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Abstract 
Future planetary exploration missions will require rovers 
to perform difficult tasks in rough terrain, with limited 
human supervision.  Many current motion planning and 
control algorithms do not consider the physical 
characteristics of the rover and its environment, which 
limits their effectiveness in rough terrain.  This paper 
presents an overview of physics-based rover and terrain 
modeling techniques that allow improved prediction of 
rough-terrain rover mobility.  Kinematic and force 
models of a rover in rough terrain are presented.  A 
method for on-line estimation of critical terrain physical 
parameters is presented.  A method for on-line 
estimation of wheel-terrain contact geometry is also 
presented.  It is shown that these modeling techniques 
can be used in advanced control and motion planning 
algorithms to improve a rover’s rough-terrain mobility. 

1. Introduction 
In NASA’s recent Pathfinder mission, the Sojourner 
rover was limited to short traverses in relatively benign 
terrain under constant human supervision.  Future 
planetary exploration missions will require rovers to 
perform difficult mobility tasks in rough terrain, with 
limited human supervision [6, 14].  Current rover 
motion planning and control algorithms are not well 
suited to rough-terrain, since they generally do not 
consider the physical capabilities of the rover in its 
environment.  Without capability for on-line prediction 
of a rover’s performance, the system must act 
conservatively to avoid danger.  This limits the ability of 
a rover to attempt acquisition of valuable science targets 
that may lie on steep hillsides, in ravines, etc. 

To meet future mission requirements, advanced 
control and planning methods must be developed that 

consider the physical characteristics of the rover and its 
environment, and thus fully utilize the rover’s physical 
capabilities.  This paper presents an overview of 
physics-based modeling techniques for planetary 
exploration rovers operating in rough terrain.  These 
models can then be used as a basis for advanced control 
and motion planning methods to improve a rover’s 
rough-terrain mobility. 

The “physics-based” research approach described in 
this paper is illustrated in Figure 1.  This approach is in 
contrast to the “black box” approach of many control 
and motion planning methods, which use limited or no 
physical system information.  In the physics-based 
approach, both the rover and its environment are 
carefully modeled to ensure accurate prediction of the 
system’s capabilities. 

 
Figure 1: Physics-based approach 

The modeling techniques presented in this paper are 
divided into two sections: rover models and terrain 
models.  In Section 2, methods for formulating rover 
models are presented.  First, a method for formulating a 
classical kinematic model of a rover in rough terrain is 
presented.  A method for formulating a quasi-static 
model of forces acting on the rover wheels, suspension, 
and manipulator is also presented.  Note that quasi-static 
models are appropriate for current planetary exploration 
rovers, due to their slow speeds.  These models are 
computationally simple, and thus practical for on-board 
implementation. 



In Section 3, methods for formulating terrain models 
are presented.  First, a method for on-line estimation of 
critical terrain parameters is presented [12].  Wheel-
terrain interaction has been shown to play a significant 
role in rough-terrain mobility [2].  On-line estimation of 
terrain parameters is important, since this allows a rover 
to adapt its planning and control strategies to a given 
terrain.  For example, a rover traveling over loose soil 
should behave differently than a rover traveling over 
firm clay.  In this paper a method is presented that uses 
on-board sensors and is computationally simple. 

Second, a method for on-line estimation of wheel-
terrain contact geometry is presented [9].  Wheel-terrain 
contact angles are important elements of a rover model, 
as these angles greatly influence rover force application 
properties.  For example, a rover traversing flat, even 
terrain has different mobility characteristics than one 
traversing steep, uneven terrain.  The method presented 
here uses simple, on-board sensors and an extended 
Kalman filter to fuse noisy signals. 

The modeling techniques presented in this paper form 
a basis for motion planning and control algorithms that 
fully exploit a rover’s capabilities.  These algorithms 
include a rough-terrain control algorithm and a planning 
algorithm that adjusts the configuration of an articulated 
suspension rover to maximize tip-over stability.  Results 
from these algorithms are briefly presented in Section 4 
[8, 9, 10, 11]. 

