japan)

Chairpersons of the Regional Programme Committees
R. Doyle, NASA (USA)
P. Putz, ESA
Y. Wakabayashi, NASDA (Japan)

European Organisation Committee
P. Putz, ESA (Chair)
N. Bataille, CNES
D. De Hoop, NIVR
S. Di Pippo, ASI
G. Götz, DLR
M. Maurette, CNES
CONTENTS

Technology Surveys
Session Chairman: P. Putz, European Space Agency

Autonomous Rover Technology for Mars Sample Return.
Weishin C.R., Rodriguez G., Schenker P.S., Das H., Hayati S., Baumgartner E.T., Maimone M.,
Nesnas I., Volpe R.A., Jet Propulsion Laboratory (USA) 1

NASDA’s Activities in Space Robotics.
Ohkami Y., Oda M., National Space Development Agency (Japan). 11

Autonomous Locomotion: CNES Technological Programme
Lamboley M., Maurette M., Centre National d’Etudes Spatiales (France) 19

DLR’s Robotics Lab - Recent Developments in Space Robotics.
Hirzinger G., Landzettel K., Brunner B., Schaefer I., Fischer M., Grebenstein M., Sporer N.,
Schott J., Schedl M., Deutrich C., German Aerospace Centre - DLR (Germany). 25

Space Robotics Applications on the ISS (1)
Session Chairman: J.C. Piedboe, Canadian Space Agency (Canada)

Overview of the Mobile Servicing System for the International Space Station.
Stieber M.E., Hunter D.G., Canadian Space Agency (Canada). 37

Special Purpose Dexterous Manipulator (SPDM) Requirements Verification.
Bassett D., Canadian Space Agency (Canada). 43

ERA: The Flexible Robot Arm.
Schoenejans P., European Space Agency, ESTEC, Oort M., Fokker Space (Netherlands) 49

Assembly of Large Spacecraft: The XEUS Mission.
Didot F., Bavadaz M., Schiemann J., European Space Agency, Knoop U., Daimler-Chrysler Aerospace (Germany) 55

Petersen H., Fokker Space (The Netherlands)

Rover Systems (1)
Session Chairman: R. Siegwart, Ecole PolytechniqueFédérale de Lausanne (Switzerland)

Designing of Lunar Rovers for High Work Performance.
Akiyama J., Yoshioka N., Miyata M., Wakahayashi Y., National Space Development Agency (Japan). 63

Nanohod Microrover Heading Towards Mars.
Van Winckel M., Visentin G., European Space Agency, Bertrand R., Von Hoerner and Sulger GmbH (Germany),
Rieder R., Max-Planck Institut für Chemie (Germany) 69

Low Power Mobility System for Micro Planetary Rover Micro 5.
Kuroda Y., Kondo K., Nakamura K., Meiji University (Japan), Kunii Y., Chuo University (Japan),
Kubota T., Institute of Space and Astronautical Science (Japan). 77

Hopping Rover MINERVA for Asteroid Exploration.
Yoshimitsu T., University of Tokyo (Japan), Kubota T., Nakatani I., Institute of Space and Astronautical Science (Japan),
Adachi T., Saito H., Nissan Motor Company (Japan). 83

Planning and Scheduling of Space Operations (1)
Session Chairman: K. Matsumoto, National Aerospace Laboratory (Japan)

Multi-Agent Planning and Scheduling Environment for Enhanced Spacecraft Autonomy.
Das S.K., Goncalves P., Charles River Analytics Inc. (USA), Krikorian R., MIT Media Laboratory (USA),
Truszkowski W., National Aeronautics and Space Administration (USA). 91

Iterative Repair Planning for Spacecraft Operations Using the ASPEN System.

Space Robotics Applications on the ISS (2)
Session Chairman: C. Heemskerk, Fokker Space Systems (The Netherlands)

EUROPA - External Use of Robotics for Payloads Automation,

Development of the European Technology Exposure Facility, Borgia G., Carlo Gavazzi Space S.p.A (Italy). Dettmann J., Visentin G., European Space Agency,.

Wearable Exo-Skeletal Robot Skil Mate and its Application to EVA Suits, Umetani Y., Yamada Y., Morizono T., Toyota Technological Institute (Japan), Yoshida T., Aoki S., Shimizu Corporation (Japan).

