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Abstract
This paper presents a model based vision system
intended for satellite proximity operations. The
system uses natural features on the satellite surfaces
and three dimensional models of the satellites and
docking interfaces, and it does not require any
artificial markers or targets. The system processes
images from stereo cameras to compute 3D data. The
pose is determined using a fast version of an Iterative
Closest Point algorithm. The system has been
characterized under representative space-like
conditions (illumination, material properties and
trajectories) and proven to be robust to this
environment.
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1 Introduction
Recent space missions, such as ETS–VII – an
autonomous rendezvous and docking of unmanned
satellites [3, 11] and the International Space Station
assembly [9], have demonstrated successful
operations of vision systems on-orbit. These vision
systems provided information about the position and
orientation of observed spacecrafts and structures
during unmanned and manned operations. However,
these vision systems relied on the presence of visual
targets or retro-reflectors. This restricted vision based
operations to predefined tasks only (distances and
viewing angles). It also required an ability to control
the orientation of the observed spacecraft so, as the
visual targets were always visible.

Future space operations, such as, satellite inspection
and servicing, will require much more advanced
vision systems that will be able to detect and
recognize observed objects from arbitrary viewpoints
[4]. Such a capability will enable servicing

spacecrafts to locate, approach, and dock or capture
target satellites autonomously and to perform various
servicing tasks [6]. Satellite servicing operations
performed on-orbit, for example, inspection,
hardware upgrades and refueling will extend the life
of the satellites and reduce operational costs by
eliminating the launches of hardware, which is
already on-orbit.

The technical challenge is to develop advanced and
flexible vision systems capable of operating reliably
in the space environment. Any approach taken to
provide three-dimensional data to the robotic
guidance system must be robust and reliable
throughout a wide range of approach vectors and
lighting conditions. The on-orbit environment
consists of intense sunlight combined with dark
shadows, which presents challenging lighting
situations. The contrast in an image is often beyond
the dynamic range of a camera resulting in the loss of
some of the data within the scene.

In this paper we describe a vision system developed
by MD Robotics that is capable of computing the
pose of known objects using only their geometrical
models and natural surface features. The system
operates reliably under simulated on-orbit conditions
(illumination, distance, viewing angle, and partial
data loss due to shadows and reflections).
Performance of the system has been tested in a
laboratory environment representative for satellite
proximity operations.

2 Vision System tasks and
requirements

Space vision systems provide three-dimensional
information about the position and orientation of
observed spacecraft or structure. An image of
Canadarm preparing to capture a free floating
satellite, Spartan, is shown in Figure 1.



Figure 1 Canadarm preparing to grasp the
Spartan satellite.

Operating range of such a vision system may extend
from approximately 100 m to contact. It is expected
that Global Positioning Systems will be used to bring
the servicer within this range of the target spacecraft.
Different sensors and algorithms will be used for
different phases of the satellite operation. The
operations are typically divided into phases according
to the distance long, medium and short range. At the
long range (100 – 20m) the vision system must
determine bearing and distance to the satellite of
interest and its approximate orientation and motion.
At the medium range (20 –2m) the distance,
orientation and motion must be determined very
accurately and with high confidence. Only when this
information is known the servicer spacecraft might
approach the target satellite and dock with it using a
short range module (below 2m).

The short range subsystem will be used for well
defined operations of docking or grasping and the
expected range of distance and viewing angles will
be restricted by the allowed approach trajectories to
the target spacecraft. Lights mounted together with
cameras may be used to illuminate the scene.
Computer vision techniques that rely on presence of
well defined features on or around the interface can
be used then. For example, techniques similar to the
ones tried by two vision system tested in space [3]
and SVS [9] can be used, or a variation on techniques
applied in industrial automation can be adopted.

The medium range poses a much more difficult
challenge as the viewing angles are unrestricted, the
distance varies significantly, and the vision system
mostly relies on ambient illumination from the Sun or
Earth albedo. For the purpose of our work we assume
that the vision system is activated within the medium
range and provided with an approximate attitude
towards a satellite of interest, its distance and
orientation. Techniques for determining such

information are currently investigated, and concepts
and initial results are presented in a companion paper
[7].

At the medium range it is expected that the vision
system will be capable of estimating pose of the
observed object at a rate of 0.3 – 3 Hz. This
requirement is derived from a maximum relative
motion of a satellite that still allows capturing or
docking with it.