2. Rover Modeling 
Here, two rover modeling techniques are presented and 
briefly discussed.  The first is a classical kinematic 
model.  The second is a quasi-static model of forces 
acting on the rover wheels, suspension, and manipulator. 

1.1 Rover Kinematic Model 

Kinematic analysis is an important aspect of rover 
mobility prediction.  However, solving the inverse 
kinematic problem of a multi-wheeled rover systems in 
rough terrain is nontrivial.  Here, an analysis of an 
example system (a six-wheeled rocker-bogie rover) is 
summarized [2] (see Figure 2).  This example problem 
illustrates many of the inherent difficulties in modeling 
multi-wheeled rover systems in rough terrain. 

To fully define the rover configuration, ten parameters 
are required: the position of the center of mass of the 
body pc = [px py pz]T, the orientation of the rover body 
(Θ, Φ, Ψ), and the configuration parameters of the 
rocker-bogie mechanism (θ1r, θ2r, θ1l, θ2l).  The inverse 
kinematics problem for this rover involves computing 
the orientation (Θ, Φ, Ψ) of the rover body and the 
configuration (θ1r, θ2r, θ1l, θ2l) of the rover suspension, 
given the shape of the terrain and the position of the 
center of the body pc.  

 
Figure 2: Kinematic description of a six-wheeled rover 

 For a vehicle with m unique wheel-terrain contact 
points, at least m-1 kinematic loop closure equations can 
be written [4].  For the rover shown in Figure 2, these 
loop closure equations are: 
 ( ) Θ+−Θ+= sinsinsincos 111 wlzz lrlrrr θθ  (1) 

 ( )
Θ+

−−Θ+=
sin         

sincossincos 231211
w

lllzz llrlmrr θθθ  (2) 

 ( )
Θ+

−−Θ+=
sin         

coscossincos 241211
w

lllzz llrlfrr θθθ  (3) 

 ( )rrrrmrr lllzz 231211 sincossincos θθθ −−Θ+=  (4) 
 ( )rrrrfrr lllzz 241211 coscossincos θθθ −−Θ+=  (5) 
where zij, i = {r,l}, j = {r,m,f} refers to the z component 
of pij, with index i referring to the right or left side, and 
index j referring to the rear, middle, or front wheel.  Due 
to the mechanical differential in this system, an 
additional equation can be written relating the pitch Φ to 
the angles θ1r and θ1l: 
 ( ) r1l1r1 θθθΦ ′++= 2  (6) 
where θ ′1r is the value of θ1r when the rover is on flat 
terrain.  Thus, six unique kinematic equations can be 
written for the rover in Figure 2. 

Inputs to the problem are assumed to be a terrain 
elevation map, the position pc of the rover center, and 
the rover heading Ψ.  Position and heading are taken as 
inputs since the goal of kinematic analysis is often to 
predict the traversability and stability at a given point in 
the terrain map.  These inputs reduce the number of 
unknown parameters to six, which can be determined by 
solving the nonlinear system of Equations (1-6).   

Numerical techniques such as Newton’s method and 
steepest descent can be applied to this problem, although 
convergence is not guaranteed since the terrain elevation 
map is generally not represented by a continuously 
differentiable function.  A solution method for rover 
inverse kinematics have been presented that rely on 
simplifying assumptions about the rover configuration 
[3, 5].  An analytical technique for solving position 
kinematics of multi-module robot systems has been 
presented [16].  In general, computation of the inverse 
kinematic solution of a multi-wheeled vehicle on uneven 
terrain is nontrivial. 
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1.2 Rover Force Analysis 

Force analysis is another important aspect of rover 
mobility prediction.  In this section a force analysis of a 
six-wheeled rover with a rocker-bogie suspension is 
presented.  Here it is assumed that no moments exist at 
the wheel-terrain contact points, a reasonable 
assumption for natural terrain [2]. 