Autonomy in Planetary Exploration
Session Chairman: R. Doyle, Jet Propulsion Laboratory (USA)

Traversability Index: A New Concept for Planetary Rovers, Scraji H., Jet Propulsion Laboratory (USA).

Increased Flexibility and Robustness of Mars Rovers, Bresina J.L. Golden K., Smith D.E., Washington R., National Aeronautics and Space Administration, (USA).

Autonomy Technology Challenges of Europa and Titan Exploration Missions, Atkinson D.J., Jet Propulsion Laboratory (USA).

Automation of Spacecraft Mission Operations
Session Chairman: T. Iwata, National Space Development Agency (Japan)

Computer Intelligence in Integrated Satellite Design Support Infrastructure, Nakasuka S., Maeda K., University of Tokyo (Japan), Sato M., Kiritani K., Sato K., Koda T., Mitsubishi Electric Corporation (Japan)

An AI Approach to Ground Station Autonomy for Deep Space Communications, Fisher F., Eslin T., Mutz D., Chien S., Jet Propulsion Laboratory (USA).

Intelligent Optical Polarimetry Development for Space Surveillance Missions, McMackin L., Zetocha P., Sparkman C., Air Force Research Laboratory (USA)

Robotic Servicing Demonstration Missions

Session Chairman: Y. Okhami, National Space Development Agency (Japan)

Demonstration Mission of a Satellite Servicing System,
- Oda M., Inaba N., National Space Development Agency (Japan).

Vision and Interactive Autonomy Bi-Lateral Experiments on the Japanese Satellite ETS-VII,
- Galardini D., Kapellos K., Maesen E., Trasyis Space (Belgium), Visentin G., Didot F., European Space Agency

The Ranger Telerobotic Shuttle Experiment: An On-Orbit Satellite Servicer,
- Parrish J.C., National Aeronautics and Space Administration, (USA).

The ISS Inspector Mission,
- Wilde D., Brüge U., Daimler-Benz Aerospace Infrastructure (Germany), Sytin O., RSC-Energia (Russia).

Rover Systems (2)

Session Chairman: S. Hayati, Jet Propulsion Laboratory (USA)

Autonomous Navigation Field Results of a Planetary Analog Robot in Antarctica,

Solar Power Expert for Remote Robotic Explorers,
- Shillcutt K., Whittaker W., Carnegie Mellon University (USA).

ROAMS: Rover Analysis Modeling and Simulation,
- Yen J., Jain A., Balaram J., Jet Propulsion Laboratory (USA).

An Integrated Architecture for Co-operating Rovers,
- Estlin T., Yen J., Petras R., Mutz D., Castaño R., Rabideau G., Steele R., Jain A., Chien S., Mjolsness E.,
 Gray A., Mann T., Hayati S., Das H., Jet Propulsion Laboratory (USA).

Spacecraft Autonomy

Session Chairman: F. Richard, Alcatel (France)

Integrated Planning and Execution for Satellite Tele-Communications,
- Rajan K., Plaunt C., Coelum Research Corporation (USA), Pell B., Marketplace.Net (USA),
 Muscettola N., RECOM Technologies (USA).

Satellite Tele-Communications Scheduling as Dynamic Constraint Satisfaction,
- Plaunt C., Frank J., Coelum Research Corporation (USA), Jonsson A.K., RIACS, (USA).

Adaptive Resource Profiling,
- Decoste D., Jet Propulsion Laboratory (USA).

Autonomy Architectures for a Constellation of Spacecraft,
- Barrett A., Jet Propulsion Laboratory (USA).

Robotic Satellite Servicing Experiments on ETS-7

Session Chairman: G. Hirzinger, German Aerospace Centre (Germany)

Results of the ETS-7 Mission - Rendezvous Docking and Space Robotics Experiments,
- Kasai T., Oda M., Suzuki T., National Space Development Agency (Japan).

Antenna Assembly Experiments Using ETS-VII,
- Kimura S., Tsuchiya S., Communications Research Laboratory (Japan).

Teleoperation Control of ETS-7 Robot Arm for On-Orbit Truss Construction,
- Matsumoto K., Wakabayashi S., Penin. L.F., Nohmi M., National Aerospace Laboratory (Japan),
 Ueno H., Yoshida T., Fukase Y., Shimizu Corp. (Japan).