Expected accuracy of a vision system is related to a
capture envelope of a mechanical interface.
Depending on the interface this envelope can be from
2” (for small mechanisms) to 10“ (Canadarm), the
angular misalignment is in the range of 2 – 10
degrees. However, these requirements are defined at
contact and are mostly relevant for the short range
system. For the medium range system it expected that
accuracy in order of 1% of the distance and several
degrees of the object orientation will be sufficient.

On-orbit illumination and the imaging properties of
materials used to cover satellites pose significant
challenges for any vision system. The illumination
changes from day to night as the spacecraft is
orbiting the Earth, for example for the International
Space Station this period is 90 minutes. The objects
can be illuminated by a combination of direct
sunlight (an intense point-like source creating hard
shadows), Earth albedo (extended diffuse and almost
shadow-less source) and on-board lights. The
insulation materials used in spacecraft manufacture
are either highly reflective metallic foils or
featureless white blankets that loosely cover the
satellite body. This causes specular reflections and
lack of distinct and visually stable features such as
lines or corners.

3 Vision system architecture
The vision system currently under development at
MD Robotics is a solution to the medium range
vision problem (20 – 2 meters) for the satellite
servicing operation. The system uses stereo cameras
and a x86 family 6 computer that runs the developed
software. The cameras are rigidly coupled together
and may be mounted close to a docking interface of a
servicer satellite, inside a cargo bay of a shuttle or on
an end-effector of a robotic manipulator. We chose to
use cameras instead of scanning rangefinders [2, 8] as
they are lighter, cheaper, and contain no moving
parts, which allows them to survive better the space
environment. However, the cameras require ambient
illumination or camera lights for their operation.

Architecture of the developed vision system is shown
in Figure 2. The processing is divided into off-line
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and on-line processing. Off-line processing may be
performed on the ground or in space, and includes
calibration of the cameras and pre-computing data
that will be used during the on-line phase. During the
on-line phase the vision system acquires images from
the cameras, computes the 3D data, determines and
tracks 3D pose of the observed object. The vision
system algorithms are embedded in a server that is
responsible for communication with the external
world, i.e., user interfaces, robot controllers and a
spacecraft Guidance, Navigation and Control system.

3D
computation

3D pose
estimation

Calibration

Vision server

User interfaces,
data log

off-line processing,
ground or space

pose, confidence

stereo cameras

on-line processing,
space
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Figure 2 Vision system architecture

3.1 Camera calibration
The system calibration and data initialization is
performed off-line and maybe be performed on the
ground before the launch or in space. The camera
calibration module estimates intrinsic and extrinsic
parameters of the stereo cameras. The calibrated
camera model includes focal length, geometrical
distortions of the camera / lens assembly: radial and
tangential, and the location of the principal point in
the image plane. The camera calibration algorithm is
an extension of recent work on camera auto-
calibration [14].

Calibration is performed using several arbitrary
(unknown) views of a planar calibration target. The
target used in our experiments is shown in Figure 3,
but any planar object with detectable surface features
is sufficient.

Figure 3 A calibration target used by the
vision system

Classical approaches to camera calibration are fairly
labour intensive. They require complex three
dimensional targets, images are acquired at multiple
camera/target positions, and often it is necessary to
measure the relative position of the camera and target
very accurately. Some algorithms can estimate the
relative camera / target pose [13]. However, then the
mathematical camera model may model only simple
lens distortions, and large 3D targets are still required
for calibration. Such calibration must be performed in
ground based laboratories and this process cannot be
repeated once the hardware is in orbit. This is a
significant limitation as even small mis-calibration
due to, e.g., thermal and aging effects reduce
accuracy of any vision system. Our approach can be
used to calibrate cameras on-orbit, as it only requires
a planar object to be presented to the cameras in
several arbitrary poses.

After the calibration the updated camera parameters
(internal and external) are incorporated into the stereo
system’s model. In order to accelerate the on-line
phase certain image and 3D transformations are
computed off-line and stored as look up tables.