Figure 3 is a diagram of a six-wheeled mobile robot on 
uneven terrain.  The vectors fi represent wheel-terrain 
interaction forces.  The vectors pi are directed from the 
wheel-terrain contact points to the rover center of mass.  
The vector fs at the rover center of mass represents the 
summed effects of gravitational forces, inertial forces, 
forces due to manipulation, and forces due to interaction 
with the environment or other robots.  Note that rover 
link, wheel and body masses are lumped at the center of 
mass.  Note also that fs can possesses a user-specified 
component in the direction of desired motion. 

 
Figure 3: Force analysis of a six-wheeled rover  

A set of quasi-static force balance equations for the 
six-wheeled rover shown in Figure 3 can be written as: 
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where I represents a 3 x 3 identity matrix.  This set of 
equations can be written in compact matrix form as: 
 sfGx =  (8) 

Equation set (8) is generally referred to as the force 
distribution equations [7].  This set of equations 
represents 6 equations in 18 unknowns.  Thus, the force 
analysis problem is underconstrained, and there exists an 
infinite set of wheel-terrain contact force vectors fi that 
balance the body vector fs.  In general, a force analysis 
of an m-wheeled rover will yield six equations in 3m 
unknowns, and thus the force analysis problem will be 
underconstrained except for the trivial case of a two-
wheeled vehicle. 

Solution methods of the force distribution equations 
have been discussed in [12, 15].  In general, a solution to 
the wheel-terrain contact force vector x is found that 

optimizes a user-defined criteria, such as power 
consumption, traction, etc.   

Note that the amount of force that can be applied at the 
wheel-terrain contact force is limited by the actuator 
saturation level and the terrain strength [2].  
Additionally, the force vector x must contain a 
component that is directed normal to the terrain, as this 
ensures that all wheels remain in contact with the 
terrain.  These limitations can be viewed as constraints 
on the solution of Equation 8.  The maximum terrain 
strength can be determined by Coulomb theory as 

( )φστ tan+= cA  where A is the projected wheel area, 
c is the terrain cohesion, σ is the normal stress at the 
wheel-terrain interface, and φ is the internal friction 
angle [2]. 

Failure to find a vector of wheel-terrain contact forces 
x that satisfy Equation 8 implies that the rover cannot 
move in the direction of desired motion.  Conversely, a 
large space of solutions for x implies that the terrain is 
highly traversable.  Thus, force analysis is an important 
part of rover traversability evaluation. 

3. Terrain Modeling 
Here, two terrain modeling techniques are presented and 
briefly discussed.  The first is a method for terrain 
parameter estimation.  The second is a method for 
terrain geometry estimation. 

3.1 On-Line Terrain Parameter Estimation 

Wheel-terrain interaction has been shown to play a 
significant role in rough-terrain mobility [2].  Thus, it is 
important to be able to estimate the values of critical 
terrain parameters, in order to accurately predict rover 
mobility.  Here, the case of a smooth rigid wheel 
traveling through deformable terrain is considered, as 
this is the expected condition for planetary exploration 
vehicles.  A more detailed treatment of this method is 
presented in [12]. 

To estimate terrain parameters, equations relating the 
parameters of interest to physically measurable 
quantities must be developed.  The physical parameters 
of interest are the terrain cohesion c and the internal 
friction angle φ.  Knowledge of these parameters allows 
estimation of the maximum stress a soil region can bear, 
which is important in traversability analysis [2]. 

A free-body diagram of a driven rigid wheel traveling 
through deformable terrain is shown in Figure 4.  A 
vertical load W and drawbar pull DP are applied to the 
wheel by the vehicle suspension.  A torque T is applied 
at the wheel rotation axis by an actuator.  The wheel has 
angular velocity ω, and the wheel center possesses a 
linear velocity, V.  The angle from the vertical at which 
the wheel first makes contact with the terrain is denoted 
θ1.  The angle from the vertical at which the wheel loses 
contact with the terrain is denoted θ2. 
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Figure 4: Rigid wheel on deformable terrain 

The vertical load W and the torque T are assumed to be 
known quantities, since W can be computed from a static 
analysis of the rover and T can be estimated from the 
current input to the wheel motor.  A stress region is 
created at the wheel-terrain interface, and is indicated by 
σ1 and σ2.  The angle from the vertical at which the 
maximum stress occurs is denoted θm. 