Performance Evaluation of Advanced Robotic Hand System in Space Experiment,
- Machida K., Ministry of Trade and Industry (Japan), Akita K., USEF (Japan),
 Ohno K., Moriya M., Nishida H., Ohsawa T., Fujitsu Ltd. (Japan)
Rover Control (1): Control of Special Tasks
Session Chairman: J.L. Bresina, National Aeronautics and Space Administration

Autonomous Rock Tracking and Acquisition from a Mars Rover,
Maimone M., Nesnas I., Das H., Jet Propulsion Laboratory (USA).

Autonomous Sample Acquisition for Planetary and Small Body Explorations,

Evolution of Autonomous Self-Righting Behaviors for Articulated Nanorovers,
Tenstel E., Jet Propulsion Laboratory (USA).

Spacecraft Autonomy: Experiments on Deep Space One
Session chairman: P. Zetocha, Air Force Research Laboratory (USA)

Validating the DS-1 Remote Agent Experiment,
Nayak P., Kurien J., National Aeronautics and Space Administration (USA), Dorais G., Millar W., Rajan K., Kanełsky R., Caelum Research (USA), Bernard D.E., Gamble E.B. Jr., Rouquette N., Smith B.D., Tung Y-W., Jet Propulsion Laboratory (USA), Muscetta N., Taylor W., Recom Technologies (USA)

Wyatt J., Sherwood R., Sue M., Szijjarto J., Jet Propulsion Laboratory (USA).

Next Generation Remote Agent Planner.
Jonswn A.K., National Aeronautics and Space Administration (USA), Muscettola N., Recom Technologies (USA)

Demonstrations
Session Chairman: M. Van Winnendael, European Space Agency

Micro Planetary Rover Micro 5,
Kubota T., Nakatani I., Institute of Space and Astronautical Science (Japan), Kuroda Y., Meiji University (Japan), Kunii Y., Chuo University (Japan).

Active Surface Imaging System ASIS,
Flitscher R., Dornier Satellitenysteme (Germany), Ulbrich G-J., European Space Agency, Ulrich A., Riegler Laser Measurement Systems (Austria), Paar G., Joanneum Research (Austria).

Demonstration of the Planetary Utilisation Testbed,
V. n Winnendael M., European Space Agency.

Control Experiments on ETS-7
Session Chairman: K. Tsuchiya, Kyoto University (Japan)

ETS-7 Space Robot Teleoperation Through Virtual Force Reflection,
Pelin L.F., Matsumoto K., Wakabayashi S., National Aerospace Laboratory (Japan).

A Wire Handling Experiment using a Teleoperated Advanced Robotic Hand on ETS-VII,
Matsuhira N., Asakura M., Shinomiya Y., Toshiba Corporation (Japan), Machida K., Taniguchi M., Ministry of Trade and Industry (Japan), Nishida H., Fujitsu Ltd. (Japan), Bamba H., Aoba Sangyo Co.

Generalised Visual Aid for Direct Teleoperation Applied to ETS-7 Truss Manipulation Experiment,
Wakabayashi S., Matsumoto K., National Aerospace Laboratory (Japan).

Vision-Based Robotics Control Experiment on ETS-VII,
Vergauwen M., Koch R., Tuytelaars T., Van Gool L., Catholic University of Leuven (Belgium).

Reactionless Manipulations and Proposal to ETS-VII On-Board Experiments,
Yoshida K., Tohoku University (Japan), Nenchev D.N., Hirosaki University (Japan).
Rover Control (2): Navigation and Piloting
Session Chairman: I. Nakatani, ISAS (Japan)

Command Generation for Planetary Rovers using Virtual Reality,
Blackmon T.T., Smith D., National Aeronautics and Space Administration, (USA). Neveu C., Allport C., Anderson C., Gupta V., Caelum Research Corp. (USA), Nguyen L., Kline A. Recon Technologies (USA).

Rover Self Localization in Planetary-Like Environments,
Lacroix S., Mallet A., Chatila R., LAAS-CNRS (France), Gallo L., Aerospatiale (France).

3-D Localization for a Mars Rover Prototype,
Roumeliotis S.I., Bekey A., University of Southern California (USA).

Stored Image-Based Map Building and Navigation for Planetary Rovers,
Nakasuka S., Yamamoto H., Tanaka A., University of Tokyo (Japan).