3.2 3D computation
The 3D computation module processes stereo images
obtained from two calibrated cameras and computes
3D data. The process follows a typical processing
sequence and it starts from warping the images,
which corrects for geometrical lens distortions and
rectifies the stereo geometry. Edges detected in the
rectified images are matched and used to create a
sparse 3D representation of the scene [6]. One of the
stereo images of a mockup representing a satellite,
which was used in experiments, is shown in Figure 4.
Different views of the computed 3D representation
are shown in Figure 5.
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Figure 4 One of the stereo images

Figure 5 Computed 3d representation shown
from different viewpoints

The 3D computation adapts to variable illumination
and scene content, and uses only a minimum number
of control parameters. In a typical scene our vision
system computes approximately 1000 3D points.

3.3 Pose Estimation
To determine the position and orientation of the
object, the 3D data points are matched to a known
model using a version of the Iterative Closest Point
algorithm (ICP) [1]. Our implementation of this
algorithm consists of the following steps [6]:

1. Selection of the closest points between the model
and the data set

2. Rejection of outliers

3. Computation of geometrical registration between
matched data points and the model

4. Application of geometrical registration to the data

5. Termination of the iteration after stopping criterion
is reached

The algorithm iterates the steps 1-4 until the stopping
criterion (convergence and/or reaching the maximum
allowed number of iterations) is met.

Detection of the closest points between the model
and the data sets involves computing distances for
each combination of data points and model features.
This is a computationally intensive process and
different model representations and acceleration
schemes have been used [1, 15]. For models
represented as points or meshes k-d trees are often
used [12]. Man-made objects, which can be
represented as collections of simple shapes, allow
using efficient closed form solutions to compute the
distances between points and model parts [6]. In the
current version of our system we have implemented a
very fast algorithm, which eliminates the need to
perform any on-line distance calculations.

3.3.1 Pre-computed Distance Maps
As the computation of distances between data points
and models is time consuming, we have eliminated it
from the on-line phase and pre-computed all
distances in advance off-line. This comes at a price of
having to store the data and/or reduce the resolution
of the distances.

The space surrounding the model is partitioned into
voxels and the closest point between the centre of
each voxel and the model is computed off-line.
During the on-line operation, instead of computing
the closest point to the model we simply need to
lookup the distance based on the partition in which
the data point lies. The data structure chosen to
facilitate the pre-computed distance map is the
octTree. An octTree is a tree structure where each
node is either a leaf or has eight children. From any
one point in 3D space one can move in the positive or
negative direction for each dimension giving 23 = 8
partitions. Since we have eight such partitions we
refer to each one as an octant. Each octant can then
be subdivided, with each sub-octant representing a
region of space one eighth the size of its parent, see
Figure 6.
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(a) An Octant (b) Partioning of a region of space

(c) Tree representation for the space partioned in (b)

Figure 6 Octtree represnetation of a 3D
space

The closest point to the model from each corner of
the octant is stored at each node. When we wish to
determine the closest point on the model from some
arbitrary point p in space we traverse the tree and
find the smallest octant containing p. Next we find
the closest corner of the octant, c, to point p and use
the closest point on the model from point c as an
approximation of the closest point to p. This is a
simple and very fast way of getting an approximation
of the closest point to p. No calculation is required -
we simply use the octTree as a lookup table.

Figure 7 shows a model of the object used in the
experiments and Figure 8 its octTree representation at
the level 2.

Figure 7 - Object Model

Figure 8 Level 2 OctTree Representation of
the Model

In our experiments we have used level 7 as a good
compromise between the size, accuracy and
processing speed.

Experimental results show that looking up the closest
point to the model using the octTree is over 1000
times faster than performing the calculation. The
disadvantage to using octTrees is that all the pre-
computed data needs to be stored. Some measures
have been implemented to reduce the storage space
required for octTrees. A trade-off between the size
and resolution of octTrees is illustrated in Table 1 for
an object within a space of 0.5 x 0.5 x 0.5 m.

Table 1 Accuracy and Size of OctTrees

Tree
Level

Size of
Octant
[mm3]

Maximum
Distance to
Nearest Corner
[mm]r

Model
Size [MB]

4 31 27.0 0.25

5 15 13.5 2

6 7.8 6.75 16

7 3.9 3.38 128

8 1.95 1.69 1024

9 0.976 0.85 m 8192

4 Experimental verification
Testing the performance of vision systems is
becoming a separate sub-discipline in computer
vision. Any system that is or will be installed as part
an autonomous system must be fully characterized in
representative environments and under expected
operational scenarios before its deployment. The
experiments conducted with our vision system
attempted to determine the operational ranges where
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such a vision system can be used successfully. Such
information allows one to use the system in a safe
and predictable manner and to focus future
development. The scope of the performed tests
included measurements of:

• performance, accuracy and repeatability of the
main software components of the vision system

• performance, accuracy and repeatability of the
complete vision system for different scenarios

• effects of illumination on operation of the
complete system

The testing has been performed using the Space
Vision Testbed with two jointly calibrated robots
[10]. The robot positions reported by their controllers
were treated as accurate measurements of the relative
pose of a mockup with respect to a stereo camera
platform. Representative scaled mockups have been
manufactured using real spacecraft insulation
materials: a Spartan-like model of a satellite, see
Figure 1 and Figure 5. The mockups were moved in
space mimicking trajectories that might be executed
during an actual space mission: direct and loop
approach, fly-around.

The illumination was scaled down to 1% of the on-
orbit level and provided by a computer controlled
mobile spotlight with a subtense angle similar to the
Sun and large screens simulating the Earth albedo.
Several combinations of available light sources were
used: direct Sun light (using one of two different
spotlights), “Earth albedo” - directional diffuse light
and diffuse ambient light. The spotlights were
arranged in such a way to create hard shadows and
local image saturation in some of the images.

5 Results
Testing system components involved testing the
camera calibration accuracy, which was found to be a
small fraction of a pixel. Testing of the 3D generation
module allowed us to determine that it operates in
stable fashion under variable light intensity (between
40%– 100%), direction and type, and observed
objects and scene complexity. The system operated
always successfully with 25% data loss and often
with even 50%. Example images from experiment
with a loop approach are shown in Figure 12. The
right window displays one of the stereo images of a
mockup. The left window displays a synthetic image
obtained by rendering the mockup in the same pose
and from the same direction as the camera.  The
numbers show the computed pose.

Figure 9 Several images from a test
sequence

During this test the stereo camera platform
representing the chaser satellite was approaching the
mockup, which performed a rotation about Y (yaw)
axis. The estimated distance to the mockup has been
plotted as a function of the actual distance in Figure
10, and the estimated angle in Figure 11.
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Figure 10 Estimated distance against the
actual distance
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Figure 11 Estimated yaw angle as the
function of the actual distance

Figure 12 shows images from another test; note the
shadows cast on the observed object. The shadow
edges are located on the object surface and they are
actually beneficial as they provide additional 3D data
(the data in the shadow is totally lost).

Figure 12 Actual and computed images from
an experiment with shadows

The effective range of the tested stereo system (for
the lens and cameras used) was found to be in the
range of 5 – 20 stereo baselines. The maximum range
was limited by the size of the object in the images
and a small disparity, which was affecting the
measurement accuracy and ability to compute the
pose. The minimum range was limited by the fact
that object exceeded the image size – we used only
one model of the object.

Iterative algorithms such as ICP operate successfully
when they are initialized within the convergence
range of the algorithm [1]. Measuring this range
requires a very large number of tests in order to test
convergence from many initial conditions [5]. We
have conducted exhaustive tests, in which we

determined that the algorithm always converges in
the range is of 15 – 30 degrees depending on the
shape of the object. The high likelihood convergence
range is larger than the guaranteed and it also
depends on the object.

The processing time of our software is, on a x86
family 6 model 7 computer, in order of 1 second with
most of the time spent computing 3D data.

6 Conclusions
This paper presents a design and the results of an
experimental characterization of a vision system for
satellite proximity operations. The system can track
the 3D pose of a known object using only
geometrical models and natural features detected on
the object surfaces. As the system computes highly
redundant data, partial data loss due to occlusion,
shadows or local specular reflection does not affect
the system operation.

The system was characterized using representative
images obtained using a calibrated testbed. The
images generated in experiments have been stored in
a database and are available to collaborating research
institutions for evaluation of their computer vision
algorithms.

Pre-computing certain data off-line allows our system
to rely on advanced and reliable algorithms and
operate at 1 Hz on a desktop computer. The 3D
computation, which uses most of the processing time,
can be implemented in dedicated hardware off-
loading the CPU and/or increasing the update rate.

Current work focuses on extending the vision system
capabilities by incorporating additional modules that
compute automatically the initial pose [7],
implementing the short range module, and integrating
the vision system in a closed loop control system.

The funding for this work has been provided in part
by a contract from Canadian Space Agency to
develop an Object Recognition and Pose Estimation
Toolkit.
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