From Figure 4, force balance equations can be written 
as: 
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Note that the shear stress τ and normal stress σ are 
functions of c and φ, among other variables [13].  
Analytical solutions of Equations (9-11) are required to 
obtain closed-form expressions for c and φ.  However, 
the complexity of these equations motivates the use of 
an approximate form of the fundamental stress 
equations. 

Figure 5 is a plot of the shear and normal stress 
distributions around the rim of a driven rigid wheel on 
deformable terrain for varying sinkage coefficients n.  
The shear and normal stress distribution curves are 
approximately triangular for a wide range of n [17].  
Based on this observation, a linear approximation of the 
shear and normal stress distribution equations can be 
written. 

 
Figure 5: Normal (solid) and shear stress (dotted) 

distribution around driven rigid wheel 

Simplified forms of the force balance equations can 
now be written and solved for the normal load W and 
torque T:  
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An additional equation can be written if the location of 
the maximum shear and normal stress are assumed to 
occur at the same location θm: 

 ( ) [ ]
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where i is the wheel slip and is defined by i=1-(V/rω).  
The simplified equations can be solved for the 

cohesion and internal shear angle.  Figures 6 and 7 show 
the results of estimation experiments that were 
performed with a six-wheeled laboratory rover.   

 
Figure 6: Estimated soil cohesion c by six-wheeled rover 
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Figure 7: Estimated friction angle φ by six-wheeled 

rover 

These results agree closely with those obtained with an 
instrumented wheel-terrain testbed (see Figure 8). 

 
Figure 8: Wheel-terrain testbed 

3.2 Wheel-Terrain Contact Angle Estimation 

Wheel-terrain contact angles are important elements of a 
rover model, as these angles greatly influence rover 
force application properties.  Here a method for wheel-
terrain contact angle estimation is presented that uses 
simple, on-board sensors.  A more detailed treatment of 
this method is presented in [9]. 

Consider a planar two-wheeled system on uneven 
terrain, see Figure 9.  In this analysis the terrain is 
assumed to be rigid, and the wheels are assumed to 
make point contact with the terrain.   

 
Figure 9: Planar system on uneven terrain 

In Figure 9 the rear and front wheels make contact 
with the terrain at angles γ1 and γ2 from the horizontal, 
respectively.  The vehicle pitch, α, is also defined with 

respect to the horizontal.  The wheel centers have speeds 
ν1 and ν2.  The distance between the wheel centers is 
defined as l. 

For this system, the following kinematic equations can 
be written: 
 ( ) ( )αγναγν −=− 2211 coscos  (15) 
 ( ) ( ) ααγναγν  sinsin 1122 l=−−−  (16) 

Equation (15) represents the kinematic constraint that 
the wheel center length l does not change.  Equation (16) 
is a rigid-body kinematic relation between the velocities 
of the wheel centers and the vehicle pitch rate α . 

Combining Equations (15) and (16) yields: 
 ( ) ( )αγνααγαγ −=−−− 2112 cos )(sin l  (17) 

With the definitions: 
 12112    ,    ,   , ννναγαβαγθ ≡≡−≡−≡ bla  

Equations (15) and (17) become: 
 ( ) θθβθ coscossinsin ab =+  (18) 
 θβ coscos b=  (19) 

Solving Equations (18) and (19) for the wheel-terrain 
contact angles γ1 and γ2 yields: 
 )(cos 1

1 h−−= αγ  (20) 

 αγ += − )(cos 1
2 b

h  (21) 

where: 

 ( ) 122221 442222 −−−++≡ bababaah  
The pitch and pitch rate can be easily measured with 

rate gyroscopes or simple inclinometers.  The wheel 
center speeds can be estimated from the wheel angular 
rate as measured by a tachometer, provided the wheels 
do not have substantial slip.  Thus, wheel-terrain contact 
angles can be estimated with common, low-cost on-
board sensors.  However, sensor noise and wheel slip 
will degrade these measurements. 