Long Range Navigation for Mars Rovers Using Sensor-Based Path Planning and Visual Localisation,
Lambach S.L., Olson C.F., Burdick J.W., Hayati S., Jet Propulsion Laboratory (USA).

Intelligent Planning and Control of Spacecraft Operations
Session Chairman: N. Battaille, French Space Agency (France)

Efficiency and Fairness when Sharing the Use of a Satellite,
Bataille N., CNES (France), Lemaire M., Verfaille G., ONERA-CERT (France).

Fuzzy Logic for Spacecraft Control: A European Approach,

INTELMOD: Artificial Intelligence in Support of Mission Operation Tasks,
Donati A., European Space Agency Romani E., Dataspazio (Italy), Aynsley M., Science Systems Ltd. (UK).

Anomaly Detectoric Ground Support System for Mars Probe NOZOMI,
Hashimoto M., Institute of Space and Astronautical Science (Japan), Nishigori N., Systems Engineering Group (Japan), Mizutani M., Fujitsu Social Systems Engineering Ltd. (Japan).

A New Design Approach of Software Architecture for an Autonomous Observation Satellite,
Gout J., Fleury S., LAAS-CNRS (France), Schindler H., Matra Marconi Space (France).

Robot Operations Preparation and Commanding
Session Chairman: S. Nakasuka, University of Tokyo (Japan)

Mission Preparation and Training Facility for the European Robotic Arm (ERA),
Prokh Z., Schoonemade M., National Aerospace Laboratory - NLR (Netherlands), Baig W., Spacebel Informatique (Belgium).

A Universal Task-Level Ground Control and Programming System for Space Robot Applications,
Brunner B., Landzeettel K., Schreither G., Steinmetz B.M., Hirzinger G., German Aerospace Centre - DLR (Germany).

Projective Virtual Reality: A Novel Paradigm for the Commanding and Supervision of Robots and Automation Components in Space,
Freund E., Rossmann J., Institute of Robotics Research, IRF (Germany).

A System Integrating High and Low Level Planning of Complex Tasks with a 3-D Visualiser,
Finzi A., Pirri F., Schaefer M., University of Rome ‘La Sapienza’ (Italy).

Systems Aspects of Space Manipulation
Session Chairman: K. Yoshida, Tohoku University (Japan)

Safety Approach of Japanese Space Manipulation System,
Tatsuo M., Satoh N., Satoh T., Hisatome Y., Doi S., National Space Development Agency (Japan), Kuwao F., Toshiba (Japan).

Knowledge Representation and Reasoning for Fault Identification in a Space Robot Arm,
Portinale L., Università del Piemonte Orientale (Italy), Torasso P., Correndo G., University of Turin (Italy).
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research and Development of Reconfigurable Brachiating Space Robots</td>
<td>547</td>
</tr>
<tr>
<td>Ohkami Y., Hayashi R., Yamamoto H., Matunaga S., Tokyo Institute of Technology (Japan).</td>
<td></td>
</tr>
<tr>
<td>Tele-Science by Planetary Rover Micro 5.</td>
<td>553</td>
</tr>
<tr>
<td>Kunii Y., Otsuka M., Chuo University (Japan), Suhara M., Kuroda Y., Meiji University (Japan), Kubota T., Institute of Space and Astronomical Science (Japan).</td>
<td></td>
</tr>
</tbody>
</table>

Planning and Scheduling of Space Operations (2)

Session Chairman: K. Rajan, *National Aeronautics and Space Administration (USA)*

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisational Learning Agents for Task Scheduling in Space Crew and Robot Operations, Takadama K., Watabe M., Shimohara K., ATR Human Information Processing Research Laboratories (Japan), Kasahara, H., Nara Institute of Science and Technology (Japan), Huang L., Japan Institute of Science and Technology (Japan), Li H., Nakasuka S., University of Tokyo (Japan).</td>
<td></td>
</tr>
</tbody>
</table>