Here, an extended Kalman filter (EKF) is developed to 
compensate for these effects.  This filter is an effective 
framework for fusing data from multiple noisy sensor 
measurements to estimate the state of a nonlinear system 
[18].  In this case the sensor signals are wheel 
tachometers, gyroscopes, and inclinometers, and are 
assumed to be corrupted by unbiased Gaussian white 
noise with known covariance.  Inputs to the EKF are a 
system matrix F, a measurement matrix H, process and 
measurement error covariance matrices Q and R, and an 
initial state and covariance estimate.  The EKF computes 
a minimum mean square estimate of the state vector x, 
which is composed of the wheel-terrain contact angles γ1 
and γ2, the wheel center velocities ν1 and ν2, and the 
vehicle pitch α and pitch rate α , i.e. 

[ ]T2121 γγνναα=x .  Note that speeds ν1 and ν2 
can be approximated from knowledge of the wheel 
angular velocities and radii.  The EKF system matrix F 
is a model of the nonlinear system, linearized about the 
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last state estimate.  Here, the nonlinear equations 
describing the wheel-terrain contact angle estimation 
(Equations (7-8)) are linearized to form F.  The system 
measurement matrix H relates the state x to the vector z 
of physically measured quantities ν1, ν2, α and α . 

Computation of the EKF involves the following steps:  
1) Initialization of the state x and an error covariance 
matrix P, 2) Propagation of the current state estimate 
and covariance matrix P at a given timestep k.  The state 
estimate is computed as: 
 kkk xFx =+1  (22) 

The covariance matrix P is computed as: 
 k

T
kkkk QFPFP +=+1  (23) 

3) Updating state estimate and covariance matrix as: 
 ( )kkkkkk xHzKxx −+=+  (24) 
and  
 ( ) kkkk PHKIP −=+  (25) 
where the Kalman gain matrix K is given by: 

 ( ) 1−
+= k

T
kkk

T
kkk RHPHHPK  (26) 

See Figure 10 for a pictorial diagram of the EKF 
estimation process. 

 
Figure 10: Diagram of EKF process [18] 

Figure 11 shows results of wheel-terrain contact angle 
estimation experiments that were performed with a six-
wheeled laboratory rover.  In this experiment the front 
wheel of a rover begins traversing a 20º incline, while 
the middle and rear wheel remain on flat terrain.  It can 
be seen that the algorithm does a good job estimating 
wheel-terrain contact angles using on-board sensors. 

 
Front wheel 

 
Middle wheel 

Figure 11: Estimated terrain contact angles, 20º incline 

4. Applications: Physics-Based Control and 
Planning Algorithms 
The modeling and estimation techniques presented 
above form a basis of motion planning and control 
algorithms that fully exploit a rover’s capabilities.  
These algorithms include a rough-terrain control 
algorithm, and a planning algorithm that adjusts the 
configuration of an articulated suspension rover to 
maximize tip-over stability.  Results from these 
algorithms are briefly presented here.  More details can 
be found in [8, 9, 10, 11, 12]. 

4.1 Rough-Terrain Control 

A rough-terrain control method has been developed that 
utilizes simple sensory inputs to optimize for maximum 
wheel traction or minimum power consumption, 
depending on local terrain difficulty [10].  The algorithm 
exploits the fact that most rovers possess more wheel 
actuators than is minimally required to drive forward.  
This is seen mathematically in the underconstrained 
nature of the force distribution equations (Equation set 
8).  Thus, the traction control algorithm finds a set of 
wheel torques that satisfy the force distribution 
equations while maximizing wheel traction or 
minimizing power consumption.   