Space Robot System Verification

Session Chairman: Y. Wakabayashi, *National Space Development Agency (Japan)*

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware-in-the-Loop Simulation of Robots Performing Contact Tasks, Aghili F., Dupuis E., Piedboeuf J.-C., Carufel J. de, Canadian Space Agency (Canada).</td>
<td></td>
</tr>
<tr>
<td>Experimental Validation of Contact Dynamics Simulation of Constrained Robotic Tasks, Van Vliet J., Sharif I., University of Victoria (Canada).</td>
<td></td>
</tr>
<tr>
<td>An End-to-End Solution for Robot Workcell Calibration and Performance Assessment, Ma O., McDonlad Dettwiler Space and Advance Robotics Ltd. (Canada).</td>
<td></td>
</tr>
<tr>
<td>Experiments of a Space Robot in the Free-Fall Environment, Watanabe Y., National Space Development Agency (Japan), Nakamura Y., University of Tokyo (Japan).</td>
<td></td>
</tr>
</tbody>
</table>

Robotics for Small Body Exploration

Session Chairman: S. Hayati, *Jet Propulsion Laboratory (USA)*

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomous Landing and Smart Anchoring for In-Situ Exploration of Small Bodies, Ghavimi A.R., Serricchio F, Dolgin B., Hadaegh F.Y., Jet Propulsion Laboratory (USA).</td>
<td></td>
</tr>
<tr>
<td>Design of Contact Compliance and Simulation of Touch-Down Sequence of MUSES-C Satellite for Asteroid Sampling, Yoshida K., Tohoku University (Japan).</td>
<td></td>
</tr>
<tr>
<td>Precise Image-Based Motion Estimation for Autonomous Small Body Exploration, Johnson A.E., Mathies L.H., Jet Propulsion Laboratory (USA).</td>
<td></td>
</tr>
</tbody>
</table>
Advanced Space Robot Technologies

Session Chairman: S. Matsunaga, Tokyo Institute of Technology (Japan)

A Dexterous Gripper for Space Robotics,
Bonivento C., Melchiorri C., Vassura G., University of Bologna (Italy), Ferretti G., Maffezoni C., Magnani G., Polytechnic of Milan (Italy), G. Beccari., Caselli S., Zanichelli F., University of Parma (Italy).

On-Board Perception Processing for Space Robots,
Wakabayashi Y., Miyata M., National Space Development Agency (Japan), Nishimaki K., AES Corporation (Japan).

A Buyer’s Guide to Forward Intersection for Binocular Robot Vision,
Gruenfelder S., Austrian Aerospace GmbH (Austria), Krickl R., Vienna University of Technology (Austria).

A Trajectory and Force Control of a Manipulator with Elastic Links,
Tsujita K., Tsuchiya K., Kawano Y., Kyoto University (Japan).

Spacecraft 3-Axis Attitude Control by Space Robot Motion,
Tsuda S-I., Aoki H., Tokai University (Japan).

Exhibits

Genetic Algorithms used to Determine WSB Trajectories for the Lunarsat Mission,
Ockels W.J., European Space Agency, ESTEC and Delft University of Technology (Netherlands), Biesbroek R., GA Consultant (Netherlands).

Force Simulation in Telerobotic System with Large Time Delay,
Zhuang Jun., Sun Zenqi., Cheng Peng., Tsinghua University (P.R. China).

Limitations of Hardware-in-the-Loop Simulations of Space Robotics Dynamics using Industrial Robots,
Krenn R., Schaefer B., German Aerospace Centre, DLR (Germany).

JERRY: A System for the Automatic Generation and Execution of Plans for Robotic Devices:
The Case Study of the SPIDER Arm,
Cesta A., Riccucci P., National Research Council, CNR (Italy), Daniele M., Traverso P., IRST (Italy), Giunchiglia E., Piaggio M., University of Genoa (Italy), Schaerf M., University of Rome ‘La Sapienza’ (Italy).

An Artificial High-Level Vision Agent for the Interpretation of the Operations of a Robotic Arm,
Chella A., Gaglio S., Guarino D., Infantino I., University of Palermo (Italy).

The Jumping Tortoise: A Robot Design for Locomotion on Micro-Gravity Surface,
Yoshida K., Tohoku University (Japan).

Smart, Simple and Low-Cost Control of Planetary Exploration Rovers
Biesbroek R.G.J., Matthysen A.Y.J., JAQUAR Space Engineering (Netherlands)

SYMOFROS: A flexible Dynamics Modelling Software
Piedboeuf J.C., Doyon M., Langlois P., L’Archevêque R. Canadian Space Agency (Canada)

List of Participants