To optimize for maximum traction, a function R that 
represents the maximum ratio of the tractive force to the 
normal force is minimized: 
 { }ii

i
NTR max=  (27) 

where Ti represents the component of the ith wheel’s 
force vector that is tangent to the wheel at the wheel-
terrain contact point, and Ni represents the component of 
the ith wheel’s force vector that is normal to the wheel at 
the wheel-terrain contact point.  Physically, minimizing 
R is equivalent to diminishing the force ratio of the 
wheel closest to soil failure. 

To optimize for minimum power consumption, a 
function P that represents the relation between the wheel 
input torques and the power consumption is minimized: 
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To determine which criteria to optimize for, a 
switching function based on the estimated wheel-terrain 
contact angles is developed, as: 

 
{ }

otherwise
    max if   

 0
 1 C

S i
i

>


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

=
γ

 (29) 

An objective function which combines the 
optimization criteria can then be expressed as: 
 )1( STRSQ −+=  (30) 

The optimization problem is then solved subject to 
problem constraints.  One critical problem constraint is 
that the shear force applied to the terrain cannot exceed 
the maximum amount of shear that the terrain can bear, 
as determined from the relation ( )φσ tanm

m cAT +=  
where A is the projected wheel area [2].  The parameters 
c and φ are determined from the estimation methods 
presented above. 

Results for a six-wheeled rover traversing rough 
terrain are shown in Figure 12.  In this example the 
algorithm remains in traction maximization mode, and it 
can be seen that the rover wheel thrust is increased 
compared to individual-wheel velocity control by an 
average of 82%.  Here, thrust was measured by an on-
board force sensor attached to a weighted sled. 

 

 
Figure 12: Rough-Terrain control thrust improvement 

4.2 Articulated Suspension Control 

To meet challenging future mission requirements, robots 
with actively articulated suspensions have been 
developed that can improve rough-terrain mobility by 
modifying their suspension configuration and thus 
repositioning their center of mass.  One example of an 
articulated suspension robot is the Jet Propulsion 
Laboratory’s Sample Return Rover (SRR), see Figure 
13. 

An algorithm for actively controlling the suspension to 
maximize rough-terrain tipover stability has been 
developed [11].  Kinematic equations relating 
suspension joint variables to a rover stability measure 

are written in closed form.  An important part of these 
equations are the wheel-terrain contact angles, described 
above.  A performance index is defined based on the 
stability measure, and this function is optimized rapidly 
using a computationally practical conjugate-gradient 
optimization algorithm. 

    
Figure 13: JPL Sample Return Rover 

The algorithm has been experimentally validated on 
the SRR in an outdoor, rough-terrain environment near 
the Jet Propulsion Laboratory in Pasadena, California.  
The SRR was commanded to traverse a challenging path 
that threatened vehicle stability.  For each trial the path 
was traversed first with the rover configuration joints 
fixed, and then with the articulated suspension control 
algorithm activated.  Rover stability was measured along 
the path.  These results are shown in Figure 14. 

 
Figure 14: Rough-terrain rover stability improvement 

The average stability of the articulated suspension 
system was 48.1% greater than the fixed suspension 
system.  The stability margin of the fixed suspension 
system reached dangerous minimum values of 2.1° and 
2.5°.  The minimum stability margin of the articulated 
suspension system was 15.0°.  Clearly, articulated 
suspension control results in greatly improved stability 
in rough terrain. 

5. Conclusion 
This paper has presented an overview of physics-based 
rover and terrain modeling techniques.  Kinematic and 
force models of a rover were presented, and it was 
shown that their solution in rough terrain is nontrivial.  
Methods for on-line estimation of critical terrain 
parameters and wheel-terrain contact geometry were 
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also presented, and shown to yield good results on a 
rover testbed.  These modeling and estimation 
techniques have been used as a basis for advanced 
control and planning algorithms to improve a rover’s 
rough-terrain mobility. 
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